Detection of local protein structures along DNA using solid-state nanopores

Size: px
Start display at page:

Download "Detection of local protein structures along DNA using solid-state nanopores"

Transcription

1 Detection of local protein structures along DNA using solid-state nanopores nanopore Stefan Kowalczyk Adam Hall Cees Dekker RecA-DNA filament (Nano Letters cover September 2009) Bremen

2 Main topics: Solid-state nanopores for proteins on DNA Nuclear pore complex (NPC) dsdna RecA

3 Main topics: Solid-state nanopores for proteins on DNA Nuclear pore complex (NPC)

4 Biopolymer translocation through nanopores Stefan Kowalczyk Michiel van den Hout Gary Skinner Adam Hall Ralph Smeets Meng-Yue Wu Ulrike Ziese Serge Lemay Nynke Dekker Cees Dekker

5 Outline Brief motivation Fabrication of solid-state nanopores Translocation of dsdna through solid-state pores Translocation of RNA Translocation of protein-coated DNA Very first data on artificial nuclear pores

6 Nanopores in biology: ion channels nuclear pore complexes viral infection protein secretion bacterial gene transfer etc etc

7 Dreams of nanopore-based DNA sequencing

8 Nanopores for biotechnology and biophysics: ssdna/rna through α-hemolysin biopores (Kasianowicz, Branton, Akeson, Deamer, Meller, ) Blockades of 100 bp poly(da) through an α-hemolysin membrane protein from Meller et al. PNAS 97, 1079 (2000)

9 Solid-state nanopores present advantages over biological pores within a lipid membrane: Flexibility in pore diameter and pore length High stability (temperature, ph, salt,..) Adjustable surface properties of the pore Allows integration into devices and arrays

10 SiO 2 or SiN nanopores from silicon processing

11 Fine tuning by glass making with a TEM beam True nanometer control of the nanopore size 5 nm High-intensity TEM slowly closes the pore, with live imaging Stop imaging to freeze the geometry for nm-sized pore A. Storm et al, Nature Mater. 2, 537 (2003)

12 Measuring the ionic current through a nanopore

13 dsdna translocation through a 10 nm nanopore A. Storm et al, Phys. Rev. E71, (2005)

14 Rich variety of experimental results for dsdna Folding phenomena Power-law length dependence of translocation time τ ~ L α Sign reversal of current signal at low salt Noise studies, evidence for nanobubbles 1M 0.1M

15 Nanopore technique basically applicable to any charged molecule -polynucleotides -proteins - protein-dna complexes - polyelectrolytes -nanotubes -nanowires - quantum dots etc Three examples of recent research 1. double and single strand RNA 2. proteins on DNA 3. artificial nuclear pore complexes

16 Comparison of different polynucleotides G. Skinner, M. van den Hout et al, Nano Letters (2009)

17 ds RNA ss RNA G. Skinner, M. van den Hout et al, Nano Letters (2009)

18 Current blockade amplitudes differ at high fields dg Conductance change dg (ns)

19 Translocation of proteins and protein-coated DNA Screening of local structures along DNA, e.g., proteins, transcription factors, nucleosomes, etc

20 Our model system: RecA protein on DNA DNA RecA

21 AFM imaging of RecA-coated DNA dsdna RecA-coated dsdna R. Smeets, S. Kowalczyk, et al, Nano Lett. (2008)

22 Translocation of RecA-coated double-strand DNA Blockades are 15 times bigger than for dsdna Consistent with large cross section dg => d=8.5 nm R. Smeets, S. Kowalczyk, et al, Nano Lett. (2008)

23 Translocation of RecA-coated double-strand DNA RecA + DNA RecA only

24 Some lessons learned: 1) Dwell times of bare DNA and fully RecA-coated DNA are equal within error (surprisingly?) 2) Poissonian process ( no memory ) 3) Two different regimes (constant and exponential event rate vs. voltage) R. Smeets, S. Kowalczyk, et al, Nano Lett. (2008)

25 Next step: Read out DNA along its length

26 Local patches of RecA protein along DNA Height scale [0-2 nm] S. Kowalczyk, et al, submitted

27 Local patches of RecA protein along DNA translocation data conductance histogram (dg = di/v) S. Kowalczyk, et al, submitted

28 S. Kowalczyk, et al, submitted

29

30 What is the best resolution we can achieve? baseline DNA RecA

31 Total translocation time is inversely proportional with voltage S. Kowalczyk, et al, submitted

32 Resolution of protein along DNA: ~ 60 bp (probably even better in a very recent data set, ~ 30 bp) S. Kowalczyk, et al, submitted

33 The Optical Tweezer-Nanopore System Same trick with optical tweezers? V A. Hall, et al

34 The Optical Tweezer-Nanopore System A. Hall, et al

35 Applying RecA to the Hybrid System 1M KCl A. Hall, et al

36 First data on captured partly-reca coated DNA Under investigation A. Hall, et al

37 Salt dependence of RecA-DNA translocations (preliminary data) dsdna dsdna RecA-DNA RecA-DNA Crossover ~0.35M KCl; in agreement with R. Smeets, et al, Nano Letters, 2006

38 Salt dependence of RecA-DNA translocations (preliminary data) 0.2M KCl Current increases from DNA Current decreases from RecA-DNA

39 Main topics: Solid-state nanopores for proteins on DNA Nuclear pore complex (NPC)

40 The cell as a collection of protein machines The only way to get from the nucleus to the cytoplasm is through a nuclear pore complex

41 Use solid-state nanopores as a chassis to build biomimetic artificial nuclear pore complexes in collaboration with Roderick Lim and Ueli Aebi (Basel)

42

43 Small Molecules can diffuse freely through the Nuclear Pore, Larger molecules require active transport, Cartoon Biology:

44 F. Alber, et al, Nature 450, , 2007

45 F. Alber, et al, Nature 450, , 2007

46 Selective gating / virtual gating Roderick Lim, et al, Science (2007)

47 Recent simultations from Klaus Schulten s group (Urbana) MD evidence that FG-nups form brushes L. Miao and K. Schulten, Structure, 17, (2009)

48 Building a minimalistic NPC starts with protein purification Thanks to Roderick Lim and Larisa Kapinos-Schneider! (Basel University)

49 Next task: chemistry thinking How to attach those FG-proteins to the SiN? Our hero cross-linker: NH2- -SH

50 Transport of Importin-Beta through bare and modified nanopores FG-nups

51 TEM images of the same 40 nm nanopore Before (a) and after (b,c,d) attachment of FG-nups

52 Power spectral analysis before and after attachment:

53 Example traces of Importin-Beta translocations through a bare and modified nanopore ImpB through a bare pore ImpB through a modified pore

54 Translocation time histograms for ImpB translocations through bare and modified nanopore <T dwell > = 0.12 ± 0.02 ms <T dwell > = 2.7 ± 0.5 ms

55 Some indications/confirmations that the FG-nups bind to our solid-state nanopore, and that we can do transport measurements: Ellipsometry data indicates extra layers of expected thickness TEM images show some stuff in the pore that s very sensitive to the electron beam Power spectra before and after are clearly different Open pore current decreases systematically upon binding of nups (dependence of pore size and type of nups) Translocation data show 20-fold (!) increase in translocation time for Importin-Beta for bare vs. FGnanopore, with equal event amplitudes More experiments on the way..

56 Summing up: We have used solid-state nanopores for : - variety of experiments on dsdna - experiments on ssrna and dsrna - experiments on RecA proteins along DNA - biomimetic nuclear pore complexes

57 15 faculty openings at Delft as well!! One-line summary: Solid state nanopores are versatile new probes for biophysics postdoc openings!!

Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

Slow DNA Transport through Nanopores in Hafnium Oxide Membranes Slow DNA Transport through Nanopores in Hafnium Oxide Membranes Joseph Larkin, Robert Henley, David C. Bell, Tzahi Cohen-Karni, # Jacob K. Rosenstein, and Meni Wanunu * Departments of Physics and Chemistry/Chemical

More information

Solid-state nanopores, nanometer-size holes in a thin

Solid-state nanopores, nanometer-size holes in a thin pubs.acs.org/nanolett Measurement of the Docking Time of a DNA Molecule onto a Solid- State Nanopore Stefan W. Kowalczyk and Cees Dekker* Department of Bionanoscience, Kavli Institute of Nanoscience, Delft

More information

Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů

Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů Ing. Kudr NANOPORE pátek 18. října 2013, od 10.00 hod v přednáškové posluchárně Ústavu chemie a biochemie (budova D, učebna

More information

Supporting Information. Label-Free Optical Detection of DNA. Translocations Through Plasmonic Nanopores

Supporting Information. Label-Free Optical Detection of DNA. Translocations Through Plasmonic Nanopores Supporting Information Label-Free Optical Detection of DNA Translocations Through Plasmonic Nanopores Daniel V. Verschueren 1, Sergii Pud 1, Xin Shi 1,2, Lorenzo De Angelis 3, L. Kuipers 3, and Cees Dekker

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane Jonathan R. Burns, Astrid Seifert, Niels Fertig, Stefan Howorka NATURE NANOTECHNOLOGY

More information

Wayne Yang, Laura Restrepo-Pérez, Michel Bengtson, Stephanie J. Heerema,

Wayne Yang, Laura Restrepo-Pérez, Michel Bengtson, Stephanie J. Heerema, Supplementary information Detection of CRISPR-dCas9 on DNA with solid-state nanopores Wayne Yang, Laura Restrepo-Pérez, Michel Bengtson, Stephanie J. Heerema, Anthony Birnie, Jaco van der Torre, and Cees

More information

Toward sequencing DNA with a synthetic nanopore

Toward sequencing DNA with a synthetic nanopore Toward sequencing DNA with a synthetic nanopore Aleksei Aksimentiev University of Illinois at Urbana-Champaign Bio- Nano Systems DNA up-close backbone sugar ring base phosphate Double stranded DNA 5 -AAGCTGGTTCAG-3

More information

Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores

Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores NANO LETTERS 2008 Vol. 8, No. 10 3418-3422 Ben McNally, Meni Wanunu, and Amit Meller* Department of Biomedical Engineering,

More information

Molecular Biology (1)

Molecular Biology (1) Molecular Biology (1) DNA structure and basic applications Mamoun Ahram, PhD Second semester, 2017-2018 Resources This lecture Cooper, pp. 49-52, 118-119, 130 What is molecular biology? Central dogma

More information

DBP4: Biosensors. DNA passing through a nanopore (all-atom MD simulation) Diamond thin films as tethering surfaces for bacterial capture

DBP4: Biosensors. DNA passing through a nanopore (all-atom MD simulation) Diamond thin films as tethering surfaces for bacterial capture 8 DBP4: Biosensors Biomedical relevance Significance and challenges Biosensors provide unique ways to investigate and monitor the health of a living body. Computational microscope can image nanodevices

More information

Solid-state nanopores

Solid-state nanopores Unraveling Single-Stranded DNA in a Solid-State Nanopore pubs.acs.org/nanolett Stefan W. Kowalczyk, Maarten W. Tuijtel, Serge P. Donkers, and Cees Dekker* Kavli Institute of Nanoscience, Delft University

More information

Current ( pa) Current (pa) Voltage (mv) Voltage ( mv)

Current ( pa) Current (pa) Voltage (mv) Voltage ( mv) Current ( pa) 3000 2000 1000 0-1000 -2000-3000 a -400-200 0 200 400 Voltage (mv) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 Average Current (pa) 4500 3000 1500 0-1500 -3000-4500 b -400-200

More information

Single-Molecule Biophysics. Physical Cell Biology Guest lecture

Single-Molecule Biophysics. Physical Cell Biology Guest lecture Single-Molecule Biophysics Physical Cell Biology Guest lecture Liviu Movileanu Syracuse University lmovilea@syr.edu Web: http://movileanulab.syr.edu Single-molecule versus bulk-phase measurements Bulk-phase

More information

Analysis of Solid State Nanopore for Signal Processing and Control

Analysis of Solid State Nanopore for Signal Processing and Control Nguyen 1 Analysis of Solid State Nanopore for Signal Processing and Control Nathan N. Nguyen, Christopher R. O Donnell, Raj Maitra, William B. Dunbar University of California - Santa Cruz, Santa Cruz,

More information

Molecular Biology (1)

Molecular Biology (1) Molecular Biology (1) DNA structure and basic applications Mamoun Ahram, PhD Second semester, 2018-2019 Resources This lecture Cooper, pp. 49-52, 118-119, 130 Nucleic acids 2 types: Deoxyribonucleic acid

More information

Velocity of DNA during translocation through a

Velocity of DNA during translocation through a Velocity of DNA during translocation through a solid state nanopore Calin Plesa, Nick van Loo, Philip Ketterer, Hendrik Dietz, Cees Dekker *. Department of Bionanoscience, Kavli Institute of Nanoscience,

More information

Investigating the translocation of λ-dna molecules through PDMS nanopores

Investigating the translocation of λ-dna molecules through PDMS nanopores Investigating the translocation of λ-dna molecules through PDMS nanopores Yi-Heng Sen and Rohit Karnik * Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

More information

Active delivery of single DNA molecules into a plasmonic nanopore for. label-free optical sensing

Active delivery of single DNA molecules into a plasmonic nanopore for. label-free optical sensing Supporting Information: Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing Xin Shi 1,2, Daniel V Verschueren 1, and Cees Dekker 1* 1. Department of Bionanoscience,

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

DNA Biosensors. Anand Jagota 16 November 2015

DNA Biosensors. Anand Jagota 16 November 2015 DNA Biosensors Anand Jagota 16 November 2015 1 Market, Unmet Needs Worldwide In-vitro diagnostics ~$ 50 Billion and growing Nucleic Acid diagnostics ~$9 Billion Health, Security, Pathogen Detection, etc.

More information

Chemically modified nanopores as tools to detect single DNA and protein molecules. Overview

Chemically modified nanopores as tools to detect single DNA and protein molecules. Overview Chemically modified nanopores as tools to detect single DNA and protein molecules Stefan Howorka Introduction Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual

More information

Single-molecule characterization of DNA-protein interactions using nanopore biosensors

Single-molecule characterization of DNA-protein interactions using nanopore biosensors Single-molecule characterization of DNA-protein interactions using nanopore biosensors Allison H. Squires 1, Tal Gilboa 2, Chen Torfstein 2, Nitinun Varongchayakul 3, and Amit Meller 2,3 1. Department

More information

Nanotechnological Applications of Biomolecular Motor Systems. Stefan Diez Max-Planck-Institute of Molecular Cell Biology and Genetics Dresden

Nanotechnological Applications of Biomolecular Motor Systems. Stefan Diez Max-Planck-Institute of Molecular Cell Biology and Genetics Dresden Nanotechnological Applications of Biomolecular Motor Systems Stefan Diez Max-Planck-Institute of Molecular Cell Biology and Genetics Dresden Max-Planck-Institute of Molecular Cell Biology and Genetics

More information

Detection of individual proteins bound along DNA

Detection of individual proteins bound along DNA Detection of individual proteins bound along DNA using solid state nanopores Calin Plesa, Justus W. Ruitenberg, Menno J. Witteveen, Cees Dekker* Department of Bionanoscience, Kavli Institute of Nanoscience,

More information

Use of a Single Ion Channel to Analyze the Structure & Dynamics of Individual DNA Molecules. Mark Akeson

Use of a Single Ion Channel to Analyze the Structure & Dynamics of Individual DNA Molecules. Mark Akeson Use of a Single Ion Channel to Analyze the Structure & Dynamics of Individual DNA Molecules Mark Akeson Biophysics Laboratory Dept. of Biomolecular Science & Engineering University of California, Santa

More information

Why does this matter?

Why does this matter? Background Why does this matter? Better understanding of how the nucleosome affects transcription Important for understanding the nucleosome s role in gene expression Treats each component and region of

More information

Biophysics of Macromolecules

Biophysics of Macromolecules Biophysics of Macromolecules Lecture 18: In vivo Methods Braun/Lipfert SS 2015 How to create methods to probe macromolecules in vivo? 6. July 2015 Crowding alters Biochemical Equilibria Excluded volume

More information

Supporting Information for. Differential Enzyme Flexibility Probed using Solid-State Nanopores

Supporting Information for. Differential Enzyme Flexibility Probed using Solid-State Nanopores Supporting Information for Differential Enzyme Flexibility Probed using Solid-State Nanopores Rui Hu 1, 2, João V. Rodrigues 3, Pradeep Waduge 4, Hirohito Yamazaki 4, Benjamin Cressiot 4, Yasmin Chishti

More information

Selected Techniques Part I

Selected Techniques Part I 1 Selected Techniques Part I Gel Electrophoresis Can be both qualitative and quantitative Qualitative About what size is the fragment? How many fragments are present? Is there in insert or not? Quantitative

More information

The transport of biomolecules across cell walls is a ubiquitous

The transport of biomolecules across cell walls is a ubiquitous Orientation discrimination of single-stranded DNA inside the -hemolysin membrane channel Jérôme Mathé*, Aleksei Aksimentiev, David R. Nelson, Klaus Schulten, and Amit Meller* *Rowland Institute, Harvard

More information

Cell Nucleus. Chen Li. Department of Cellular and Genetic Medicine

Cell Nucleus. Chen Li. Department of Cellular and Genetic Medicine Cell Nucleus Chen Li Department of Cellular and Genetic Medicine 13 223 chenli2008@fudan.edu.cn Outline A. Historical background B. Structure of the nucleus: nuclear pore complex (NPC), lamina, nucleolus,

More information

The Computational Microscope. Main funding: simulation of an entire virus

The Computational Microscope. Main funding: simulation of an entire virus The Computational Microscope Klaus Schulten Dept. Physics / Beckman Institute, U. Illinois NIH., October 2007 Main funding: simulation of an entire virus The Computational Microscope Computational Microscope

More information

Supporting Information for: Plasmonic Nanopores. for Trapping, Controlling Displacement, and. Sequencing of DNA

Supporting Information for: Plasmonic Nanopores. for Trapping, Controlling Displacement, and. Sequencing of DNA Supporting Information for: Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA Maxim Belkin, Shu-Han Chao, Magnus P. Jonsson,,, Cees Dekker,, and Aleksei Aksimentiev, Department

More information

Supporting Information

Supporting Information Supporting Information Velocity of DNA during translocation through a solid state nanopore Calin Plesa, Nick van Loo, Philip Ketterer, Hendrik Dietz, Cees Dekker Department of Bionanoscience, Kavli Institute

More information

DNA Profiling Using Solid-State Nanopores: Detection of DNA-Binding Molecules

DNA Profiling Using Solid-State Nanopores: Detection of DNA-Binding Molecules DNA Profiling Using Solid-State Nanopores: Detection of DNA-Binding Molecules NANO LETTERS 2009 Vol. 9, No. 10 3498-3502 Meni Wanunu, Jason Sutin, and Amit Meller* Department of Biomedical Engineering,

More information

Detection of short single-strand DNA homopolymers with ultrathin Si 3 N 4 nanopores

Detection of short single-strand DNA homopolymers with ultrathin Si 3 N 4 nanopores PHYSICAL REVIEW E 92, 022719 (2015) Detection of short single-strand DNA homopolymers with ultrathin Si 3 N 4 nanopores Jian Ma, 1 Yinghua Qiu, 1 Zhishan Yuan, 1 Yin Zhang, 1 Jingjie Sha, 1 Lei Liu, 1

More information

The Electronics Biological Matter Interface.

The Electronics Biological Matter Interface. The Electronics Biological Matter Interface. Introduction. The interface of inorganic materials and biological matter is a subject of significant current interest. The fundamental science of this area

More information

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water.

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S2 AFM measurement of typical LTMDs

More information

DNA Replication (Copying DNA Prior to Cell Division) (movies)

DNA Replication (Copying DNA Prior to Cell Division) (movies) DNA Replication (Copying DNA Prior to Cell Division) (movies) Quickime and a Animation decompressor are needed to see this picture. Quickime and a Animation decompressor are needed to see this picture.

More information

Directional Surface Plasmon Coupled Emission

Directional Surface Plasmon Coupled Emission Journal of Fluorescence, Vol. 14, No. 1, January 2004 ( 2004) Fluorescence News Directional Surface Plasmon Coupled Emission KEY WORDS: Surface plasmon coupled emission; high sensitivity detection; reduced

More information

NOTES Gene Expression ACP Biology, NNHS

NOTES Gene Expression ACP Biology, NNHS Name Date Block NOTES Gene Expression ACP Biology, NNHS Model 1: Transcription the process of genes in DNA being copied into a messenger RNA 1. Where in the cell is DNA found? 2. Where in the cell does

More information

What is Nano-Bio? Non-Covalent Interactions

What is Nano-Bio? Non-Covalent Interactions - - What is Nano-Bio? Physicist: Biotech: Biologists: -study of molecular interactions -application of nano-tools to study biological systems. -application of nano-tools to detect, treat, and prevent disease

More information

Genomes DNA Genes to Proteins. The human genome is a multi-volume instruction manual

Genomes DNA Genes to Proteins. The human genome is a multi-volume instruction manual Dr. Kathleen Hill Assistant Professor Department of Biology The University of Western Ontario khill22@uwo.ca Office Hours: Monday 1 to 5pm Room 333 Western Science Centre Research Website: http://www.uwo.ca/biology/faculty/hill/index.htm

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Label-free field-effect-based single-molecule detection of DNA hydridization kinetics Sebastian Sorgenfrei, Chien-yang Chiu, Ruben L. Gonzalez, Jr., Young-Jun Yu, Philip Kim,

More information

The transport of biomolecules across cell walls is a ubiquitous

The transport of biomolecules across cell walls is a ubiquitous Orientation discrimination of single-stranded DNA inside the -hemolysin membrane channel Jérôme Mathé*, Aleksei Aksimentiev, David R. Nelson, Klaus Schulten, and Amit Meller* *Rowland Institute, Harvard

More information

Gene Expression: From Genes to Proteins

Gene Expression: From Genes to Proteins The Flow of Genetic Information Gene Expression: From Genes to Proteins Chapter 9 Central Dogma in Molecular Biology molecule Gene 1 Strand to be transcribed Gene 2 Gene 3 strand Codon : Polymerase transcribes

More information

Chapter 5 DNA and Chromosomes

Chapter 5 DNA and Chromosomes Chapter 5 DNA and Chromosomes DNA as the genetic material Heat-killed bacteria can transform living cells S Smooth R Rough Fred Griffith, 1920 DNA is the genetic material Oswald Avery Colin MacLeod Maclyn

More information

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with non-uniform particle size distribution. The scale bar is

More information

Probing the size of proteins with glass nanopores

Probing the size of proteins with glass nanopores Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Probing the size of proteins with glass nanopores Lorenz J. Steinbock,

More information

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter 9/16/2008 1 Learning Objectives 1. List and explain how DNA

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

a) JOURNAL OF BIOLOGICAL CHEMISTRY b) PNAS c) NATURE

a) JOURNAL OF BIOLOGICAL CHEMISTRY b) PNAS c) NATURE a) JOURNAL OF BIOLOGICAL CHEMISTRY b) c) d) ........................ JOURNAL OF BIOLOGICAL CHEMISTRY MOLECULAR PHARMACOLOGY TRENDS IN PHARMACOLOGICAL S AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY

More information

Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel

Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Wenonah Vercoutere 1, Stephen Winters-Hilt 2, Hugh Olsen 1, David Deamer 1, David Haussler

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2017.176 Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing

More information

Efficient DNA Sensing with Fabricated Silicon Nanopores: Diagnosis Methodology and Algorithms

Efficient DNA Sensing with Fabricated Silicon Nanopores: Diagnosis Methodology and Algorithms Efficient DNA Sensing with Fabricated Silicon Nanopores: Diagnosis Methodology and Algorithms S. Bhattacharya, V. Natarajan, A. Chatterjee School of Electrical and Computer Engineering Georgia Institute

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

Electricity from the Sun (photovoltaics)

Electricity from the Sun (photovoltaics) Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption 100 100 square kilometers of solar cells could produce all the electricity for the US. But they are still too costly. The required

More information

Lecture 5. Biomolecular Self-assembly (and Detection)

Lecture 5. Biomolecular Self-assembly (and Detection) 10.524 Lecture 5. Biomolecular Self-assembly (and Detection) Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 6: Biomolecular Self-assembly Table of Contents

More information

Nano pore Sequencing Technology: A Review

Nano pore Sequencing Technology: A Review Shahid Raza and Ayesha Ameen / International Journal of Advances in Scientific Research 2017; 3(08): 90-95. 90 International Journal of Advances in Scientific Research ISSN: 2395-3616 (Online) Journal

More information

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun The Journey of DNA Sequencing H. Sunny Sun What is a genome? Genome is the total genetic complement of a living organism. The nuclear genome comprises approximately 3.2 * 10 9 nucleotides of DNA, divided

More information

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav

DNA Structure and Properties Basic Properties Predicting Melting Temperature. Dinesh Yadav DNA Structure and Properties Basic Properties Predicting Melting Temperature Dinesh Yadav Nucleic Acid Structure Question: Is this RNA or DNA? Molecules of Life, pp. 15 2 Nucleic Acid Bases Molecules of

More information

Bi 8 Lecture 2. Nucleic acid structures: chemistry, space, time. Ellen Rothenberg 7 January 2016

Bi 8 Lecture 2. Nucleic acid structures: chemistry, space, time. Ellen Rothenberg 7 January 2016 Bi 8 Lecture 2 Nucleic acid structures: chemistry, space, time (evolution) Ellen Rothenberg 7 January 2016 Reading for 1 st two lectures Alberts, et al. (6 th edition) Ch. 4: pp. 173-186 & 216-236 Ch.

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 10 Nucleic Acids BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 10 Nucleic Acids 2 3 DNA vs RNA DNA RNA deoxyribose ribose A, C, G, T A, C, G, U 10 3 10 8 nucleotides 10 2 10 4 nucleotides nucleus cytoplasm double-stranded

More information

DNA: the thread of life

DNA: the thread of life DNA: the thread of life Lectured by Chompunuch Virunanon This presentation Partial Fulfillment of the Requirements for the 2303107 General Biology teaching, Department of Biology Chulalongkorn University

More information

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다.

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다. 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Activity Subject Area(s) Associated Unit Associated Lesson Activity Title Header Image 1 ADA Description: Caption: Image file: Source/Rights:

Activity Subject Area(s) Associated Unit Associated Lesson Activity Title Header Image 1 ADA Description: Caption: Image file: Source/Rights: Activity Subject Area(s) Biology Associated Unit Associated Lesson Activity Title Breaking News: Molecular Trucks Riding Inside Cells! Header Image 1 ADA Description: An ant carries a 1 millimeter square

More information

DNA Microarray Technology

DNA Microarray Technology 2 DNA Microarray Technology 2.1 Overview DNA microarrays are assays for quantifying the types and amounts of mrna transcripts present in a collection of cells. The number of mrna molecules derived from

More information

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Genes can be regulated at many levels Usually, gene regulation, are referring to transcriptional

More information

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT) ECE280: Nano-Plasmonics and Its Applications Week5 Extraordinary Optical Transmission (EOT) Introduction Sub-wavelength apertures in metal films provide light confinement beyond the fundamental diffraction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.3/nnano..177 Replication of Individual DNA Molecules under Electronic Control Using a Protein Nanopore Felix Olasagasti, Kate R. Lieberman, Seico Benner, Gerald M. Cherf,

More information

Nanopore detection of DNA molecules in magnesium chloride solutions

Nanopore detection of DNA molecules in magnesium chloride solutions Zhang et al. Nanoscale Research Letters 2013, 8:245 NANO EXPRESS Nanopore detection of DNA molecules in magnesium chloride solutions Yin Zhang, Lei Liu, Jingjie Sha, Zhonghua Ni *, Hong Yi and Yunfei Chen

More information

Biophysical Journal Volume 107 November Smooth DNA Transport through a Narrowed Pore Geometry

Biophysical Journal Volume 107 November Smooth DNA Transport through a Narrowed Pore Geometry Biophysical Journal Volume 107 November 2014 2381 2393 2381 Article Smooth DNA Transport through a Narrowed Pore Geometry Spencer Carson, 1 James Wilson, 2 Aleksei Aksimentiev, 2 and Meni Wanunu 1,3, *

More information

13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription.

13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription. 13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription. The Role of RNA 1. Complete the table to contrast the structures of DNA and RNA. DNA Sugar Number of Strands Bases

More information

Probing DNA base pairing energy profiles using a nanopore

Probing DNA base pairing energy profiles using a nanopore Eur Biophys J (2009) 38:263 269 DOI 10.1007/s00249-008-0372-2 BIOPHYSICS LETTER Probing DNA base pairing energy profiles using a nanopore Virgile Viasnoff Æ Nicolas Chiaruttini Æ Ulrich Bockelmann Received:

More information

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Question No. 1 of 10 1. Which of the following statements about genes is correct? Question #1 (A) Genes carry the information for protein

More information

DNA-Functionalized Electrodes for Nanodevice Assembly

DNA-Functionalized Electrodes for Nanodevice Assembly DNA-Functionalized Electrodes for Nanodevice Assembly Keith Williams Remco den Dulk Peter Veenhuizen Cees Dekker Molecular Biophysics Group OH O OH O External Collaborators (for PNA work): Martijn de Koning,

More information

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Multiple choice questions (numbers in brackets indicate the number of correct answers) 1 Multiple choice questions (numbers in brackets indicate the number of correct answers) February 1, 2013 1. Ribose is found in Nucleic acids Proteins Lipids RNA DNA (2) 2. Most RNA in cells is transfer

More information

A Study of the Formation Modes of Nanosized Oxide Structures of Gallium Arsenide by Local Anodic Oxidation

A Study of the Formation Modes of Nanosized Oxide Structures of Gallium Arsenide by Local Anodic Oxidation ISSN 6-786, Semiconductors,, Vol. 6, No., pp. 66 6. Pleiades Publishing, Ltd.,. Original Russian Text O.A. Ageev, V.A. Smirnov, M.S. Solodovnik, A.V. Rukomoikin, V.I. Avilov,, published in Izvestiya vysshikh

More information

(a) Overview of the 2-helix bundle (2HB) nanospring design used in this study. The

(a) Overview of the 2-helix bundle (2HB) nanospring design used in this study. The 1 Supplementary Figure 1 Design of the DNA origami spring (nanospring). (a) Overview of the 2-helix bundle (2HB) nanospring design used in this study. The scheme was produced by cadnano software 1. Scaffold,

More information

WAFER-SCALE PROCESSING OF ARRAYS OF NANOPORE DEVICES

WAFER-SCALE PROCESSING OF ARRAYS OF NANOPORE DEVICES WAFER-SCALE PROCESSING OF ARRAYS OF NANOPORE DEVICES A Dissertation Presented to The Academic Faculty by Amir Ahmadi In Partial Fulfillment of the Requirements for the Degree Doctorate of Philosophy in

More information

A Study of the Formation Modes of Nanosized Oxide Structures of Gallium Arsenide by Local Anodic Oxidation

A Study of the Formation Modes of Nanosized Oxide Structures of Gallium Arsenide by Local Anodic Oxidation ISSN 6-786, Semiconductors,, Vol. 6, No., pp. 66 6. Pleiades Publishing, Ltd.,. Original Russian Text O.A. Ageev, V.A. Smirnov, M.S. Solodovnik, A.V. Rukomoikin, V.I. Avilov,, published in Izvestiya vysshikh

More information

Practice Problems 5. Location of LSA-GFP fluorescence

Practice Problems 5. Location of LSA-GFP fluorescence Life Sciences 1a Practice Problems 5 1. Soluble proteins that are normally secreted from the cell into the extracellular environment must go through a series of steps referred to as the secretory pathway.

More information

Gene expression profiling experiments:

Gene expression profiling experiments: Gene expression profiling experiments: Problems, pitfalls, and solutions. Heli Borg The Alternatives in Microarray Experiments bacteria - eucaryots non poly(a) + - poly(a) + oligonucleotide Affymetrix

More information

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016

Bi 8 Lecture 5. Ellen Rothenberg 19 January 2016 Bi 8 Lecture 5 MORE ON HOW WE KNOW WHAT WE KNOW and intro to the protein code Ellen Rothenberg 19 January 2016 SIZE AND PURIFICATION BY SYNTHESIS: BASIS OF EARLY SEQUENCING complex mixture of aborted DNA

More information

Lab 5: Optical trapping and single molecule fluorescence

Lab 5: Optical trapping and single molecule fluorescence Lab 5: Optical trapping and single molecule fluorescence PI: Matt Lang Lab Instructor: Jorge Ferrer Summary Optical tweezers are an excellent experimental tool to study the biophysics of single molecule

More information

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1 الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء 222Cell Biolgy 1 Lecture 13 222Cell Biolgy 2 Nucleosome Nucleosomes form the fundamental repeating

More information

Bionanomechanics with Optical Tweezers: Molecular Machines under Tension

Bionanomechanics with Optical Tweezers: Molecular Machines under Tension Bionanomechanics with Optical Tweezers: Molecular Machines under Tension Erik Schäffer Center for Plant Molecular Biology (ZMBP) University of Tübingen, Germany www.zmbp.uni-tuebingen.de/nano 16 April

More information

Supplementary material 1: DNA tracing

Supplementary material 1: DNA tracing Supplementary material 1: DNA tracing Figure S1:Typical AFM image showing DNA molecules relaxed when deposited with Mg 2+ DNA molecules that appear to have a higher or larger end (indicated by a red arrow

More information

Supporting Information. Reversible Positioning of Single Molecules inside Zero-Mode Waveguides

Supporting Information. Reversible Positioning of Single Molecules inside Zero-Mode Waveguides Supporting Information Reversible Positioning of Single Molecules inside Zero-Mode Waveguides Joseph Larkin, Mathieu Foquet, # Stephen W Turner, # Jonas Korlach, # and Meni Wanunu * Departments of Physics

More information

Technical Review. Real time PCR

Technical Review. Real time PCR Technical Review Real time PCR Normal PCR: Analyze with agarose gel Normal PCR vs Real time PCR Real-time PCR, also known as quantitative PCR (qpcr) or kinetic PCR Key feature: Used to amplify and simultaneously

More information

Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION

Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION UPLC Separation of DNA Duplexes Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION Over the past 2 years there has been a considerable amount of effort focused on the

More information

Supporting Information

Supporting Information Supporting Information Koh et al. 10.1073/pnas.1212917110 SI Materials and Methods Protein Purification. N-terminal His 6 -Dicer was purified as previously described with several modifications (1). After

More information

COPYRIGHTED MATERIAL. Tissue Preparation and Microscopy. General Concepts. Chemical Fixation CHAPTER 1

COPYRIGHTED MATERIAL. Tissue Preparation and Microscopy. General Concepts. Chemical Fixation CHAPTER 1 CHAPTER 1 Tissue Preparation and Microscopy General Concepts I. Biological tissues must undergo a series of treatments to be observed with light and electron microscopes. The process begins by stabilization

More information

BIO 311C Spring Lecture 36 Wednesday 28 Apr.

BIO 311C Spring Lecture 36 Wednesday 28 Apr. BIO 311C Spring 2010 1 Lecture 36 Wednesday 28 Apr. Synthesis of a Polypeptide Chain 5 direction of ribosome movement along the mrna 3 ribosome mrna NH 2 polypeptide chain direction of mrna movement through

More information

We love the idea that words pronounced, little more than pure information, can evoke actions in the physical world.

We love the idea that words pronounced, little more than pure information, can evoke actions in the physical world. TED 1 TED 2 http://www.arwen-undomiel.com/images/saruman.php http://img.timeinc.net/ew/img/review/011214/lord_l.jpg 3 http://www.arwen-undomiel.com/images/saruman.php http://ljk.imag.fr/membres/jocelyn.etienne/avalanches.html

More information

MARINE BIOINFORMATICS & NANOBIOTECHNOLOGY - PBBT305

MARINE BIOINFORMATICS & NANOBIOTECHNOLOGY - PBBT305 MARINE BIOINFORMATICS & NANOBIOTECHNOLOGY - PBBT305 UNIT-1 MARINE GENOMICS AND PROTEOMICS 1. Define genomics? 2. Scope and functional genomics? 3. What is Genetics? 4. Define functional genomics? 5. What

More information

I. Gene Expression Figure 1: Central Dogma of Molecular Biology

I. Gene Expression Figure 1: Central Dogma of Molecular Biology I. Gene Expression Figure 1: Central Dogma of Molecular Biology Central Dogma: Gene Expression: RNA Structure RNA nucleotides contain the pentose sugar Ribose instead of deoxyribose. Contain the bases

More information

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing

Why Probes Look the Way They Do Concepts and Technologies of AFM Probes Manufacturing Agilent Technologies AFM e-seminar: Understanding and Choosing the Correct Cantilever for Your Application Oliver Krause NanoWorld Services GmbH All mentioned company names and trademarks are property

More information

Biomimetic Chemical Sensors using Nanoelectronic Read out of Olfactory Receptor Proteins

Biomimetic Chemical Sensors using Nanoelectronic Read out of Olfactory Receptor Proteins Supplementary Information for Biomimetic Chemical Sensors using Nanoelectronic Read out of Olfactory Receptor Proteins Brett R. Goldsmith 1,, Joseph J. Mitala, Jr. 2,3, Jesusa Josue 4, Ana Castro 5, Mitchell

More information

DNA translocation through α-haemolysin nano-pores with potential application to macromolecular data storage

DNA translocation through α-haemolysin nano-pores with potential application to macromolecular data storage DNA translocation through α-haemolysin nano-pores with potential application to macromolecular data storage Pramod K. Khulbe, Raphael Gruener, and Masud Mansuripur Optical Sciences Center and Department

More information