Applications of Next Generation Sequencing in Metagenomics Studies

Size: px
Start display at page:

Download "Applications of Next Generation Sequencing in Metagenomics Studies"

Transcription

1 Applications of Next Generation Sequencing in Metagenomics Studies Francesca Rizzo, PhD Genomix4life Laboratory of Molecular Medicine and Genomics Department of Medicine and Surgery University of Salerno

2 Genome = Parts list of a single genome Introduction Human genome: 3 Gbp, 24,000 ORFs Bacterial Genome: 3-5 Mbp, ORFs Viral Genome: 0.1-1Mbp, ORFs e.g.: Garden soil 50 archeal species: 1.5x10 8 bp 1000 bacterial species: 5.0x10 9 bp 200 fungal species: 1.0x10 11 bp 50 invertebrate species: 5.0x10 10 bp 5000 viral genomes: 5.0x10 7 bp...functional analysis of the collective genomes of soil microflora, which we term the metagenome of the soil. - J. Handelsman et al., 1998 Metagenome = Parts list of the community 160 Gb DNA

3 Introduction "the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species Chen, K.; Pachter, L. (2005) Comput. Biol. PubMed: metagenom*[title/abstract]

4 Introduction "the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species Chen, K.; Pachter, L. (2005) Comput. Biol. PubMed: metagenom*[title/abstract]

5 Next Generation 3 rd Generation First Generation

6 Metagenome timeline

7

8 Metagenomics Who is there? What are they doing?

9 NGS methods Marker Genes (Amplicon sequencing) Extract DNA Amplify with targeted primers Diversity analysis Matagenomics (Shotgun sequencing) Extract DNA Sequence random fragments Diversity, function analysis Metatranscriptomics (RNA-sequencing) Extract RNA Sequence cdna Gene expression, function

10 NGS methods Marker Genes (Amplicon sequencing) Extract DNA Amplify with targeted primers Diversity analysis Matagenomics (Shotgun sequencing) Extract DNA Sequence random fragments Diversity, function analysis Metatranscriptomics (RNA-sequencing) Extract RNA Sequence cdna Gene expression, function

11 Marker Genes (Amplicon sequencing) 16S rrna Genes Bacteria Internal transcribed spacer (ITS) Fungi V4 V3 V6 V5 V7 V8 V1 V2 V9 Claesson, Marcus J., et al. Nucleic acids research (2010) D. Lee Taylor et al. Appl. Environ. Microbiol. 2016;82: Alternative gene markers reca: Response to DNA Stress in Bacteria 18S rrna: 18S ribosomal RNA rpob: RNA polymerase ß subunit hsp70: heat shock protein 70

12 Typical workflow Marker Genes (Amplicon sequencing) Extract DNA Library preparation Environmental sample DNA

13 Typical workflow Marker Genes (Amplicon sequencing) Extract DNA Library preparation Environmental sample DNA

14 Typical workflow Marker Genes (Amplicon sequencing) Extract DNA Library preparation Environmental sample DNA Sequencing PLATFORM: Illumina MiSeq (2X150 bp, 2X250 bp, 2X300 bp) Read 1: 300 bp Index 2 Analysis Index 1 Read 2: 300 bp DEPTH OF SAMPLING: reads/sample for simple communities reads/sample for complex metagenomes

15 Typical workflow Marker Genes (Amplicon sequencing) Who is there? Barcodes are used to assign each sequence to the sample it come from, dropping low quality reads. Adapter are trimmed and multiple sequence alignment based on reference sequences is built. Phylogenetic tree is built using representative OTU. Quantitative assessment of the community 30 % 15 % 5% 10 % 40 % Use community clustering techniques to relates samples to one another Related sequences are grouped into OTUs and taxonomy is assigned OTU (Operational Taxonomic Unit)

16 Marker Genes (Amplicon sequencing) ADVANTAGE: -Fast survey of large community -Reduced cost -Mature set of tools and statistics for analysis -Good for first round surveys DISADVANTAGE: -Lack of tools for processing ITS/fungal microbiome data set -Amplification bias affect accuracy and replication -16S or ITS may not differentiate between similar strains -Different target regions in 16S gene and ITS region can give different results/resolution -Chloroplast 16S sequences can get amplified in plant metagenomes

17 NGS methods Marker Genes (Amplicon sequencing) Extract DNA Amplify with targeted primers Diversity analysis Matagenomics (Shotgun sequencing) Extract DNA Sequence random fragments Diversity, function analysis Metatranscriptomics (RNA-sequencing) Extract RNA Sequence cdna Gene expression, function

18 Typical workflow Matagenomics (Shotgun sequencing) Extract DNA DNA fragmentation Environmental sample DNA Library preparation End repair 3 End adenylation Adapter ligation PCR

19 Typical workflow Matagenomics (Shotgun sequencing) Extract DNA DNA fragmentation Environmental sample DNA Library preparation End repair Sequencing 3 End adenylation Adapter ligation PCR PLATFORM: Illumina NextSeq (2X150 bp), Hiseq X (2X125bp) Read 1: 150 bp Index 1 Analysis Index 2 DEPTH OF SAMPLING: reads/sample Read 2: 150 bp Number of specie? Relative abundance of the species? Known o unknown genomes?

20 Typical workflow Matagenomics (Shotgun sequencing) Genome A Genome B Genome C Who is there? What are they doing? What can they do? Barcodes are used to assign each sequence to the sample it come from, dropping low quality reads. Taxonomic classification Genome D Unknown Metagemomes alignment to reference genome and/or de novo assembling. Function analysis Gene prediction and/or annotation Protein family Gene/genome structure Metabolic pathways Gene ontology

21 NGS methods Marker Genes (Amplicon sequencing) Extract DNA Amplify with targeted primers Diversity analysis Matagenomics (Shotgun sequencing) Extract DNA Sequence random fragments Diversity, function analysis Metatranscriptomics (RNA-sequencing) Extract RNA Sequence cdna Gene expression, function

22 Introduction Genome = Parts list of a single genome Metagenome = Parts list of the community Human genome: 3 Gbp, 24,000 ORFs Bacterial Genome: 3-5 Mbp, ORFs Viral Genome: 0.1-1Mbp, ORFs e.g.: Garden soil 50 archeal species: 1.5x10 8 bp 1000 bacterial species: 5.0x10 9 bp 200 fungal species: 1.0x10 11 bp 50 invertebrate species: 5.0x10 10 bp 5000 viral genomes: 5.0x10 7 bp 160 Gb DNA 8 Gb RNA

23 Typical workflow Metatranscriptomics (RNA-sequencing) Extract RNA rrna depletion Environmental sample (Optional) Library preparation

24 Typical workflow Metatranscriptomics (RNA-sequencing) Extract RNA rrna depletion Environmental sample (Optional) RNA fragmented and primed Library preparation First strand cdna synthesis Second strand cdna synthesis 3 End adenylation Adapter ligation PCR

25 Typical workflow Metatranscriptomics (RNA-sequencing) Extract RNA rrna depletion Environmental sample Sequencing (Optional) Library preparation RNA fragmented and primed First strand cdna synthesis Second strand cdna synthesis 3 End adenylation PLATFORM: Illumina NextSeq (2X150 bp), Hiseq X (2X125bp) Read 1: 150 bp Index 1 Analysis Adapter ligation PCR Index 2 Read 2: 150 bp DEPTH OF SAMPLING: reads/sample Number of specie? Relative abundance of the species? Known o unknown genomes? Levels of gene expression?

26 Typical workflow Metatranscriptomics (RNA-sequencing) Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3 Specie A Specie B Specie C Who is there? What are they doing? Protein family profile Barcodes are used to assign each sequence to the sample it come from, dropping low quality reads. Function analysis Gene 1 Gene 2 Gene 3 Alignment to reference transcriptome and/or de novo assembling. Specie D Unknown Taxonomic classification New molecules identification Gene ontology abundance Metabolic pathways reconstruction Pathways inference and enrichment analysis

27 Who is there What are they doing?

28 WHY? Metagenomics Discovery of: the diversity of life what is a genome/species the interplay between human and microbes how do microbial communities work and how stable are novel metabolic pathways novel natural products new antibiotic new molecules with new functions new enzymes and bioactive molecules

29 Our Team Our Services Contacts: Biomarkers Next Generation Sequencing Prof. Alessandro Dott.ssa Giovanna Weisz Marchese Dott. Giorgio Giurato Dott.ssa Rizzo Francesca Prof. Roberto Parente Dott.ssa Roberta Tarallo Fondazione dell Università degli Studi di Salerno Dott.ssa Teresa Rocco Dott.ssa Maria Ravo Dott.ssa Angela Cordella Dott. Giovanni Nassa Microarray QYAsynphony Liquid handling Ion PGM Bioinformatics Available Technologies NextSeq 500 MiSeq Research Service Server 40 Tb HiSeq 2500 Server 400 Tb NEXT GENERATION SEQUENCING DNA Whole genome & Exome sequencing targeted resequencing - de novo sequencing RNA RNA-Seq smallrna-seq - RIP-Seq CAGE Epigenomics and Gene regulation ChIP-Seq - BS-Seq targeted BS-Seq - methyl- Seq Metagenomics and metatrascriptomics Amplicon-Seq Shotgun-Seq Single cell sequencing MICROARRAY Genotyping Infinium HD - Vera Code Golden Gate Genotyping Epigenetics Human MethylationEPIC BeadChip Nutrigenomics

30 Applications of Next Generation Sequencing in Metagenomics Studies Francesca Rizzo, PhD Genomix4life Laboratory of Molecular Medicine and Genomics Department of Medicine and Surgery University of Salerno

How much sequencing do I need? Emily Crisovan Genomics Core

How much sequencing do I need? Emily Crisovan Genomics Core How much sequencing do I need? Emily Crisovan Genomics Core How much sequencing? Three questions: 1. How much sequence is required for good experimental design? 2. What type of sequencing run is best?

More information

CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION

CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION CM581A2: NEXT GENERATION SEQUENCING PLATFORMS AND LIBRARY GENERATION Fall 2015 Instructors: Coordinator: Carol Wilusz, Associate Professor MIP, CMB Instructor: Dan Sloan, Assistant Professor, Biology,

More information

Single Cell Genomics

Single Cell Genomics Single Cell Genomics Application Cost Platform/Protoc ol Note Single cell 3 mrna-seq cell lysis/rt/library prep $2460/Sample 10X Genomics Chromium 500-10,000 cells/sample Single cell 5 V(D)J mrna-seq cell

More information

DNA. bioinformatics. epigenetics methylation structural variation. custom. assembly. gene. tumor-normal. mendelian. BS-seq. prediction.

DNA. bioinformatics. epigenetics methylation structural variation. custom. assembly. gene. tumor-normal. mendelian. BS-seq. prediction. Epigenomics T TM activation SNP target ncrna validation metagenomics genetics private RRBS-seq de novo trio RIP-seq exome mendelian comparative genomics DNA NGS ChIP-seq bioinformatics assembly tumor-normal

More information

Welcome to the NGS webinar series

Welcome to the NGS webinar series Welcome to the NGS webinar series Webinar 1 NGS: Introduction to technology, and applications NGS Technology Webinar 2 Targeted NGS for Cancer Research NGS in cancer Webinar 3 NGS: Data analysis for genetic

More information

Research school methods seminar Genomics and Transcriptomics

Research school methods seminar Genomics and Transcriptomics Research school methods seminar Genomics and Transcriptomics Stephan Klee 19.11.2014 2 3 4 5 Genetics, Genomics what are we talking about? Genetics and Genomics Study of genes Role of genes in inheritence

More information

Considerations for Illumina library preparation. Henriette O Geen June 20, 2014 UCD Genome Center

Considerations for Illumina library preparation. Henriette O Geen June 20, 2014 UCD Genome Center Considerations for Illumina library preparation Henriette O Geen June 20, 2014 UCD Genome Center Diversity of applications De novo genome Sequencing ranscriptome Expression Splice Isoform bundance Genotyping

More information

IMGM Laboratories GmbH. Sales Manager

IMGM Laboratories GmbH. Sales Manager IMGM Laboratories GmbH Dr. Jennifer K. Kuhn Sales Manager About IMGM Laboratories IMGM Laboratories was founded in 2001 IMGM operates as professional provider of advanced genomic services from research

More information

Carl Woese. Used 16S rrna to developed a method to Identify any bacterium, and discovered a novel domain of life

Carl Woese. Used 16S rrna to developed a method to Identify any bacterium, and discovered a novel domain of life METAGENOMICS Carl Woese Used 16S rrna to developed a method to Identify any bacterium, and discovered a novel domain of life His amazing discovery, coupled with his solitary behaviour, made many contemporary

More information

Infectious Disease Omics

Infectious Disease Omics Infectious Disease Omics Metagenomics Ernest Diez Benavente LSHTM ernest.diezbenavente@lshtm.ac.uk Course outline What is metagenomics? In situ, culture-free genomic characterization of the taxonomic and

More information

Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME. Peter Sterk EBI Metagenomics Course 2014

Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME. Peter Sterk EBI Metagenomics Course 2014 Introduction to taxonomic analysis of metagenomic amplicon and shotgun data with QIIME Peter Sterk EBI Metagenomics Course 2014 1 Taxonomic analysis using next-generation sequencing Objective we want to

More information

Introductory Next Gen Workshop

Introductory Next Gen Workshop Introductory Next Gen Workshop http://www.illumina.ucr.edu/ http://www.genomics.ucr.edu/ Workshop Objectives Workshop aimed at those who are new to Illumina sequencing and will provide: - a basic overview

More information

Introduction Bioo Scientific

Introduction Bioo Scientific Next Generation Sequencing Catalog 2014-2015 Introduction Bioo Scientific Bioo Scientific is a global life science company headquartered in Austin, TX, committed to providing innovative products and superior

More information

MICROBIOMICS Current and future tools of the trade

MICROBIOMICS Current and future tools of the trade MICROBIOMICS Current and future tools of the trade Ingeborg Klymiuk Core Facility Molecular Biology ZMF - CENTER FOR MEDICAL RESEARCH Medical University Graz MICROBIOMICS DEFINITION OF OMIC TECHNOLOGIES

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias

Genome Sequencing. I: Methods. MMG 835, SPRING 2016 Eukaryotic Molecular Genetics. George I. Mias Genome Sequencing I: Methods MMG 835, SPRING 2016 Eukaryotic Molecular Genetics George I. Mias Department of Biochemistry and Molecular Biology gmias@msu.edu Sequencing Methods Cost of Sequencing Wetterstrand

More information

Next-Generation Sequencing Services à la carte

Next-Generation Sequencing Services à la carte Next-Generation Sequencing Services à la carte www.seqme.eu ngs@seqme.eu SEQme 2017 All rights reserved The trademarks and names of other companies and products mentioned in this brochure are the property

More information

Index. E Electrophoretic Mobility Shift Assay (EMSA), 262 ENCODE project, 223, 224 European Nucleotide Archive (ENA), 34

Index. E Electrophoretic Mobility Shift Assay (EMSA), 262 ENCODE project, 223, 224 European Nucleotide Archive (ENA), 34 A Alternative splicing computational analysis, 114 data processing, 106 experimental design, 114 isoform quantification AltAnalyze, 109 CuffDiff, 110 DEXSeq, 108 DiffSplice, 109 exon/transcript isoform,

More information

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology

Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie. Sander van Boheemen Medical Microbiology Introductie en Toepassingen van Next-Generation Sequencing in de Klinische Virologie Sander van Boheemen Medical Microbiology Next-generation sequencing Next-generation sequencing (NGS), also known as

More information

WELCOME. Norma J. Nowak, PhD Executive Director, NY State Center of Excellence in Bioinformatics and Life Sciences (CBLS)

WELCOME. Norma J. Nowak, PhD Executive Director, NY State Center of Excellence in Bioinformatics and Life Sciences (CBLS) WELCOME Norma J. Nowak, PhD Executive Director, NY State Center of Excellence in Bioinformatics and Life Sciences (CBLS) Director, UB Genomics and Bioinformatics Core (GBC) o o o o o o o o o o o o Grow

More information

Bioinformatics Advice on Experimental Design

Bioinformatics Advice on Experimental Design Bioinformatics Advice on Experimental Design Where do I start? Please refer to the following guide to better plan your experiments for good statistical analysis, best suited for your research needs. Statistics

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday September 15, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Development of NGS metabarcoding. characterization of aerobiological samples. Lucia Muggia

Development of NGS metabarcoding. characterization of aerobiological samples. Lucia Muggia Development of NGS metabarcoding for the characterization of aerobiological samples Lucia Muggia Alberto Pallavicini, Elisa Banchi, Claudio G. Ametrano, David Stankovic, Silvia Ongaro, Enrico Tordoni,

More information

Culture-independent approaches to assess microbial diversity in biofilms

Culture-independent approaches to assess microbial diversity in biofilms Culture-independent approaches to assess microbial diversity in biofilms Dr. Ilse Vandecandelaere Laboratory of Pharmaceutical Microbiology Prof. Dr. T. Coenye & Prof. Dr. Apr. H. J. Nelis Ghent University

More information

Microbiome Analysis. Research Day 2012 Ranjit Kumar

Microbiome Analysis. Research Day 2012 Ranjit Kumar Microbiome Analysis Research Day 2012 Ranjit Kumar Human Microbiome Microorganisms Bad or good? Human colon contains up to 100 trillion bacteria. Human microbiome - The community of bacteria that live

More information

Data Analysis with CASAVA v1.8 and the MiSeq Reporter

Data Analysis with CASAVA v1.8 and the MiSeq Reporter Data Analysis with CASAVA v1.8 and the MiSeq Reporter Eric Smith, PhD Bioinformatics Scientist September 15 th, 2011 2010 Illumina, Inc. All rights reserved. Illumina, illuminadx, Solexa, Making Sense

More information

Analysing genomes and transcriptomes using Illumina sequencing

Analysing genomes and transcriptomes using Illumina sequencing Analysing genomes and transcriptomes using Illumina uencing Dr. Heinz Himmelbauer Centre for Genomic Regulation (CRG) Ultrauencing Unit Barcelona The Sequencing Revolution High-Throughput Sequencing 2000

More information

QIAGEN s NGS Solutions for Biomarkers NGS & Bioinformatics team QIAGEN (Suzhou) Translational Medicine Co.,Ltd

QIAGEN s NGS Solutions for Biomarkers NGS & Bioinformatics team QIAGEN (Suzhou) Translational Medicine Co.,Ltd QIAGEN s NGS Solutions for Biomarkers NGS & Bioinformatics team QIAGEN (Suzhou) Translational Medicine Co.,Ltd 1 Our current NGS & Bioinformatics Platform 2 Our NGS workflow and applications 3 QIAGEN s

More information

Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B

Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B Microbial Diversity and Assessment (III) Spring, 2007 Guangyi Wang, Ph.D. POST103B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm Overview of Last Lecture Taxonomy (three

More information

Third Generation Sequencing

Third Generation Sequencing Third Generation Sequencing By Mohammad Hasan Samiee Aref Medical Genetics Laboratory of Dr. Zeinali History of DNA sequencing 1953 : Discovery of DNA structure by Watson and Crick 1973 : First sequence

More information

Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture

Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture Contents Introduction Abiotic Tolerance Approaches Reasons for failure Roots, microorganisms and soil-interaction

More information

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es

Sequencing technologies. Jose Blanca COMAV institute bioinf.comav.upv.es Sequencing technologies Jose Blanca COMAV institute bioinf.comav.upv.es Outline Sequencing technologies: Sanger 2nd generation sequencing: 3er generation sequencing: 454 Illumina SOLiD Ion Torrent PacBio

More information

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle...

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle... Contents 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA... 1 Introduction... 1 Principle... 1 Reagents Required and Their Role... 2 Procedure... 3 Observation... 4 Result

More information

Next Gen Sequencing. Expansion of sequencing technology. Contents

Next Gen Sequencing. Expansion of sequencing technology. Contents Next Gen Sequencing Contents 1 Expansion of sequencing technology 2 The Next Generation of Sequencing: High-Throughput Technologies 3 High Throughput Sequencing Applied to Genome Sequencing (TEDed CC BY-NC-ND

More information

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING'

INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' INTRODUCCIÓ A LES TECNOLOGIES DE 'NEXT GENERATION SEQUENCING' Bioinformàtica per a la Recerca Biomèdica Ricardo Gonzalo Sanz ricardo.gonzalo@vhir.org 14/12/2016 1. Introduction to NGS 2. First Generation

More information

Standard Products Nucleic Acid Sample Submission Guideline

Standard Products Nucleic Acid Sample Submission Guideline Standard Products Nucleic Acid Sample Submission Guideline Document NO.: Version NO.: SOP-SMM-028 A1 Effective Date: 2018-1-3 Document NO.:SOP-SMM-028 Version NO.:A1 Page 1 of 19 CONTETS ABOUT THIS GUIDELINE...

More information

Introduction to Bioinformatics and Gene Expression Technologies

Introduction to Bioinformatics and Gene Expression Technologies Introduction to Bioinformatics and Gene Expression Technologies Utah State University Fall 2017 Statistical Bioinformatics (Biomedical Big Data) Notes 1 1 Vocabulary Gene: hereditary DNA sequence at a

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Tuesday December 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

About Strand NGS. Strand Genomics, Inc All rights reserved.

About Strand NGS. Strand Genomics, Inc All rights reserved. About Strand NGS Strand NGS-formerly known as Avadis NGS, is an integrated platform that provides analysis, management and visualization tools for next-generation sequencing data. It supports extensive

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Ion S5 and Ion S5 XL Systems

Ion S5 and Ion S5 XL Systems Ion S5 and Ion S5 XL Systems Targeted sequencing has never been simpler Explore the Ion S5 and Ion S5 XL Systems Adopting next-generation sequencing (NGS) in your lab is now simpler than ever The Ion S5

More information

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014

High Throughput Sequencing Technologies. J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 High Throughput Sequencing Technologies J Fass UCD Genome Center Bioinformatics Core Monday June 16, 2014 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion

More information

Microarrays: since we use probes we obviously must know the sequences we are looking at!

Microarrays: since we use probes we obviously must know the sequences we are looking at! These background are needed: 1. - Basic Molecular Biology & Genetics DNA replication Transcription Post-transcriptional RNA processing Translation Post-translational protein modification Gene expression

More information

Taxonomy. Classification of microorganisms 3/12/2017. Is the study of classification. Chapter 10 BIO 220

Taxonomy. Classification of microorganisms 3/12/2017. Is the study of classification. Chapter 10 BIO 220 Taxonomy Is the study of classification Organisms are classified based on relatedness to each other Chapter 10 BIO 220 Fig. 10.1 1 Species Binomial nomenclature for species identification A eukaryotic

More information

SMARTer Ultra Low RNA Kit for Illumina Sequencing Two powerful technologies combine to enable sequencing with ultra-low levels of RNA

SMARTer Ultra Low RNA Kit for Illumina Sequencing Two powerful technologies combine to enable sequencing with ultra-low levels of RNA SMARTer Ultra Low RNA Kit for Illumina Sequencing Two powerful technologies combine to enable sequencing with ultra-low levels of RNA The most sensitive cdna synthesis technology, combined with next-generation

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

ACCEL-NGS 2S DNA LIBRARY KITS

ACCEL-NGS 2S DNA LIBRARY KITS ACCEL-NGS 2S DNA LIBRARY KITS Accel-NGS 2S DNA Library Kits produce high quality libraries with an all-inclusive, easy-to-use format. The kits contain all reagents necessary to build high complexity libraries

More information

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

DNA-Sequencing. Technologies & Devices. Matthias Platzer. Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) DNA-Sequencing Technologies & Devices Matthias Platzer Genome Analysis Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) Genome analysis DNA sequencing platforms ABI 3730xl 4/2004 & 6/2006 1 Mb/day,

More information

A Genomics (R)evolution: Harnessing the Power of Single Cells

A Genomics (R)evolution: Harnessing the Power of Single Cells A Genomics (R)evolution: Harnessing the Power of Single Cells Fundamental Question #1 If Transcriptional Heterogeneity ( Noise ) is so great in single cells What s the Point? Single Cells = True Biology

More information

RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP)

RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP) Application Note: RIPTIDE HIGH THROUGHPUT RAPID LIBRARY PREP (HT-RLP) Introduction: Innovations in DNA sequencing during the 21st century have revolutionized our ability to obtain nucleotide information

More information

Course Overview: Mutation Detection Using Massively Parallel Sequencing

Course Overview: Mutation Detection Using Massively Parallel Sequencing Course Overview: Mutation Detection Using Massively Parallel Sequencing From Data Generation to Variant Annotation Eliot Shearer The Iowa Initiative in Human Genetics Bioinformatics Short Course 2012 August

More information

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup 1. Introduction The data produced by IHEC is illustrated in Figure 1. Figure 1. The space of epigenomic

More information

Microbial Metabolism Systems Microbiology

Microbial Metabolism Systems Microbiology 1 Microbial Metabolism Systems Microbiology Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy Hall, Room 111 Tel: (02) 33664454 E-mail: cthuang@ntu.edu.tw MIT OCW Systems Microbiology aims to integrate basic biological

More information

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015

Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH. BIOL 7210 A Computational Genomics 2/18/2015 Leonardo Mariño-Ramírez, PhD NCBI / NLM / NIH BIOL 7210 A Computational Genomics 2/18/2015 The $1,000 genome is here! http://www.illumina.com/systems/hiseq-x-sequencing-system.ilmn Bioinformatics bottleneck

More information

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015

High Throughput Sequencing Technologies. UCD Genome Center Bioinformatics Core Monday 15 June 2015 High Throughput Sequencing Technologies UCD Genome Center Bioinformatics Core Monday 15 June 2015 Sequencing Explosion www.genome.gov/sequencingcosts http://t.co/ka5cvghdqo Sequencing Explosion 2011 PacBio

More information

Impact of gdna Integrity on the Outcome of DNA Methylation Studies

Impact of gdna Integrity on the Outcome of DNA Methylation Studies Impact of gdna Integrity on the Outcome of DNA Methylation Studies Application Note Nucleic Acid Analysis Authors Emily Putnam, Keith Booher, and Xueguang Sun Zymo Research Corporation, Irvine, CA, USA

More information

Whole Transcriptome Analysis of Illumina RNA- Seq Data. Ryan Peters Field Application Specialist

Whole Transcriptome Analysis of Illumina RNA- Seq Data. Ryan Peters Field Application Specialist Whole Transcriptome Analysis of Illumina RNA- Seq Data Ryan Peters Field Application Specialist Partek GS in your NGS Pipeline Your Start-to-Finish Solution for Analysis of Next Generation Sequencing Data

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics IMBB 2017 RAB, Kigali - Rwanda May 02 13, 2017 Joyce Nzioki Plan for the Week Introduction to Bioinformatics Raw sanger sequence data Introduction to CLC Bio Quality Control

More information

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017

Next Generation Sequencing. Jeroen Van Houdt - Leuven 13/10/2017 Next Generation Sequencing Jeroen Van Houdt - Leuven 13/10/2017 Landmarks in DNA sequencing 1953 Discovery of DNA double helix structure 1977 A Maxam and W Gilbert "DNA seq by chemical degradation" F Sanger"DNA

More information

RNA-Seq analysis workshop

RNA-Seq analysis workshop RNA-Seq analysis workshop Zhangjun Fei Boyce Thompson Institute for Plant Research USDA Robert W. Holley Center for Agriculture and Health Cornell University Outline Background of RNA-Seq Application of

More information

MicroSEQ Rapid Microbial Identification System

MicroSEQ Rapid Microbial Identification System MicroSEQ Rapid Microbial Identification System Giving you complete control over microbial identification using the gold-standard genotypic method The MicroSEQ ID microbial identification system, based

More information

Product selection guide Ion S5 and Ion S5 XL Systems

Product selection guide Ion S5 and Ion S5 XL Systems Product selection guide Ion S5 and s Cancer genomics research Molecular profiling Ion AmpliSeq Ready-to-Use Panels Ion AmpliSeq Comprehensive Cancer Panel Cat. No. 4477685 Ion AmpliSeq Made-to-Order Panels

More information

Genomics and Transcriptomics of Spirodela polyrhiza

Genomics and Transcriptomics of Spirodela polyrhiza Genomics and Transcriptomics of Spirodela polyrhiza Doug Bryant Bioinformatics Core Facility & Todd Mockler Group, Donald Danforth Plant Science Center Desired Outcomes High-quality genomic reference sequence

More information

Exploring new frontiers with next-generation sequencing

Exploring new frontiers with next-generation sequencing Spotlight: NGS Exploring new frontiers with next-generation sequencing Pushing the limits of discovery Next-generation sequencing (NGS) is being utilized for numerous new and exciting applications, such

More information

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist Objective of PCR To provide a solution to one of the most pressing

More information

Next-Generation Sequencing. Technologies

Next-Generation Sequencing. Technologies Next-Generation Next-Generation Sequencing Technologies Sequencing Technologies Nicholas E. Navin, Ph.D. MD Anderson Cancer Center Dept. Genetics Dept. Bioinformatics Introduction to Bioinformatics GS011062

More information

NEBNext. for Ion Torrent LIBRARY PREPARATION KITS

NEBNext. for Ion Torrent LIBRARY PREPARATION KITS NEBNext for Ion Torrent LIBRARY PREPARATION KITS NEBNEXT PRODUCTS FOR ION TORRENT Table of Contents 3 General Introduction 4 5 6 6 7 8 DNA Library Preparation Workflow Product Selection Product Details

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Contents Cell biology Organisms and cells Building blocks of cells How genes encode proteins? Bioinformatics What is bioinformatics? Practical applications Tools and databases

More information

The Polymerase Chain Reaction. Chapter 6: Background

The Polymerase Chain Reaction. Chapter 6: Background The Polymerase Chain Reaction Chapter 6: Background Invention of PCR Kary Mullis Mile marker 46.58 in April of 1983 Pulled off the road and outlined a way to conduct DNA replication in a tube Worked for

More information

Long and short/small RNA-seq data analysis

Long and short/small RNA-seq data analysis Long and short/small RNA-seq data analysis GEF5, 4.9.2015 Sami Heikkinen, PhD, Dos. Topics 1. RNA-seq in a nutshell 2. Long vs short/small RNA-seq 3. Bioinformatic analysis work flows GEF5 / Heikkinen

More information

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells

MHC Region. MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells DNA based HLA typing methods By: Yadollah Shakiba, MD, PhD MHC Region MHC expression: Class I: All nucleated cells and platelets Class II: Antigen presenting cells Nomenclature of HLA Alleles Assigned

More information

Introduction to Next Generation Sequencing (NGS)

Introduction to Next Generation Sequencing (NGS) Introduction to Next eneration Sequencing (NS) Simon Rasmussen Assistant Professor enter for Biological Sequence analysis Technical University of Denmark 2012 Today 9.00-9.45: Introduction to NS, How it

More information

Ion S5 and Ion S5 XL Systems

Ion S5 and Ion S5 XL Systems Ion S5 and Ion S5 XL Systems Targeted sequencing has never been simpler Introducing the Ion S5 and Ion S5 XL systems Now, adopting next-generation sequencing in your lab is simpler than ever. The Ion S5

More information

Gene Expression Technology

Gene Expression Technology Gene Expression Technology Bing Zhang Department of Biomedical Informatics Vanderbilt University bing.zhang@vanderbilt.edu Gene expression Gene expression is the process by which information from a gene

More information

Microbiome Analysis in Kawasaki Disease. Kristine M. Wylie, Susan C. Baker, George M. Weinstock, Stanford T. Shulman, and Anne H.

Microbiome Analysis in Kawasaki Disease. Kristine M. Wylie, Susan C. Baker, George M. Weinstock, Stanford T. Shulman, and Anne H. Microbiome Analysis in Kawasaki Disease Kristine M. Wylie, Susan C. Baker, George M. Weinstock, Stanford T. Shulman, and Anne H. Rowley Disclosures Kristine M. Wylie Microbiome Analysis in Kawasaki Disease

More information

Product selection guide Ion GeneStudio S5 Series

Product selection guide Ion GeneStudio S5 Series Cancer genomics research Molecular profiling Ion AmpliSeq Comprehensive Cancer Panel Cat. No. 4477685 Ion AmpliSeq Made-to-Order Panels (Customize your own or browse redesigned community panels at ampliseq.com)

More information

Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods

Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods Introduction to BioMEMS & Medical Microdevices DNA Microarrays and Lab-on-a-Chip Methods Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Concept of barcoding to suppress error in sequencing. Each template DNA molecule is barcoded with a random and unique sequence (marked as red, turquoise and green). All PCR generated

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

RADSeq Data Analysis. Through STACKS on Galaxy. Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé

RADSeq Data Analysis. Through STACKS on Galaxy. Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé RADSeq Data Analysis Through STACKS on Galaxy Yvan Le Bras Anthony Bretaudeau Cyril Monjeaud Gildas Le Corguillé RAD sequencing: next-generation tools for an old problem INTRODUCTION source: Karim Gharbi

More information

Method development for DNA methylation on a single cell level

Method development for DNA methylation on a single cell level Method development for DNA methylation on a single cell level The project is carried out in TATAA Biocenter, Gothenburg, Sweden/ Secondment at Babraham institute, Cambridge Dr. Bentolhoda Fereydouni, Marie

More information

Molecular methods for detection of Antibiotic Resistance in environmental matrices: limits, prospects and challenges.

Molecular methods for detection of Antibiotic Resistance in environmental matrices: limits, prospects and challenges. Dr. Angela Cicatelli acicatelli@unisa.it Molecular methods for detection of Antibiotic Resistance in environmental matrices: limits, prospects and challenges. 1st Workshop on "Risk prognosis of environmental

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Alla L Lapidus, Ph.D. SPbSU St. Petersburg Term Bioinformatics Term Bioinformatics was invented by Paulien Hogeweg (Полина Хогевег) and Ben Hesper in 1970 as "the study of

More information

High-throughput scale. Desktop simplicity.

High-throughput scale. Desktop simplicity. High-throughput scale. Desktop simplicity. NextSeq 500 System. Flexible power. Speed and simplicity for whole-genome, exome, and transcriptome sequencing. Harness the power of next-generation sequencing.

More information

DNA Microarray Technology

DNA Microarray Technology CHAPTER 1 DNA Microarray Technology All living organisms are composed of cells. As a functional unit, each cell can make copies of itself, and this process depends on a proper replication of the genetic

More information

Digital DNA/RNA sequencing enables highly accurate and sensitive biomarker detection and quantification

Digital DNA/RNA sequencing enables highly accurate and sensitive biomarker detection and quantification Digital DNA/RNA sequencing enables highly accurate and sensitive biomarker detection and quantification Erwin Chen ( 陳立德 ) Technical Product Specialist QIAGEN Taiwan Precision medicine: Right drug, right

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit

High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit be INSPIRED drive DISCOVERY stay GENUINE TECHNICAL NOTE High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit Improving performance, ease of use and reliability of

More information

Sanger vs Next-Gen Sequencing

Sanger vs Next-Gen Sequencing Tools and Algorithms in Bioinformatics GCBA815/MCGB815/BMI815, Fall 2017 Week-8: Next-Gen Sequencing RNA-seq Data Analysis Babu Guda, Ph.D. Professor, Genetics, Cell Biology & Anatomy Director, Bioinformatics

More information

Next Generation Sequencing: An Overview

Next Generation Sequencing: An Overview Next Generation Sequencing: An Overview Cavan Reilly November 13, 2017 Table of contents Next generation sequencing NGS and microarrays Study design Quality assessment Burrows Wheeler transform Next generation

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Lecture 5 Notes: Genetic manipulation & Molecular Biology techniques Broad Overview of: Enzymatic tools in Molecular Biology Gel electrophoresis Restriction mapping DNA

More information

Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017

Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017 Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017 Agenda What is Functional Genomics? RNA Transcription/Gene Expression Measuring Gene

More information

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS PHENIX PCR Enzyme Guide PHENIX offers a broad line of premium quality PCR Enzymes. This PCR Enzyme Guide will help simplify your polymerase selection process. Each DNA Polymerase has different characteristics

More information

CSC Assignment1SequencingReview- 1109_Su N_NEXT_GENERATION_SEQUENCING.docx By Anonymous. Similarity Index

CSC Assignment1SequencingReview- 1109_Su N_NEXT_GENERATION_SEQUENCING.docx By Anonymous. Similarity Index Page 1 of 6 Document Viewer TurnitinUK Originality Report Processed on: 05-Dec-20 10:49 AM GMT ID: 13 Word Count: 1587 Submitted: 1 CSC8313-201 - Assignment1SequencingReview- 1109_Su N_NEXT_GENERATION_SEQUENCING.docx

More information

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012 Assay Standards Working Group Recommendations, November 2012 Contents Assay Standards Working Group Recommendations, August 2012... 1 Contents... 1 Introduction... 2 1: Reference Epigenome Criteria...

More information