Chemically modified nanopores as tools to detect single DNA and protein molecules. Overview

Size: px
Start display at page:

Download "Chemically modified nanopores as tools to detect single DNA and protein molecules. Overview"

Transcription

1 Chemically modified nanopores as tools to detect single DNA and protein molecules Stefan Howorka Introduction Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding 1

2 Introduction Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding Sensing principle current time Stochastic sensing by single channel current recording 2

3 Single channel current recording The protein pore α-hemolysin (αhl) Bacterial exoprotein Forms heptameric pore 3

4 Introduction: Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding Generation of a DNA-nanopore cis Cys 17 internal cavity inner constriction transmembrane β-barrel trans αhl modified with a single oligonucleotide attached to an engineered cysteine residue 4

5 Detection of individual DNA strands by duplex formation inside the pore Howorka, S., Movileanu, L., Braha, O., Bayley, H. (2001). Proc Natl Acad Sci U S A 98, Introduction: Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding 5

6 A single mismatch abolishes binding of a DNA strand to the tethered oligonucleotide Howorka, S., Cheley, S., Bayley, H. (2001) Nature Biotechnol 19, Sequencing of a complete codon in a single DNA strand tethered to αhl αhl-ss-5 -GCATTCX 5 X 6 X 7-3 serial addition of oligonucleotides of known sequence CGTAAGZ 5 DNA duplexes with matching base pairs have longest lifetimes infer sequence of unknown codon Howorka, S., Cheley, S., Bayley, H. (2001) Nature Biotechnol 19,

7 Detection of a mutation in individual DNA strands derived from HIV Detection of common mutation in the reverse transcriptase gene, which confers resistance to the antiviral drug novirapine Kinetics of DNA-duplex formation at the single-molecule level τ on τ off k on = 1 / τ on-mean conc k off = 1 / τ off-mean K d = k off / k on 7

8 N u m b e r o f e v e n t s Good agreement between singlemolecule and bulk-phase DNA-duplex affinities values derived from nanopore recordings values derived from melting profiles in solution oligo sequence K d [M] K' d [M] oligo-b 5'-GGTGAATG-3' 9.2 x x 10-8 oligo-d 5'-TACGTGGA-3' 1.5 x x 10-7 oligo-e 5'-GGTGAAT-3' 1.6 x x 10-7 DNA-nanopore recording yields details of kinetics difficult to obtain with conventional methods τ off-2 Number of events τ off-1 τ off Event lifetime [ms] Event lifetime [ms] τ off Lifetime histogram of oligo-b binding events reveals two different types of events Howorka, S., Movileanu, L., Braha, O., Bayley, H. (2001). Proc Natl Acad Sci U S A 98,

9 Thermodynamic data for duplex formation obtained via T-dependence of k on and k off 3.0 k on [M -1 s -1 ] x O k off k on k off [s -1 ] temperature [ C] weak T-dependence of k on and strong dependence of k off in line with ensemble measurements for duplex formation in solution get activation and equilibrium enthalpies and entropies Introduction: Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding 9

10 Can DNA-hybridization inside a pore be used as tool to probe the pore? Length DNA strands as molecular rulers? Potential how does transmembrane potential drop off inside the pore lumen? Test approach on protein of known structure Experimental approach Attachment of single oligo-a inside protein pore Channel insertion Addition of complementary oligos with 5 - extension of increasing length (da N -oligo-b and dt N -oligo-b 10

11 Signature of binding events changes with number, N, in da N -oligo-b pa 200 ms State A State B 20 ms Howorka, S., Bayley, H. (2002). Biophys J 83, Length dependence of binding signature in agreement with molecular modeling DNA-oligos are useful molecular rulers N = 2 : downward spikes indicate contact to inner constriction N 3: increasing current drop due to blockade of bottleneck inner constriction 11

12 Length of extension influences event lifetime da N -oligo-b Event lifetime [ms] long extensions (N>2) feel the trans-membrane potential drop in β- barrel of αhl N = number of bases Dependence of voltage on event lifetime Event lifetime [ms] da 8 -oligo-b dt 9 -oligo-b Event lifetime [ms] oligo-b oligo-d Voltage [mv] Voltage [mv] 12

13 Summary, DNA nanopores I detection of individual DNA strands with single-base resolution based on match/mismatch-dependent lifetimes of DNA duplexes kinetics and thermodynamics of DNA duplex formation at single molecule level good agreement with ensemble measurements kinetic details Summary, DNA-nanopores II DNA-hybridization inside protein pore to probe structure and distance to probe transmembrane potential Good agreement between current signature and known αhl structure Potential drops off at transmembrane region but not in cap 13

14 Introduction: Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding Sensing of protein analytes Streptavidin tetramer (60 kd) How to sense analytes too big to fit into the pore lumen? 14

15 Sensing of external analytes using a polymeric linker between ligand and pore Binding of streptavidin to biotin outside of pore Flexible PEG linker generates specific current signature Current flicker caused by reversible threading of free end of PEG chain into transmembrane barrel of pore Howorka, S., Movileanu, L., Lu, X., Magnon, M., Cheley, S., Braha, O., Bayley, H. (2000) J Am Chem Soc 122,

16 Binding of streptavidin to biotinpolymer modulates current signature Polymer links outside binding to inside current modulation Movileanu, L., Howorka, S., Braha, O., Bayley, H. (2000) Nat Biotechnol 18, Quantification of protein concentration W120A: Streptavidin mutant with lower binding affinity Movileanu, L., Howorka, S., Braha, O., Bayley, H. (2000) Nat Biotechnol 18,

17 Recordings of ligand-polymer-modified nanopore provides kinetics at single molecule level Introduction: Sensing principle Overview Single channel current recording Protein pore Nanopores detect individual DNA strands Generation of DNA-nanopores Detection of individual DNA strands by duplex formation Sequence-specific detection Kinetics & thermodynamics of DNA duplex formation DNA-duplex to probe distance and structure of pore Nanopores detect single protein molecules Sensing of streptavidin outside the pore Lectin, multivalent binding 17

18 Probe multivalent protein ligand interaction with protein pore carrying multiple ligands Protein pore modified with up do seven disaccharide ligands for tetrameric lectin Obtain single-molecule kinetics of mono- and bivalent binding Observation of short, monovalent and long, bivalent events bivalent monovalent Deduce kinetic constants and binding constants for monovalent and bivalent binding Bivalent binding constant in line with ensemble measurements Howorka, S., Nam, J., Bayley, H., Kahne, D. (2004) Angew. Chem. Int. Ed. Engl. 43,

19 Summary, protein analytes Detection of protein analytes via flexible linker Binding to ligand-polymer modulates current flowing through the pore Linking of outside binding to inside current change Single-molecule kinetics Multivalent interactions Heptamodified pore Kinetics of monovalent and bivalent binding of tetrameric lectin Department of Medical Biochemistry and Genetics College of Medicine The Texas A&M University System Health Science Center College Station, TX Hagan Bayley Orit Braha Steven Cheley Liviu Movileanu Jonwoo Nam, Daniel Kahne, Department of Chemistry, Princeton University Financial support from U.S. Department of Energy, National Institutes of Health Office of Naval Research Texas Advanced Technology Program Austrian Science Foundation Max-Kade Foundation 19

20 Generation of DNA-nanopores Generation of 35 S-labeled polypeptides of α HL cysteine mutant 17C with cell-free extract Modification with OPSS-oligo-A Addition of unmodified monomers (H) and assembly to heptamer on erythrocyte membranes Purification by SDS gelelectrophoresis, isolation of heptamer modified with one DNA oligo Autoradiographs of SDS-gels 20

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane Jonathan R. Burns, Astrid Seifert, Niels Fertig, Stefan Howorka NATURE NANOTECHNOLOGY

More information

Single-Molecule Biophysics. Physical Cell Biology Guest lecture

Single-Molecule Biophysics. Physical Cell Biology Guest lecture Single-Molecule Biophysics Physical Cell Biology Guest lecture Liviu Movileanu Syracuse University lmovilea@syr.edu Web: http://movileanulab.syr.edu Single-molecule versus bulk-phase measurements Bulk-phase

More information

Artificial Nucleic Acids -Their Developments and Recent Applications

Artificial Nucleic Acids -Their Developments and Recent Applications Artificial Nucleic Acids -Their Developments and Recent Applications Bioorganic Chemistry Laboratory D2 Kenichiro Ito Organic Seminar 2012/5/7 1 Nucleic acids play central roles in life Replication Transcription

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFRMATIN doi: 1.138/nnano.29.12 Supplementary Information Supplementary Methods Synthesis of aminocyclodextrin with a reactive linker arm, am 6 ampdp 1 βcd: To produce heptakis(6-deoxy-6-amino)-6-n-mono(2-

More information

Protein Detection by Nanopores Equipped with Aptamers

Protein Detection by Nanopores Equipped with Aptamers pubs.acs.org/jacs Protein Detection by Nanopores Equipped with Aptamers Dvir Rotem,, Lakmal Jayasinghe, Maria Salichou, and Hagan Bayley, * Department of Chemistry, University of Oxford, Oxford, OX1 3TA,

More information

Measuring Single-Molecule DNA Hybridization by Active Control of DNA in a Nanopore

Measuring Single-Molecule DNA Hybridization by Active Control of DNA in a Nanopore Biophysical Journal Volume March 2 59 56 59 Measuring Single-Molecule DNA Hybridization by Active Control of DNA in a Nanopore Brett Gyarfas, Robin Abu-Shumays, Hongyun Wang, and William B. Dunbar * Department

More information

Technical tips Session 4

Technical tips Session 4 Technical tips Session 4 Biotinylation assay: Streptavidin is a small bacterial protein that binds with high affinity to the vitamin biotin. This streptavidin-biotin combination can be used to link molecules

More information

Subject: Biochemistry Date: October 19, Time: (THREE HOURS) CLOSED BOOK

Subject: Biochemistry Date: October 19, Time: (THREE HOURS) CLOSED BOOK Subject: Biochemistry Date: October 19, 2012 Time: (THREE HOURS) CLOSED BOOK Instruction: There are THREE sections. You must use separate BLUE BOOK for each section. Write section number and question number

More information

Supplementary Information. Arrays of Individual DNA Molecules on Nanopatterned Substrates

Supplementary Information. Arrays of Individual DNA Molecules on Nanopatterned Substrates Supplementary Information Arrays of Individual DNA Molecules on Nanopatterned Substrates Roland Hager, Alma Halilovic, Jonathan R. Burns, Friedrich Schäffler, Stefan Howorka S1 Figure S-1. Characterization

More information

Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel

Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel Wenonah Vercoutere 1, Stephen Winters-Hilt 2, Hugh Olsen 1, David Deamer 1, David Haussler

More information

Protein-Protein Interactions II

Protein-Protein Interactions II Biochemistry 412 Protein-Protein Interactions II March 28, 2008 Delano (2002) Curr. Opin. Struct. Biol. 12, 14. Some ways that mutations can destabilize protein-protein interactions Delano (2002) Curr.

More information

Gene Expression Technology

Gene Expression Technology Gene Expression Technology Bing Zhang Department of Biomedical Informatics Vanderbilt University bing.zhang@vanderbilt.edu Gene expression Gene expression is the process by which information from a gene

More information

NOTES Gene Expression ACP Biology, NNHS

NOTES Gene Expression ACP Biology, NNHS Name Date Block NOTES Gene Expression ACP Biology, NNHS Model 1: Transcription the process of genes in DNA being copied into a messenger RNA 1. Where in the cell is DNA found? 2. Where in the cell does

More information

Supporting Information

Supporting Information Supporting Information A Universal Strategy for Aptamer-Based Nanopore Sensing through Host-Guest Interactions inside a-hemolysin** Ting Li, Lei Liu, Yuru Li, Jiani Xie, and Hai-Chen Wu* anie_201502047_sm_miscellaneous_information.pdf

More information

Nanoscale-Controlled Surface Materials, Bioanalysis, and Commercialization - NANO KOREA

Nanoscale-Controlled Surface Materials, Bioanalysis, and Commercialization - NANO KOREA Nanoscale-Controlled Surface Materials, Bioanalysis, and Commercialization - NAN KREA 2007 - Aug 28, 2007 Joon Won Park NanoSurface Biosciences PSTECH Pohang University of Science and Technology Biomolecules

More information

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution...

Contents... vii. List of Figures... xii. List of Tables... xiv. Abbreviatons... xv. Summary... xvii. 1. Introduction In vitro evolution... vii Contents Contents... vii List of Figures... xii List of Tables... xiv Abbreviatons... xv Summary... xvii 1. Introduction...1 1.1 In vitro evolution... 1 1.2 Phage Display Technology... 3 1.3 Cell surface

More information

Supporting Information Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy

Supporting Information Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy Supporting Information Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy Jonathan R. Burns* & Stefan Howorka* 1 Contents 1. Design of DNA nanopores... 3 1.1.

More information

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc.

The World Leader in SPR Technology. Jimmy Page, PhD, Biacore, Inc. The World Leader in SPR Technology Jimmy Page, PhD, Biacore, Inc. Objectives of Biacore Experiments Yes/No Data» Is there binding?» Ligand Fishing Concentration Analysis: How MUCH? Active Concentration

More information

Interrogating single proteins through nanopores: challenges and opportunities

Interrogating single proteins through nanopores: challenges and opportunities Review Interrogating single proteins through nanopores: challenges and opportunities Liviu Movileanu 1,2,3 1 Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA

More information

Selected Techniques Part I

Selected Techniques Part I 1 Selected Techniques Part I Gel Electrophoresis Can be both qualitative and quantitative Qualitative About what size is the fragment? How many fragments are present? Is there in insert or not? Quantitative

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Nanopore Sequencing: From Imagination to Reality

Nanopore Sequencing: From Imagination to Reality Papers in Press. Published December 4, 2014 as doi:10.1373/clinchem.2014.223016 The latest version is at http://hwmaint.clinchem.org/cgi/doi/10.1373/clinchem.2014.223016 Clinical Chemistry 61:1 25 31 (2015)

More information

Technical Seminar 22th Jan 2013 DNA Origami

Technical Seminar 22th Jan 2013 DNA Origami Technical Seminar 22th Jan 2013 DNA Origami Hitoshi Takizawa, PhD Agenda 1) Basis of structural DNA nanotechnology 2) DNA origami technique (2D, 3D, complex shape) 3) Programmable nanofactory 4) Application

More information

Detection of local protein structures along DNA using solid-state nanopores

Detection of local protein structures along DNA using solid-state nanopores Detection of local protein structures along DNA using solid-state nanopores nanopore Stefan Kowalczyk Adam Hall Cees Dekker RecA-DNA filament (Nano Letters cover September 2009) Bremen 29-06-2009 Main

More information

Recitation CHAPTER 9 DNA Technologies

Recitation CHAPTER 9 DNA Technologies Recitation CHAPTER 9 DNA Technologies DNA Cloning: General Scheme A cloning vector and eukaryotic chromosomes are separately cleaved with the same restriction endonuclease. (A single chromosome is shown

More information

PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2)

PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2) PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2) Where Conc is the initial concentration of [B] or [SA] Since [B] = [SA], the second equation simplifies to: (3) Using equation (1) and (3), we

More information

Chapter 6 - Molecular Genetic Techniques

Chapter 6 - Molecular Genetic Techniques Chapter 6 - Molecular Genetic Techniques Two objects of molecular & genetic technologies For analysis For generation Molecular genetic technologies! For analysis DNA gel electrophoresis Southern blotting

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

Prolonged Residence Time of a Noncovalent Molecular Adapter, -Cyclodextrin, within the Lumen of Mutant -Hemolysin Pores

Prolonged Residence Time of a Noncovalent Molecular Adapter, -Cyclodextrin, within the Lumen of Mutant -Hemolysin Pores Prolonged Residence Time of a Noncovalent Molecular Adapter, -Cyclodextrin, within the Lumen of Mutant -Hemolysin Pores Li-Qun Gu, 1 Stephen Cheley, 1 and Hagan Bayley 1,2 1 Department of Medical Biochemistry

More information

Chapter 1. from genomics to proteomics Ⅱ

Chapter 1. from genomics to proteomics Ⅱ Proteomics Chapter 1. from genomics to proteomics Ⅱ 1 Functional genomics Functional genomics: study of relations of genomics to biological functions at systems level However, it cannot explain any more

More information

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1

CAP BIOINFORMATICS Su-Shing Chen CISE. 10/5/2005 Su-Shing Chen, CISE 1 CAP 5510-9 BIOINFORMATICS Su-Shing Chen CISE 10/5/2005 Su-Shing Chen, CISE 1 Basic BioTech Processes Hybridization PCR Southern blotting (spot or stain) 10/5/2005 Su-Shing Chen, CISE 2 10/5/2005 Su-Shing

More information

Supplementary Figure 1. FRET probe labeling locations in the Cas9-RNA-DNA complex.

Supplementary Figure 1. FRET probe labeling locations in the Cas9-RNA-DNA complex. Supplementary Figure 1. FRET probe labeling locations in the Cas9-RNA-DNA complex. (a) Cy3 and Cy5 labeling locations shown in the crystal structure of Cas9-RNA bound to a cognate DNA target (PDB ID: 4UN3)

More information

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm Basics of Recombinant DNA Technology Biochemistry 302 March 5, 2004 Bob Kelm Applications of recombinant DNA technology Mapping and identifying genes (DNA cloning) Propagating genes (DNA subcloning) Modifying

More information

Why does this matter?

Why does this matter? Background Why does this matter? Better understanding of how the nucleosome affects transcription Important for understanding the nucleosome s role in gene expression Treats each component and region of

More information

SCREENING AND PRESERVATION OF DNA LIBRARIES

SCREENING AND PRESERVATION OF DNA LIBRARIES MODULE 4 LECTURE 5 SCREENING AND PRESERVATION OF DNA LIBRARIES 4-5.1. Introduction Library screening is the process of identification of the clones carrying the gene of interest. Screening relies on a

More information

Referee #1 (Remarks to the Author):

Referee #1 (Remarks to the Author): Reviewer #1 (Remarks to the Author): The authors have replied to most of the original comments, but there remain a few aspects of the manuscript that requires modification. The use of the lysenin pore

More information

BIOC 463A Expt. 4: Column Chromatographic Methods Column Chromatography

BIOC 463A Expt. 4: Column Chromatographic Methods Column Chromatography Column Chromatography Chromatography is the process use to separate molecules based on SOME physical property of the molecule: Mass (i.e. size) Charge Affinity for ligands or substrates Hydrophobic interactions

More information

Identification and characterization of DNA aptamers specific for

Identification and characterization of DNA aptamers specific for SUPPLEMENTARY INFORMATION Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein I-Ting Teng 1,, Xiaowei Li 1,, Hamad Ahmad Yadikar #, Zhihui Yang #, Long

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Measure of the linear correlation (dependence) between two variables X and Y Takes a value between +1 and 1 inclusive 1 = total positive correlation 0 = no correlation 1 = total negative correlation. When

More information

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization Overview & Recap of Molecular Biology before the last two sections MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription Gene Organization Joy Winuthayanon, PhD School of Molecular Biosciences

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water Chapter 1 -- Life In the beginning... Molecular evolution Heirarchy and organization levels of organization Form follows function Language in science Cell and Molecular Biology -- Biology 20A Chapter Outlines

More information

A biomimetic DNA-made channel for the ligand-controlled and. selective transport of small-molecule cargo through a biological.

A biomimetic DNA-made channel for the ligand-controlled and. selective transport of small-molecule cargo through a biological. A biomimetic DNA-made channel for the ligand-controlled and selective transport of small-molecule cargo through a biological membrane Jonathan R. Burns 1, Astrid Seifert 2, Niels Fertig 2, Stefan Howorka

More information

(Very) Basic Molecular Biology

(Very) Basic Molecular Biology (Very) Basic Molecular Biology (Very) Basic Molecular Biology Each human cell has 46 chromosomes --double-helix DNA molecule (Very) Basic Molecular Biology Each human cell has 46 chromosomes --double-helix

More information

7/24/2012. DNA Probes. Hybridization and Probes. CLS 420 Immunology & Molecular Diagnostics. Target Sequences. Target Sequences. Nucleic Acid Probes

7/24/2012. DNA Probes. Hybridization and Probes. CLS 420 Immunology & Molecular Diagnostics. Target Sequences. Target Sequences. Nucleic Acid Probes Hybridization and Probes CLS 420 Immunology & Molecular Diagnostics Molecular Diagnostics Techniques: Hybridization and Probes Nucleic acid probes: A short, known sequence of DNA or RNA Used to detect

More information

The Central Dogma. DNA makes RNA makes Proteins

The Central Dogma. DNA makes RNA makes Proteins The Central Dogma DNA makes RNA makes Proteins TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION OF

More information

Supplementary Note 1. Enzymatic properties of the purified Syn BVR

Supplementary Note 1. Enzymatic properties of the purified Syn BVR Supplementary Note 1. Enzymatic properties of the purified Syn BVR The expression vector pet15b-syn bvr allowed us to routinely prepare 15 mg of electrophoretically homogenous Syn BVR from 2.5 L of TB-medium

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Biochemistry 111. Carl Parker x A Braun

Biochemistry 111. Carl Parker x A Braun Biochemistry 111 Carl Parker x6368 101A Braun csp@caltech.edu Central Dogma of Molecular Biology DNA-Dependent RNA Polymerase Requires a DNA Template Synthesizes RNA in a 5 to 3 direction Requires ribonucleoside

More information

Supplementary Information. Single-molecule analysis reveals multi-state folding of a guanine. riboswitch

Supplementary Information. Single-molecule analysis reveals multi-state folding of a guanine. riboswitch Supplementary Information Single-molecule analysis reveals multi-state folding of a guanine riboswitch Vishnu Chandra 1,4,#, Zain Hannan 1,5,#, Huizhong Xu 2,# and Maumita Mandal 1,2,3,6* Department of

More information

DANIEL BRANTON Biology Laboratories, Harvard University, Cambridge, Massachusetts Received October 15, Acc. Chem. Res.

DANIEL BRANTON Biology Laboratories, Harvard University, Cambridge, Massachusetts Received October 15, Acc. Chem. Res. Acc. Chem. Res. 2002, 35, 817-825 Characterization of Nucleic Acids by Nanopore Analysis DAVID W. DEAMER* Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064

More information

Polymerase Chain Reaction PCR

Polymerase Chain Reaction PCR 1 Description of Module Subject Name Paper Name Module Name/Title Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 1. To understand principle of 2. Types 3. Applications 2. Lay Out 3 Types of Qualitative

More information

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches

The mechanism(s) of protein folding. What is meant by mechanism. Experimental approaches The mechanism(s) of protein folding What is meant by mechanism Computational approaches Experimental approaches Questions: What events occur and in what time sequence when a protein folds Is there a specified

More information

Molecular Genetics Techniques. BIT 220 Chapter 20

Molecular Genetics Techniques. BIT 220 Chapter 20 Molecular Genetics Techniques BIT 220 Chapter 20 What is Cloning? Recombinant DNA technologies 1. Producing Recombinant DNA molecule Incorporate gene of interest into plasmid (cloning vector) 2. Recombinant

More information

Universal Labeling of 5 -Triphosphate RNAs by Artificial RNA Ligase Enzyme with Broad Substrate Specificity

Universal Labeling of 5 -Triphosphate RNAs by Artificial RNA Ligase Enzyme with Broad Substrate Specificity Universal Labeling of 5 -Triphosphate RNAs by Artificial RNA Ligase Enzyme with Broad Substrate Specificity John C. Haugner III and Burckhard Seelig* Department of Biochemistry, Molecular Biology and Biophysics

More information

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha Site directed mutagenesis, Insertional and Deletion Mutagenesis Mitesh Shrestha Mutagenesis Mutagenesis (the creation or formation of a mutation) can be used as a powerful genetic tool. By inducing mutations

More information

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies

Masayoshi Honda, Jeehae Park, Robert A. Pugh, Taekjip Ha, and Maria Spies Molecular Cell, Volume 35 Supplemental Data Single-Molecule Analysis Reveals Differential Effect of ssdna-binding Proteins on DNA Translocation by XPD Helicase Masayoshi Honda, Jeehae Park, Robert A. Pugh,

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

Ionic Current Blockades from DNA and RNA Molecules in the a-hemolysin Nanopore

Ionic Current Blockades from DNA and RNA Molecules in the a-hemolysin Nanopore Biophysical Journal Volume 93 November 2007 3229 3240 3229 Ionic Current Blockades from DNA and RNA Molecules in the a-hemolysin Nanopore Tom Z. Butler,* Jens H. Gundlach,* and Mark Troll y *Department

More information

https://de.wikipedia.org/wiki/operon Procaryotic Operon

https://de.wikipedia.org/wiki/operon Procaryotic Operon 2 Basics of Cloning https://de.wikipedia.org/wiki/operon Procaryotic Operon Promotor Operator ATG..TAA CDS Expression plasmid Required factors for protein expression Promoters Constitutive promoters Always

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature08627 Supplementary Figure 1. DNA sequences used to construct nucleosomes in this work. a, DNA sequences containing the 601 positioning sequence (blue)24 with a PstI restriction site

More information

Amino-allyl Dye Coupling Protocol

Amino-allyl Dye Coupling Protocol Amino-allyl Dye Coupling Protocol Joseph DeRisi, June 2001 Typically, fluorescently labeled cdna is generated by incorporation of dyeconjugated nucleotide analogs during the reverse transcription process.

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

Colchicine. Colchicine. a b c d e

Colchicine. Colchicine. a b c d e α1-tub Colchicine Laulimalide RB3 β1-tub Vinblastine α2-tub Taxol Colchicine β2-tub Maytansine a b c d e Supplementary Figure 1 Structures of microtubule and tubulin (a)the cartoon of head to tail arrangement

More information

2. From the first paragraph in this section, find three ways in which RNA differs from DNA.

2. From the first paragraph in this section, find three ways in which RNA differs from DNA. Name Chapter 17: From Gene to Protein Begin reading at page 328 Basic Principles of Transcription and Translation. Work on this chapter a single concept at a time, and expect to spend at least 6 hours

More information

What is Nano-Bio? Non-Covalent Interactions

What is Nano-Bio? Non-Covalent Interactions - - What is Nano-Bio? Physicist: Biotech: Biologists: -study of molecular interactions -application of nano-tools to study biological systems. -application of nano-tools to detect, treat, and prevent disease

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information

Nano pore Sequencing Technology: A Review

Nano pore Sequencing Technology: A Review Shahid Raza and Ayesha Ameen / International Journal of Advances in Scientific Research 2017; 3(08): 90-95. 90 International Journal of Advances in Scientific Research ISSN: 2395-3616 (Online) Journal

More information

Gene Expression: From Genes to Proteins

Gene Expression: From Genes to Proteins The Flow of Genetic Information Gene Expression: From Genes to Proteins Chapter 9 Central Dogma in Molecular Biology molecule Gene 1 Strand to be transcribed Gene 2 Gene 3 strand Codon : Polymerase transcribes

More information

The transport of biomolecules across cell walls is a ubiquitous

The transport of biomolecules across cell walls is a ubiquitous Orientation discrimination of single-stranded DNA inside the -hemolysin membrane channel Jérôme Mathé*, Aleksei Aksimentiev, David R. Nelson, Klaus Schulten, and Amit Meller* *Rowland Institute, Harvard

More information

SNPWizard User Guide

SNPWizard User Guide SNPWizard User Guide About SNPWizard There are many situations in which one wishes to amplify a small segment of DNA where otherwise identical strands may differ. Such segments may consist of a single

More information

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo

Molecular Biology. IMBB 2017 RAB, Kigali - Rwanda May 02 13, Francesca Stomeo Molecular Biology IMBB 2017 RAB, Kigali - Rwanda May 02 13, 2017 Francesca Stomeo Molecular biology is the study of biology at a molecular level, especially DNA and RNA - replication, transcription, translation,

More information

Biochem Fall Sample Exam I Protein Structure. Vasopressin: CYFQNCPRG Oxytocin: CYIQNCPLG

Biochem Fall Sample Exam I Protein Structure. Vasopressin: CYFQNCPRG Oxytocin: CYIQNCPLG Biochem Fall 2011 1. Primary Structure and amino acid chemistry Sample Exam I Protein Structure The peptide hormones vasopressin (ADH) and oxytocin each contain only nine amino acids. Vasopressin is an

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2013-2014 MOLECULAR BIOLOGY BIO-2B02 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question

More information

Which diagram represents a DNA nucleotide? A) B) C) D)

Which diagram represents a DNA nucleotide? A) B) C) D) 3594-1 - Page 1 Name: 1) What is a definition of the term "gene"? A) a transfer-rna nucleotide sequence specific for a particular amino acid B) three messenger-rna nucleotides coded for a specific amino

More information

Gene Expression Transcription

Gene Expression Transcription Why? ene Expression Transcription How is mrn synthesized and what message does it carry? DN is often referred to as a genetic blueprint. In the same way that blueprints contain the instructions for construction

More information

DNA and RNA are both composed of nucleotides. A nucleotide contains a base, a sugar and one to three phosphate groups. DNA is made up of the bases

DNA and RNA are both composed of nucleotides. A nucleotide contains a base, a sugar and one to three phosphate groups. DNA is made up of the bases 1 DNA and RNA are both composed of nucleotides. A nucleotide contains a base, a sugar and one to three phosphate groups. DNA is made up of the bases Adenine, Guanine, Cytosine and Thymine whereas in RNA

More information

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR)

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR) Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 4 - Polymerase Chain Reaction (PCR) Progressing with the sequence of experiments, we are now ready to amplify the green

More information

xdna: A New Genetic System?

xdna: A New Genetic System? xda: A ew Genetic System? Toward a Designed, Functioning Genetic System with Expanded- Size Base Pairs: Solution Structure of the Eight Base xda Double Helix Stephen R. Lynch, Haibo Liu, Jianmin Gao, and

More information

Application of Biacore Technology

Application of Biacore Technology Principles and typical results Application of Biacore Technology Common types of Biacore analyses Specificity analysis Is my molecule of interest specific for its target? Multiple binding analysis In which

More information

Practice Problems 5. Location of LSA-GFP fluorescence

Practice Problems 5. Location of LSA-GFP fluorescence Life Sciences 1a Practice Problems 5 1. Soluble proteins that are normally secreted from the cell into the extracellular environment must go through a series of steps referred to as the secretory pathway.

More information

Biophysics of Macromolecules

Biophysics of Macromolecules Biophysics of Macromolecules Lecture 18: In vivo Methods Braun/Lipfert SS 2015 How to create methods to probe macromolecules in vivo? 6. July 2015 Crowding alters Biochemical Equilibria Excluded volume

More information

2. (So) get (fragments with gene) R / required gene. Accept: allele for gene / same gene 2

2. (So) get (fragments with gene) R / required gene. Accept: allele for gene / same gene 2 M.(a). Cut (DNA) at same (base) sequence / (recognition) sequence; Accept: cut DNA at same place. (So) get (fragments with gene) R / required gene. Accept: allele for gene / same gene (b). Each has / they

More information

Preparative Protein Chemistry

Preparative Protein Chemistry Biochemistry 412 Preparative Protein Chemistry 19 February 2008 The Three Eras of Protein Purification 1. The Classical (Pre-Recombinant DNA) Era (pre-1978) - Proteins purified from natural sources only

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Lecture 5 Notes: Genetic manipulation & Molecular Biology techniques Broad Overview of: Enzymatic tools in Molecular Biology Gel electrophoresis Restriction mapping DNA

More information

Bacteriophages get a foothold on their prey

Bacteriophages get a foothold on their prey Bacteriophages get a foothold on their prey Long and thin, the receptor-binding needle of bacteriophage T4 Bacterial viruses, bacteriophages or phages, have served as a tool to decipher principles of molecular

More information

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

DNA delivery and DNA Vaccines

DNA delivery and DNA Vaccines DNA delivery and DNA Vaccines Last Time: Today: Reading: intracellular drug delivery: enhancing cross priming for vaccines DNA vaccination D.W. Pack, A.S. Hoffman, S. Pun, and P.S. Stayton, Design and

More information

Nucleic acid and protein Flow of genetic information

Nucleic acid and protein Flow of genetic information Nucleic acid and protein Flow of genetic information References: Glick, BR and JJ Pasternak, 2003, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington DC, pages.

More information

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering Chapter 8 Recombinant DNA and Genetic Engineering Genetic manipulation Ways this technology touches us Criminal justice The Justice Project, started by law students to advocate for DNA testing of Death

More information

STANDARD CLONING PROCEDURES. Shotgun cloning (using a plasmid vector and E coli as a host).

STANDARD CLONING PROCEDURES. Shotgun cloning (using a plasmid vector and E coli as a host). STANDARD CLONING PROCEDURES Shotgun cloning (using a plasmid vector and E coli as a host). 1) Digest donor DNA and plasmid DNA with the same restriction endonuclease 2) Mix the fragments together and treat

More information

Supplementary Materials. for. array reveals biophysical and evolutionary landscapes

Supplementary Materials. for. array reveals biophysical and evolutionary landscapes Supplementary Materials for Quantitative analysis of RNA- protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes Jason D. Buenrostro 1,2,4, Carlos L. Araya 1,4,

More information

COS 597c: Topics in Computational Molecular Biology. DNA arrays. Background

COS 597c: Topics in Computational Molecular Biology. DNA arrays. Background COS 597c: Topics in Computational Molecular Biology Lecture 19a: December 1, 1999 Lecturer: Robert Phillips Scribe: Robert Osada DNA arrays Before exploring the details of DNA chips, let s take a step

More information

Computing with large data sets

Computing with large data sets Computing with large data sets Richard Bonneau, spring 2009 Lecture 14 (week 8): genomics 1 Central dogma Gene expression DNA RNA Protein v22.0480: computing with data, Richard Bonneau Lecture 14 places

More information

Intro to Microarray Analysis. Courtesy of Professor Dan Nettleton Iowa State University (with some edits)

Intro to Microarray Analysis. Courtesy of Professor Dan Nettleton Iowa State University (with some edits) Intro to Microarray Analysis Courtesy of Professor Dan Nettleton Iowa State University (with some edits) Some Basic Biology Genes are DNA sequences that code for proteins. (e.g. gene lengths perhaps 1000

More information

Product Specifications & Manual

Product Specifications & Manual Product Specifications & Manual Custom Oligo Synthesis, antisense oligos, RNA oligos, chimeric oligos, Fluorescent dye labeled oligos, Molecular Beacons, sirna, phosphonates Affinity Ligands, 2-5 linked

More information

CH 8: Recombinant DNA Technology

CH 8: Recombinant DNA Technology CH 8: Recombinant DNA Technology Biotechnology the use of microorganisms to make practical products Recombinant DNA = DNA from 2 different sources What is Recombinant DNA Technology? modifying genomes

More information

Predicting Microarray Signals by Physical Modeling. Josh Deutsch. University of California. Santa Cruz

Predicting Microarray Signals by Physical Modeling. Josh Deutsch. University of California. Santa Cruz Predicting Microarray Signals by Physical Modeling Josh Deutsch University of California Santa Cruz Predicting Microarray Signals by Physical Modeling p.1/39 Collaborators Shoudan Liang NASA Ames Onuttom

More information

Chapter 8 Lecture Outline. Transcription, Translation, and Bioinformatics

Chapter 8 Lecture Outline. Transcription, Translation, and Bioinformatics Chapter 8 Lecture Outline Transcription, Translation, and Bioinformatics Replication, Transcription, Translation n Repetitive processes Build polymers of nucleotides or amino acids n All have 3 major steps

More information