Supplemental Figures Supplemental Figure 1.

Size: px
Start display at page:

Download "Supplemental Figures Supplemental Figure 1."

Transcription

1 Supplemental Material: Annu. Rev. Genom. Hum. Genet : A Robust Framework for Microbial Archaeology Warinner et al. Supplemental Figures Supplemental Figure 1. Mismapping of environmental (soil and ocean) and host-associated (saliva) metagenomic sequences to selected obligate pathogens. Contaminants can produce false positive signals of human pathogens even at relatively low sequencing depths; in addition to mapping, further validation is necessary to confirm the identification of a pathogen from metagenomic data. Soil, ocean, and saliva metagenomes were obtained from the EBI-ENA and NCBI-SRA databases and pre-processed with the EAGER pipeline (13) using the ClipAndMerge module. The merged reads were mapped to fourteen pathogen genomes using BWA (aln default settings) (9). Mapping statistics were obtained from the ReportTable module of EAGER and normalized to report the number of mapped hits per million reads. See Supplemental Appendix for further details.

2 Supplemental Figure 2. Ancient DNA data from published studies exhibiting the patterns described in Figure 5. (a) Genomic coverage shown for shotgun DNA sequencing data from a Hungarian mummy lung sample (2) aligned to the M. tuberculosis reference genome. The alignment was performed with MALT (4) using default parameters to a database consisting of complete bacterial genomes. Alignments to M. tuberculosis are visualized using the alignment viewer of MEGAN6 (5). Aligned reads are distributed evenly across the whole genome. (b) Genomic coverage shown for shotgun DNA sequencing data from a Spanish Chalcolithic dentine sample (19) aligned to the M. tuberculosis reference genome. The alignment was performed with MALT using default parameters to a database consisting of complete bacterial genomes. Alignments to M. tuberculosis are visualized using the alignment viewer of MEGAN6. Thin grey vertical lines indicate genomic regions with no coverage, which have been collapsed. Many reads are accumulating at distinct loci instead of being distributed randomly. (c) Histogram showing the distribution of percent identity values of shotgun DNA sequencing reads from a Hungarian mummy lung sample (2) aligned to the M. tuberculosis reference genome. The alignment was performed with MALT using default parameters to a database consisting of complete bacterial genomes. Most reads show very high percent identity values close to 100%. (d) Histogram showing the distribution of percent identity values of shotgun DNA sequencing reads from a

3 Spanish Chalcolithic dentine sample (19) aligned to the M. tuberculosis reference genome. The alignment was performed with MALT using default parameters to a database consisting of complete bacterial genomes. Most reads are rather dissimilar to the reference with percent identity values below 95%. (e) Histogram showing the distribution of SNP allele frequencies after SNP calling based on an alignment of tuberculosis-enriched DNA sequencing data from a tuberculosis positive sample from ancient South American human remains (54U) (1) to the M. tuberculosis reference genome. Reads were aligned with BWA (9) using strict mapping parameters (see (1) for details). Only multiallelic sites are plotted. Only sporadic multiallelic calls can be observed. (f) Histogram showing the distribution of SNP allele frequencies after SNP calling based on an alignment of shotgun DNA sequencing data from a Hungarian mummy lung sample (2) to the M. tuberculosis reference genome. Reads were aligned with BWA using strict mapping parameters (see (1) for details). Only multiallelic sites are plotted. A symmetric distribution of SNP allele frequencies around 50% indicates the presence of two different strains in equal abundance. (g) Histogram showing the distribution of SNP allele frequencies after SNP calling based on an alignment of shotgun DNA sequencing data from a modern tuberculosis sample (1) to the M. tuberculosis reference genome. Reads were aligned with BWA using strict mapping parameters (see (1) for details). Only multiallelic sites are plotted. An asymmetric distribution of SNP allele frequencies indicates the presence of two different strains in unequal abundance. (h) Histogram showing the distribution of SNP allele frequencies after SNP calling based on an alignment of tuberculosis-enriched DNA sequencing data from a tuberculosis positive sample from ancient South American human remains (54U) (1) to the M. tuberculosis reference genome. Reads were aligned with BWA using default mapping parameters (see (1) for details). Only multiallelic sites are plottet. A high number of multiallelic sites with low frequencies of the derived allele indicates that a high number of non-tuberculosis reads originating from environmental contamination are mapped when default parameters are used.

4 Supplemental Figure 3. Misincorporation profiles depend on the type of DNA library constructed. Sequencing data have been generated on the Illumina HiSeq2500 instrument, following two library preparation procedures applied to ancient equine subfossils (17). (a) Double-stranded library construction (11) results in an asymmetric damage pattern whereby C T damage is observed on the 5 end and G A damage is observed on the 3 end of the molecule, while (b) single-stranded library construction (3) results in a symmetric distribution of C T damage on both the 5 and 3 ends, with very little G A damage observed. The latter pattern is a more accurate representation of the true C T damage pattern on the adna molecule; the asymmetric pattern observed in the double-stranded library is an artifact of T4 polymerase exonuclease activity during end repair of 3 overhangs, and the 3 G A damage is merely the reverse complement of the 5 C T damage. mapdamage2 (6) was run on a total of 100,000 sequencing reads aligned against the horse reference genome. Red: C T mis-incoporation rate. Blue: G A misincorporation rate.

5 Supplemental Figure 4. Effects of sequencing depth and DNA damage rates on the accuracy and precision of DNA damage estimates. Helicobacter pylori sequencing data were simulated by using gargammel (14) and applying four increasing levels of postmortem DNA deamination rates (D, 2D, 5D, and 10D). The simulations used the empirical template size distribution of the H. pylori genome recovered from the Iceman (10a). The simulated data were trimmed, and overlapping paired-end reads were collapsed before being aligned against the H. pylori genome (NC_000915) using PALEOMIX (16). High-quality unique reads were downsampled (from 100,000 to 100), and cytosine deamination rates at overhangs (DeltaS) were estimated in mapdamage2 (6) using standard parameters. (a) Mean (green), median (orange), and 2.5% 97.5% quantiles of the posterior distribution of the damage parameters (whiskers). (b) Misincorporation profiles within the first and last 10 sequence positions when using 100 and 100,000 sequences simulated with the lowest (D) and highest (10D) damage levels. The C T misincorporation rate is shown in red; the G A misincorporation rate is shown in blue.

6 Supplemental Figure 5. Genuine misincorporation profiles on distantly-related reference genomes. M. leprae (left) and M. smegmatis (right) sequencing data were simulated using gargammel (14) assuming nick frequencies of 0, 0.25 as the geometric parameter for the length of overhanging ends, and 0.5 and 0.01 cytosine deamination rates in single-stranded and doublestranded DNA, respectively. A total of 1.77 million of paired-end reads were then trimmed and overlapping paired-end reads were collapsed before being aligned against three possible reference genomes using PALEOMIX (16) (M. leprae, top; M. smegmatis, middle, and; M. tuberculosis, bottom). The fraction of high-quality unique reads aligned is provided between parentheses. Misincorporation profiles were generated through mapdamage2 (6). Mis-incorporation rates of 1% are indicated with a dashed line to facilitate comparisons between the different conditions. Red: C T mis-incoporation rate. Blue: G A mis-incorporation rate.

Addressing Challenges of Ancient DNA Sequence Data Obtained with Next Generation Methods

Addressing Challenges of Ancient DNA Sequence Data Obtained with Next Generation Methods DISSERTATION Addressing Challenges of Ancient DNA Sequence Data Obtained with Next Generation Methods submitted in fulfillment of the requirements for the degree Doctorate of natural science doctor rerum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09944 Supplementary Figure 1. Establishing DNA sequence similarity thresholds for phylum and genus levels Sequence similarity distributions of pairwise alignments of 40 universal single

More information

Parts of a standard FastQC report

Parts of a standard FastQC report FastQC FastQC, written by Simon Andrews of Babraham Bioinformatics, is a very popular tool used to provide an overview of basic quality control metrics for raw next generation sequencing data. There are

More information

RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP)

RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP) Application Note: RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP) Introduction: Innovations in DNA sequencing during the 21st century have revolutionized our ability to obtain nucleotide information

More information

Chang Xu Mohammad R Nezami Ranjbar Zhong Wu John DiCarlo Yexun Wang

Chang Xu Mohammad R Nezami Ranjbar Zhong Wu John DiCarlo Yexun Wang Supplementary Materials for: Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller Chang Xu Mohammad R Nezami Ranjbar Zhong Wu John

More information

Supplementary Figure 1 Schematic view of phasing approach. A sequence-based schematic view of the serial compartmentalization approach.

Supplementary Figure 1 Schematic view of phasing approach. A sequence-based schematic view of the serial compartmentalization approach. Supplementary Figure 1 Schematic view of phasing approach. A sequence-based schematic view of the serial compartmentalization approach. First, barcoded primer sequences are attached to the bead surface

More information

Whole Human Genome Sequencing Report This is a technical summary report for PG DNA

Whole Human Genome Sequencing Report This is a technical summary report for PG DNA Whole Human Genome Sequencing Report This is a technical summary report for PG0002601-DNA Physician and Patient Information Physician name: Vinodh Naraynan Address: Suite 406 222 West Thomas Road Phoenix

More information

DNA METHYLATION RESEARCH TOOLS

DNA METHYLATION RESEARCH TOOLS SeqCap Epi Enrichment System Revolutionize your epigenomic research DNA METHYLATION RESEARCH TOOLS Methylated DNA The SeqCap Epi System is a set of target enrichment tools for DNA methylation assessment

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Processing of mutations and generation of simulated controls. On the left, a diagram illustrates the manner in which covariate-matched simulated mutations were obtained, filtered

More information

De Novo and Hybrid Assembly

De Novo and Hybrid Assembly On the PacBio RS Introduction The PacBio RS utilizes SMRT technology to generate both Continuous Long Read ( CLR ) and Circular Consensus Read ( CCS ) data. In this document, we describe sequencing the

More information

TruSPAdes: analysis of variations using TruSeq Synthetic Long Reads (TSLR)

TruSPAdes: analysis of variations using TruSeq Synthetic Long Reads (TSLR) tru TruSPAdes: analysis of variations using TruSeq Synthetic Long Reads (TSLR) Anton Bankevich Center for Algorithmic Biotechnology, SPbSU Sequencing costs 1. Sequencing costs do not follow Moore s law

More information

Understanding Accuracy in SMRT Sequencing

Understanding Accuracy in SMRT Sequencing Understanding Accuracy in SMRT Sequencing Jonas Korlach, Chief Scientific Officer, Pacific Biosciences Introduction Single Molecule, Real-Time (SMRT ) DNA sequencing achieves highly accurate sequencing

More information

Experimental Design Microbial Sequencing

Experimental Design Microbial Sequencing Experimental Design Microbial Sequencing Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu General rules for preparing

More information

Recombination Models. A. The Holliday Junction Model

Recombination Models. A. The Holliday Junction Model A. The Holliday Junction Model Recombination Models Fig. 1 illustrates the formation of a Holliday junction (I) and its branch migration (II).The branch point (the blue X ) at the left in I has moved towards

More information

APPLICATION NOTE

APPLICATION NOTE APPLICATION NOTE www.swiftbiosci.com Approaching Single-Cell Sequencing by Understanding NGS Library Complexity and Bias Abstract Demands are growing on genomics to deliver higher quality sequencing data

More information

CBC Data Therapy. Metagenomics Discussion

CBC Data Therapy. Metagenomics Discussion CBC Data Therapy Metagenomics Discussion General Workflow Microbial sample Generate Metaomic data Process data (QC, etc.) Analysis Marker Genes Extract DNA Amplify with targeted primers Filter errors,

More information

Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for

Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for Result Tables The Result Table, which indicates chromosomal positions and annotated gene names, promoter regions and CpG islands, is the best way for you to discover methylation changes at specific genomic

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

Comparing a few SNP calling algorithms using low-coverage sequencing data

Comparing a few SNP calling algorithms using low-coverage sequencing data Yu and Sun BMC Bioinformatics 2013, 14:274 RESEARCH ARTICLE Open Access Comparing a few SNP calling algorithms using low-coverage sequencing data Xiaoqing Yu 1 and Shuying Sun 1,2* Abstract Background:

More information

Targeted Sequencing Using Droplet-Based Microfluidics. Keith Brown Director, Sales

Targeted Sequencing Using Droplet-Based Microfluidics. Keith Brown Director, Sales Targeted Sequencing Using Droplet-Based Microfluidics Keith Brown Director, Sales brownk@raindancetech.com Who we are: is a Provider of Microdroplet-based Solutions The Company s RainStorm TM Technology

More information

Mate-pair library data improves genome assembly

Mate-pair library data improves genome assembly De Novo Sequencing on the Ion Torrent PGM APPLICATION NOTE Mate-pair library data improves genome assembly Highly accurate PGM data allows for de Novo Sequencing and Assembly For a draft assembly, generate

More information

Strain/species identification in metagenomes using genome-specific markers. Tu, He and Zhou Nucleic Acids Research

Strain/species identification in metagenomes using genome-specific markers. Tu, He and Zhou Nucleic Acids Research Strain/species identification in metagenomes using genome-specific markers. Tu, He and Zhou. 2014 Nucleic Acids Research Journal Club Triinu Kõressaar 25.04.2014 Introduction (1/2) Shotgun metagenome sequencing

More information

Microbiome: Metagenomics 4/4/2018

Microbiome: Metagenomics 4/4/2018 Microbiome: Metagenomics 4/4/2018 metagenomics is an extension of many things you have already learned! Genomics used to be computationally difficult, and now that s metagenomics! Still developing tools/algorithms

More information

MUTANT: A mutant is a strain that has suffered a mutation and exhibits a different phenotype from the parental strain.

MUTANT: A mutant is a strain that has suffered a mutation and exhibits a different phenotype from the parental strain. OUTLINE OF GENETICS LECTURE #1 A. TERMS PHENOTYPE: Phenotype refers to the observable properties of an organism, such as morphology, growth rate, ability to grow under different conditions or media. For

More information

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms

Next Generation Sequencing Lecture Saarbrücken, 19. March Sequencing Platforms Next Generation Sequencing Lecture Saarbrücken, 19. March 2012 Sequencing Platforms Contents Introduction Sequencing Workflow Platforms Roche 454 ABI SOLiD Illumina Genome Anlayzer / HiSeq Problems Quality

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17405 Supplementary Information 1 Determining a suitable lower size-cutoff for sequence alignments to the nuclear genome Analyses of nuclear DNA sequences from archaic genomes have until

More information

ACCEL-NGS 2S DNA LIBRARY KITS

ACCEL-NGS 2S DNA LIBRARY KITS ACCEL-NGS 2S DNA LIBRARY KITS Accel-NGS 2S DNA Library Kits produce high quality libraries with an all-inclusive, easy-to-use format. The kits contain all reagents necessary to build high complexity libraries

More information

Introduction to Microbial Sequencing

Introduction to Microbial Sequencing Introduction to Microbial Sequencing Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu General rules for preparing

More information

EAGER: efficient ancient genome reconstruction

EAGER: efficient ancient genome reconstruction Peltzer et al. Genome Biology (2016) 17:60 DOI 10.1186/s13059-016-0918-z SOFTWARE Open Access EAGER: efficient ancient genome reconstruction Alexander Peltzer 1,2,5*, Günter Jäger 1, Alexander Herbig 1,2,5,

More information

Genomic resources. for non-model systems

Genomic resources. for non-model systems Genomic resources for non-model systems 1 Genomic resources Whole genome sequencing reference genome sequence comparisons across species identify signatures of natural selection population-level resequencing

More information

Supplementary information ATLAS

Supplementary information ATLAS Supplementary information ATLAS Vivian Link, Athanasios Kousathanas, Krishna Veeramah, Christian Sell, Amelie Scheu and Daniel Wegmann Section 1: Complete list of functionalities Sequence data processing

More information

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014 Single Nucleotide Variant Analysis H3ABioNet May 14, 2014 Outline What are SNPs and SNVs? How do we identify them? How do we call them? SAMTools GATK VCF File Format Let s call variants! Single Nucleotide

More information

T G T A. artificial chimera

T G T A. artificial chimera False mutation detection caused by WA artifacts original genome A C A artifacts in amplified DNA C C A A false detection of local variants true ssnv mistaken as error artificial chimera false LOH early

More information

Recombination Models. A. The Holliday Junction Model

Recombination Models. A. The Holliday Junction Model A. The Holliday Junction Model Recombination Models Fig. 1 illustrates the formation of a Holliday junction (I) and its branch migration (II).The branch point (the blue X ) at the left in I has moved towards

More information

Nature Methods Optimal enzymes for amplifying sequencing libraries

Nature Methods Optimal enzymes for amplifying sequencing libraries Nature Methods Optimal enzymes for amplifying sequencing libraries Michael A Quail, Thomas D Otto, Yong Gu, Simon R Harris, Thomas F Skelly, Jacqueline A McQuillan, Harold P Swerdlow & Samuel O Oyola Supplementary

More information

Supplementary Figures

Supplementary Figures Supplementary Figures A B Supplementary Figure 1. Examples of discrepancies in predicted and validated breakpoint coordinates. A) Most frequently, predicted breakpoints were shifted relative to those derived

More information

Course: IT and Health

Course: IT and Health From Genotype to Phenotype Reconstructing the past: The First Ancient Human Genome 2762 Course: IT and Health Kasper Nielsen Center for Biological Sequence Analysis Technical University of Denmark Outline

More information

QIAseq Targeted Panel Analysis Plugin USER MANUAL

QIAseq Targeted Panel Analysis Plugin USER MANUAL QIAseq Targeted Panel Analysis Plugin USER MANUAL User manual for QIAseq Targeted Panel Analysis 1.1 Windows, macos and Linux June 18, 2018 This software is for research purposes only. QIAGEN Aarhus Silkeborgvej

More information

user s guide Question 1

user s guide Question 1 Question 1 How does one find a gene of interest and determine that gene s structure? Once the gene has been located on the map, how does one easily examine other genes in that same region? doi:10.1038/ng966

More information

BIOINFORMATICS ORIGINAL PAPER

BIOINFORMATICS ORIGINAL PAPER BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 21 2011, pages 2957 2963 doi:10.1093/bioinformatics/btr507 Genome analysis Advance Access publication September 7, 2011 : fast length adjustment of short reads

More information

Introduction to the MiSeq

Introduction to the MiSeq Introduction to the MiSeq 2011 Illumina, Inc. All rights reserved. Illumina, illuminadx, BeadArray, BeadXpress, cbot, CSPro, DASL, Eco, Genetic Energy, GAIIx, Genome Analyzer, GenomeStudio, GoldenGate,

More information

Introduction to NGS analyses

Introduction to NGS analyses Introduction to NGS analyses Giorgio L Papadopoulos Institute of Molecular Biology and Biotechnology Bioinformatics Support Group 04/12/2015 Papadopoulos GL (IMBB, FORTH) IMBB NGS Seminar 04/12/2015 1

More information

Bio5488 Practice Midterm (2018) 1. Next-gen sequencing

Bio5488 Practice Midterm (2018) 1. Next-gen sequencing 1. Next-gen sequencing 1. You have found a new strain of yeast that makes fantastic wine. You d like to sequence this strain to ascertain the differences from S. cerevisiae. To accurately call a base pair,

More information

Supplementary Note 1. Description of the main MetaPhlAn2 additions compared to MetaPhlAn1

Supplementary Note 1. Description of the main MetaPhlAn2 additions compared to MetaPhlAn1 MetaPhlAn2 for enhanced metagenomic taxonomic profiling Duy Tin Truong 1, Eric Franzosa 2,3, Timothy L. Tickle 2,3, Matthias Scholz 1, George Weingart 2, Edoardo Pasolli 1, Adrian Tett 1, Curtis Huttenhower

More information

RADSeq Data Analysis. Through STACKS on Galaxy. Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé

RADSeq Data Analysis. Through STACKS on Galaxy. Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé RADSeq Data Analysis Through STACKS on Galaxy Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé RAD sequencing: next-generation tools for an old problem INTRODUCTION source: Karim Gharbi

More information

Illumina Sequencing Overview

Illumina Sequencing Overview Illumina Sequencing Overview Part # 15045845_Rev.C 2013 Illumina, Inc. All rights reserved. Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cbot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Shah NS, Auld SC, Brust JCM, et al. Transmission of extensively

More information

Genome Resequencing. Rearrangements. SNPs, Indels CNVs. De novo genome Sequencing. Metagenomics. Exome Sequencing. RNA-seq Gene Expression

Genome Resequencing. Rearrangements. SNPs, Indels CNVs. De novo genome Sequencing. Metagenomics. Exome Sequencing. RNA-seq Gene Expression Genome Resequencing De novo genome Sequencing SNPs, Indels CNVs Rearrangements Metagenomics RNA-seq Gene Expression Splice Isoform Abundance High Throughput Short Read Sequencing: Illumina Exome Sequencing

More information

Applications of Next Generation Sequencing in Metagenomics Studies

Applications of Next Generation Sequencing in Metagenomics Studies Applications of Next Generation Sequencing in Metagenomics Studies Francesca Rizzo, PhD Genomix4life Laboratory of Molecular Medicine and Genomics Department of Medicine and Surgery University of Salerno

More information

TECH NOTE Ligation-Free ChIP-Seq Library Preparation

TECH NOTE Ligation-Free ChIP-Seq Library Preparation TECH NOTE Ligation-Free ChIP-Seq Library Preparation The DNA SMART ChIP-Seq Kit Ligation-free template switching technology: Minimize sample handling in a single-tube workflow >> Simplified protocol with

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Concept of barcoding to suppress error in sequencing. Each template DNA molecule is barcoded with a random and unique sequence (marked as red, turquoise and green). All PCR generated

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Read Complexity

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Read Complexity Supplementary Figure 1 Read Complexity A) Density plot showing the percentage of read length masked by the dust program, which identifies low-complexity sequence (simple repeats). Scrappie outputs a significantly

More information

Developing Tools for Rapid and Accurate Post-Sequencing Analysis of Foodborne Pathogens. Mitchell Holland, Noblis

Developing Tools for Rapid and Accurate Post-Sequencing Analysis of Foodborne Pathogens. Mitchell Holland, Noblis Developing Tools for Rapid and Accurate Post-Sequencing Analysis of Foodborne Pathogens Mitchell Holland, Noblis Agenda Introduction Whole Genome Sequencing Analysis Pipeline Sequence Alignment SNPs and

More information

resequencing storage SNP ncrna metagenomics private trio de novo exome ncrna RNA DNA bioinformatics RNA-seq comparative genomics

resequencing storage SNP ncrna metagenomics private trio de novo exome ncrna RNA DNA bioinformatics RNA-seq comparative genomics RNA Sequencing T TM variation genetics validation SNP ncrna metagenomics private trio de novo exome mendelian ChIP-seq RNA DNA bioinformatics custom target high-throughput resequencing storage ncrna comparative

More information

Nature Genetics: doi: /ng.3254

Nature Genetics: doi: /ng.3254 Supplementary Figure 1 Comparing the inferred histories of the stairway plot and the PSMC method using simulated samples based on five models. (a) PSMC sim-1 model. (b) PSMC sim-2 model. (c) PSMC sim-3

More information

CDC s Advanced Molecular Detection (AMD) Sequence Data Analysis and Management

CDC s Advanced Molecular Detection (AMD) Sequence Data Analysis and Management CDC s Advanced Molecular Detection (AMD) Sequence Data Analysis and Management Scott Sammons Technology Officer Office of Advanced Molecular Detection National Center for Emerging and Zoonotic Infectious

More information

Supplementary Figure 1 Genotyping by Sequencing (GBS) pipeline used in this study to genotype maize inbred lines. The 14,129 maize inbred lines were

Supplementary Figure 1 Genotyping by Sequencing (GBS) pipeline used in this study to genotype maize inbred lines. The 14,129 maize inbred lines were Supplementary Figure 1 Genotyping by Sequencing (GBS) pipeline used in this study to genotype maize inbred lines. The 14,129 maize inbred lines were processed following GBS experimental design 1 and bioinformatics

More information

Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human

Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human nature methods Digital RNA allelotyping reveals tissue-specific and allelespecific gene expression in human Kun Zhang, Jin Billy Li, Yuan Gao, Dieter Egli, Bin Xie, Jie Deng, Zhe Li, Je-Hyuk Lee, John

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Fig. S1 - Nationwide contributions of the most abundant genera. The figure shows log 10 of the relative percentage of genera, forming 80% of total abundance. (Russian

More information

Metagenomic species profiling using universal phylogenetic marker genes

Metagenomic species profiling using universal phylogenetic marker genes Metagenomic species profiling using universal phylogenetic marker genes Shinichi Sunagawa, Daniel R. Mende, Georg Zeller, Fernando Izquierdo-Carrasco, Simon A. Berger, Jens Roat Kultima, Luis Pedro Coelho,

More information

Human Genome Sequencing Over the Decades The capacity to sequence all 3.2 billion bases of the human genome (at 30X coverage) has increased

Human Genome Sequencing Over the Decades The capacity to sequence all 3.2 billion bases of the human genome (at 30X coverage) has increased Human Genome Sequencing Over the Decades The capacity to sequence all 3.2 billion bases of the human genome (at 30X coverage) has increased exponentially since the 1990s. In 2005, with the introduction

More information

ChIP-seq and RNA-seq

ChIP-seq and RNA-seq ChIP-seq and RNA-seq Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions (ChIPchromatin immunoprecipitation)

More information

www.illumina.com/hiseq www.illumina.com FOR RESEARCH USE ONLY 2012 2014 Illumina, Inc. All rights reserved. Illumina, BaseSpace, cbot, CSPro, Genetic Energy, HiSeq, Nextera, TruSeq, the pumpkin orange

More information

Infectious Disease Omics

Infectious Disease Omics Infectious Disease Omics Metagenomics Ernest Diez Benavente LSHTM ernest.diezbenavente@lshtm.ac.uk Course outline What is metagenomics? In situ, culture-free genomic characterization of the taxonomic and

More information

Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME. Peter Sterk EBI Metagenomics Course 2014

Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME. Peter Sterk EBI Metagenomics Course 2014 Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME Peter Sterk EBI Metagenomics Course 2014 1 Taxonomic analysis using next-generation sequencing Objective we want to

More information

Assemblytics: a web analytics tool for the detection of assembly-based variants Maria Nattestad and Michael C. Schatz

Assemblytics: a web analytics tool for the detection of assembly-based variants Maria Nattestad and Michael C. Schatz Assemblytics: a web analytics tool for the detection of assembly-based variants Maria Nattestad and Michael C. Schatz Table of Contents Supplementary Note 1: Unique Anchor Filtering Supplementary Figure

More information

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow

The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow The Expanded Illumina Sequencing Portfolio New Sample Prep Solutions and Workflow Marcus Hausch, Ph.D. 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense Out of Life, Oligator,

More information

Nature Methods: doi: /nmeth.4396

Nature Methods: doi: /nmeth.4396 Supplementary Figure 1 Comparison of technical replicate consistency between and across the standard ATAC-seq method, DNase-seq, and Omni-ATAC. (a) Heatmap-based representation of ATAC-seq quality control

More information

Antibiotic Resistance Genes: From The Farm To The Human Gut

Antibiotic Resistance Genes: From The Farm To The Human Gut Shanghai 2015 Antibiotic Resistance Genes: From The Farm To The Human Gut Baoli Zhu, PhD Institute of Microbiology, Chinese Academy Beijing Key Lab of Microbial Drug Resistance and Resistome zhubaoli@im.ac.cn

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

DNA. bioinformatics. genomics. personalized. variation NGS. trio. custom. assembly gene. tumor-normal. de novo. structural variation indel.

DNA. bioinformatics. genomics. personalized. variation NGS. trio. custom. assembly gene. tumor-normal. de novo. structural variation indel. DNA Sequencing T TM variation DNA amplicon mendelian trio genomics NGS bioinformatics tumor-normal custom SNP resequencing target validation de novo prediction personalized comparative genomics exome private

More information

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013 Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA March 2, 2013 Steven R. Kain, Ph.D. ABRF 2013 NuGEN s Core Technologies Selective Sequence Priming Nucleic Acid Amplification

More information

Studying the Human Genome. Lesson Overview. Lesson Overview Studying the Human Genome

Studying the Human Genome. Lesson Overview. Lesson Overview Studying the Human Genome Lesson Overview 14.3 Studying the Human Genome THINK ABOUT IT Just a few decades ago, computers were gigantic machines found only in laboratories and universities. Today, many of us carry small, powerful

More information

Supporting Information

Supporting Information Supporting Information Eriksson and Manica 10.1073/pnas.1200567109 SI Text Analyses of Candidate Regions for Gene Flow from Neanderthals. The original publication of the draft Neanderthal genome (1) included

More information

Determining presence/absence threshold for your dataset

Determining presence/absence threshold for your dataset Determining presence/absence threshold for your dataset In PanCGHweb there are two ways to determine the presence/absence calling threshold. One is based on Receiver Operating Curves (ROC) generated for

More information

NEBNext. for Ion Torrent LIBRARY PREPARATION KITS

NEBNext. for Ion Torrent LIBRARY PREPARATION KITS NEBNext for Ion Torrent LIBRARY PREPARATION KITS NEBNEXT PRODUCTS FOR ION TORRENT Table of Contents 3 General Introduction 4 5 6 6 7 8 DNA Library Preparation Workflow Product Selection Product Details

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA

More information

02 Agenda Item 03 Agenda Item

02 Agenda Item 03 Agenda Item 01 Agenda Item 02 Agenda Item 03 Agenda Item SOLiD 3 System: Applications Overview April 12th, 2010 Jennifer Stover Field Application Specialist - SOLiD Applications Workflow for SOLiD Application Application

More information

Personal Genomics Platform White Paper Last Updated November 15, Executive Summary

Personal Genomics Platform White Paper Last Updated November 15, Executive Summary Executive Summary Helix is a personal genomics platform company with a simple but powerful mission: to empower every person to improve their life through DNA. Our platform includes saliva sample collection,

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Ideograms showing scaffold boundaries and segmental duplication locations.

Nature Methods: doi: /nmeth Supplementary Figure 1. Ideograms showing scaffold boundaries and segmental duplication locations. Supplementary Figure 1 Ideograms showing scaffold boundaries and segmental duplication locations. Blue lines mark the boundaries of scaffolds. Black marks show the locations of segmental duplications.

More information

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 ChIP-Seq Tools J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA or

More information

Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer

Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer Performance characteristics of the High Sensitivity DNA kit for the Agilent 2100 Bioanalyzer Technical Note 10 Measured conc. [ng/µl] 1 Y intercept = 0.09 r 2 = 0.993 0.1 0.1 1 10 Reference concentration

More information

BST227 Introduction to Statistical Genetics. Lecture 8: Variant calling from high-throughput sequencing data

BST227 Introduction to Statistical Genetics. Lecture 8: Variant calling from high-throughput sequencing data BST227 Introduction to Statistical Genetics Lecture 8: Variant calling from high-throughput sequencing data 1 PC recap typical genome Differs from the reference genome at 4-5 million sites ~85% SNPs ~15%

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind

More information

Whole Genome Sequence Data Quality Control and Validation

Whole Genome Sequence Data Quality Control and Validation Whole Genome Sequence Data Quality Control and Validation GoSeqIt ApS / Ved Klædebo 9 / 2970 Hørsholm VAT No. DK37842524 / Phone +45 26 97 90 82 / Web: www.goseqit.com / mail: mail@goseqit.com Table of

More information

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326:

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: 289-293. : Understanding the 3D conformation of the genome can

More information

dbcamplicons pipeline Amplicons

dbcamplicons pipeline Amplicons dbcamplicons pipeline Amplicons Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu Microbial community analysis Goal:

More information

Introduction to Plant Genomics and Online Resources. Manish Raizada University of Guelph

Introduction to Plant Genomics and Online Resources. Manish Raizada University of Guelph Introduction to Plant Genomics and Online Resources Manish Raizada University of Guelph Genomics Glossary http://www.genomenewsnetwork.org/articles/06_00/sequence_primer.shtml Annotation Adding pertinent

More information

UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series UG Examination ALGORITHMS FOR BIOINFORMATICS CMP-6034B

UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series UG Examination ALGORITHMS FOR BIOINFORMATICS CMP-6034B UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series UG Examination 2015-16 ALGORITHMS FOR BIOINFORMATICS CMP-6034B Time allowed: 3 hours All questions are worth 30 marks. Answer any FOUR.

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

A general approach to singlenucleotide. discovery. G Matrh et al. 1999

A general approach to singlenucleotide. discovery. G Matrh et al. 1999 A general approach to singlenucleotide polymorphism discovery G Matrh et al. 1999 SNPs a one base DNA sequence variation between two individuals of a same species it is the most abundant sequence variation

More information

ChIP-seq and RNA-seq. Farhat Habib

ChIP-seq and RNA-seq. Farhat Habib ChIP-seq and RNA-seq Farhat Habib fhabib@iiserpune.ac.in Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions

More information

dbcamplicons pipeline Amplicons

dbcamplicons pipeline Amplicons dbcamplicons pipeline Amplicons Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu Microbial community analysis Goal:

More information

Introduction to metagenome assembly. Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014

Introduction to metagenome assembly. Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014 Introduction to metagenome assembly Bas E. Dutilh Metagenomic Methods for Microbial Ecologists, NIOO September 18 th 2014 Sequencing specs* Method Read length Accuracy Million reads Time Cost per M 454

More information

DNA concentration and purity were initially measured by NanoDrop 2000 and verified on Qubit 2.0 Fluorometer.

DNA concentration and purity were initially measured by NanoDrop 2000 and verified on Qubit 2.0 Fluorometer. DNA Preparation and QC Extraction DNA was extracted from whole blood or flash frozen post-mortem tissue using a DNA mini kit (QIAmp #51104 and QIAmp#51404, respectively) following the manufacturer s recommendations.

More information

PLNT2530 (2018) Unit 6b Sequence Libraries

PLNT2530 (2018) Unit 6b Sequence Libraries PLNT2530 (2018) Unit 6b Sequence Libraries Molecular Biotechnology (Ch 4) Analysis of Genes and Genomes (Ch 5) Unless otherwise cited or referenced, all content of this presenataion is licensed under the

More information

De novo meta-assembly of ultra-deep sequencing data

De novo meta-assembly of ultra-deep sequencing data De novo meta-assembly of ultra-deep sequencing data Hamid Mirebrahim 1, Timothy J. Close 2 and Stefano Lonardi 1 1 Department of Computer Science and Engineering 2 Department of Botany and Plant Sciences

More information