In silico measurements of twist and bend. moduli for beta solenoid protein self-

Size: px
Start display at page:

Download "In silico measurements of twist and bend. moduli for beta solenoid protein self-"

Transcription

1 In silico measurements of twist and bend moduli for beta solenoid protein self- assembly units Leonard P. Heinz, Krishnakumar M. Ravikumar, and Daniel L. Cox Department of Physics and Institute for Complex Adaptive Matter, University of California, Davis, California, USA SUPPORTING INFORMATION

2 Nano Letters Page of Supporting Information (a) (b) (c) (d) normalized persistence length Figure S: Persistence lengths, normalized by the number of hydrogen bonds per turn. The arrows indicate respective direction.

3 Page of Nano Letters Table S: Sequence of BSP. ASP LEU SER ILE VAL ASP LEU ARG GLY ALA VAL LEU GLU ASN ILE ASN LEU SER GLY ALA ILE LEU HIS GLY ALA MET LEU ASP GLU ALA ASN LEU GLN GLN ALA ASN LEU SER ARG ALA ASP LEU SER GLY ALA THR LEU ASN GLY ALA ASP LEU ARG GLY ALA ASN LEU SER LYS ALA ASP LEU SER ASP ALA ILE LEU ASP ASN ALA ILE LEU GLU GLY ALA ILE LEU ASP GLU ALA VAL LEU ASN GLN ALA ASN LEU LYS ALA ALA ASN LEU GLU GLN ALA ILE LEU SER HIS ALA ASN LEU ARG GLU ALA ASP LEU SER GLU ALA ASN LEU GLU ALA ALA ASP LEU SER GLY ALA ASP LEU ALA ILE ALA ASP LEU HIS GLN ALA ASN LEU HIS GLN ALA ALA LEU GLU ARG ALA

4 Nano Letters Page 0 of Table S: Sequence of BSP. ALA SER ARG ILE THR ASN SER GLN ILE VAL LYS SER GLU ALA THR ASN SER ASP ILE ASN ASN SER GLN LEU VAL ASP SER ILE SER THR ARG SER GLN TYR SER ASP ALA ASN VAL LYS LYS SER VAL THR THR ASP SER ASN ILE ASP LYS SER GLN VAL TYR LEU THR THR SER THR GLY SER GLN TYR ASN GLY ILE TYR ILE ARG SER SER ASP THR THR GLY SER GLU ILE SER GLY SER SER ILE SER THR SER ARG ILE THR ASN SER ARG ILE THR ASN SER GLN ILE VAL LYS SER GLU ALA THR ASN SER ASP ILE ASN ASN SER GLN LEU VAL ASP SER ILE SER THR ARG SER GLN TYR SER ASP ALA ASN VAL LYS LYS SER VAL THR THR ASP SER ASN ILE ASP LYS SER GLN VAL TYR LEU THR THR SER THR GLY SER GLN TYR ASN GLY ILE TYR ILE ARG SER SER ASP THR THR GLY SER GLU ILE SER GLY SER SER ILE SER THR SER ARG ILE THR 0

5 Page of Nano Letters Table S: Sequence of BSP. ASN ASP ILE ASP GLY THR ASN ASN GLU VAL ASP GLY SER GLU ASN VAL LEU ALA GLY ASN ASP ASN THR VAL SER GLY ASP ASN ASN SER VAL SER GLY SER ASN ASN THR VAL SER GLY ASN ASP ASN THR VAL THR GLY SER ASN HIS VAL VAL SER GLY THR ASN HIS ILE VAL THR ASP ASN ASN ASN ASN VAL SER GLY ASN ASP ASN ASN VAL SER GLY SER PHE HIS THR VAL SER GLY GLY HIS ASN THR VAL SER GLY SER ASN ASN THR VAL SER GLY LYS ARG HIS ARG VAL GLN GLY THR ASN ASN ARG VAL THR ASP

6 Nano Letters Page of Table S: Sequence of BSP. GLY VAL GLU ILE GLY GLU GLY THR VAL LEU LYS SER GLY VAL VAL VAL ASN GLY GLY THR LYS ILE GLY ARG ASP ASN GLU ILE TYR GLN GLY ALA SER ILE GLY GLY GLY VAL GLU ILE GLY ASP ARG ASN ARG ILE ARG GLU SER VAL THR ILE GLY GLY GLY GLY VAL VAL GLY SER ASP ASN LEU LEU MET ILE ASN ALA GLY ILE ALA GLY ASP CYS THR VAL GLY ASN ARG CYS ILE LEU ALA ASN ASN ALA THR LEU ALA GLY GLY VAL GLU ILE GLY GLU GLY THR VAL LEU LYS SER GLY VAL VAL VAL ASN GLY GLY THR LYS ILE GLY ARG ASP ASN GLU ILE TYR GLN GLY ALA SER ILE GLY GLY GLY VAL GLU ILE GLY ASP ARG ASN ARG ILE ARG GLU SER VAL THR ILE GLY GLY GLY GLY VAL VAL GLY SER ASP ASN LEU LEU MET ILE ASN ALA GLY ILE ALA GLY ASP CYS THR VAL GLY ASN ARG CYS ILE LEU ALA ASN ASN ALA THR LEU ALA GLY

7 Page of Nano Letters Validation of the Beam Model To check the validity of the simple beam model for calculating persistence lengths, we subjected the proteins to bending and twisting at dierent helical turns along their length in addition to the last turn reported in the main text. We used the longest (BSP, turns) and the shortest (BSP, turns) β-solenoid proteins for these simulations. Both proteins were subjected to forced bending and twisting simulations (as described in the Methods section), where velocities of pm/ps a and 0.0 /ps respectively were used. Bending (k x ) and torsional (k θ ) stiness values were obtained by using a linear t to the force-displacement curves. The direction of bending (or twisting) and the measured stiness at dierent helical turns are shown in Fig. S (blue dots). Note that in the simple beam model used, k / x = C x L and k θ = C θ L, where C x = (EI) / and C θ = (GJ) are the proportionality constants related to the exural and torsional rigidity respectively, and L is the length of the center of the helical turn from the xed end where the bending force is applied. These stiness values at dierent lengths ( L) are shown in Fig. S. The solid line in Fig. S are the linear ts based on the last turn alone, while the dashed lines are ts based on the last three turns of the helix. It is clear from Fig. Sa,c (solid line), that for L < nm, the simple beam model does not hold in the bending simulations suggesting that for length scales greater than nm, the simple beam model might be practically sucient to describe the mechanical behavior of the proteins. In the case of twisting, (Fig. Sb,d) rather surprisingly, the beam model works for even shorter length scales. Further, to get an estimate of the expected error in these measurements, we calculated the exural and torsional rigidity values and compared them with those for the last turn alone (calculated using the solid lines in Fig. S). The relative errors for exural rigidity are % (BSP) and % (BSP), while those for the torsional rigidity are % (BSP) and % (BSP) respectively. This material is available free of charge via the Internet at

8 Nano Letters Page of k -/ aa[(kj/mol/nm²) -/ ] k -/ aa[(kj/mol/nm²) -/ ] - - (a) (b) (c) (d) Lengtha[nm] k - aa[(kj/mol/rad) - ] k - aa[(kj/mol/rad) - ] Lengtha[nm] Figure S: Spring constants for bending ((a), (c)) and for torsion ((b), (d)) measured at dierent lengths (L) along the molecules (BSP, BSP). The direction of bending and torsion are marked b the arrows marked in the cross section of the proteins. The helical turn number is marked beside each data point. Solid lines show the linear t expected according to beam theory, calculated with the spring constant of the last turn alone. Dashed lines are ts for the last turns of the molecules. (b) and (d) show the analogous plots for torsion.

Programme Good morning and summary of last week Levels of Protein Structure - I Levels of Protein Structure - II

Programme Good morning and summary of last week Levels of Protein Structure - I Levels of Protein Structure - II Programme 8.00-8.10 Good morning and summary of last week 8.10-8.30 Levels of Protein Structure - I 8.30-9.00 Levels of Protein Structure - II 9.00-9.15 Break 9.15-11.15 Exercise: Building a protein model

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

Amino Acid Sequences and Evolutionary Relationships

Amino Acid Sequences and Evolutionary Relationships Amino Acid Sequences and Evolutionary Relationships Pre-Lab Discussion Homologous structures -- those structures believed to have a common origin but not necessarily a common function -- provide some of

More information

Amino Acid Sequences and Evolutionary Relationships

Amino Acid Sequences and Evolutionary Relationships Amino Acid Sequences and Evolutionary Relationships One technique used to determine evolutionary relationships is to study the biochemical similarity of organisms. Though molds, aardvarks, and humans appear

More information

11 questions for a total of 120 points

11 questions for a total of 120 points Your Name: BYS 201, Final Exam, May 3, 2010 11 questions for a total of 120 points 1. 25 points Take a close look at these tables of amino acids. Some of them are hydrophilic, some hydrophobic, some positive

More information

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&!

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&! First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins& 1.& a. b. c. d. e. 2.& a. b. c. d. e. f. & UsingtheCahn Ingold Prelogsystem,assignstereochemicaldescriptorstothe threeaminoacidsshownbelow.

More information

Virtual bond representation

Virtual bond representation Today s subjects: Virtual bond representation Coordination number Contact maps Sidechain packing: is it an instrumental way of selecting and consolidating a fold? ASA of proteins Interatomic distances

More information

Dr. R. Sankar, BSE 631 (2018)

Dr. R. Sankar, BSE 631 (2018) Pauling, Corey and Branson Diffraction of DNA http://www.nature.com/scitable/topicpage/dna-is-a-structure-that-encodes-biological-6493050 In short, stereochemistry is important in determining which helices

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

Amino Acid Sequences and Evolutionary Relationships. How do similarities in amino acid sequences of various species provide evidence for evolution?

Amino Acid Sequences and Evolutionary Relationships. How do similarities in amino acid sequences of various species provide evidence for evolution? Amino Acid Sequences and Evolutionary Relationships Name: How do similarities in amino acid sequences of various species provide evidence for evolution? An important technique used in determining evolutionary

More information

466 Asn (N) to Ala (A) Generate beta dimer Interface

466 Asn (N) to Ala (A) Generate beta dimer Interface Table S1: Amino acid changes to the HexA α-subunit to convert the dimer interface from α to β and to introduce the putative GM2A binding surface from β- onto the α- subunit Residue position (α-numbering)

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 5 7.24/7.88J/5.48J The Protein Folding and Human Disease Packing of Secondary Structures Packing of Helices against sheets Packing of sheets against sheets Parallel Orthogonal Table:

More information

6-Foot Mini Toober Activity

6-Foot Mini Toober Activity Big Idea The interaction between the substrate and enzyme is highly specific. Even a slight change in shape of either the substrate or the enzyme may alter the efficient and selective ability of the enzyme

More information

Protein NMR II. Lecture 5

Protein NMR II. Lecture 5 Protein NMR II Lecture 5 Standard and NMR chemical shifts in proteins Residue N A A B O Ala 123.8 4.35 52.5 19.0 177.1 ys 118.8 4.65 58.8 28.6 174.8 Asp 120.4 4.76 54.1 40.8 177.2 Glu 120.2 4.29 56.7 29.7

More information

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Focus concept Purification of a novel seed storage protein allows sequence analysis and determination of the protein

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it Life The main actors in the chemistry of life are molecules called proteins nucleic acids Proteins: many different

More information

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005 Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 9 September 005 Focus concept Purification of a novel seed storage protein allows sequence analysis and

More information

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

Fundamentals of Protein Structure

Fundamentals of Protein Structure Outline Fundamentals of Protein Structure Yu (Julie) Chen and Thomas Funkhouser Princeton University CS597A, Fall 2005 Protein structure Primary Secondary Tertiary Quaternary Forces and factors Levels

More information

Computational Methods for Protein Structure Prediction

Computational Methods for Protein Structure Prediction Computational Methods for Protein Structure Prediction Ying Xu 2017/12/6 1 Outline introduction to protein structures the problem of protein structure prediction why it is possible to predict protein structures

More information

03-511/711 Computational Genomics and Molecular Biology, Fall

03-511/711 Computational Genomics and Molecular Biology, Fall 03-511/711 Computational Genomics and Molecular Biology, Fall 2011 1 Problem Set 0 Due Tuesday, September 6th This homework is intended to be a self-administered placement quiz, to help you (and me) determine

More information

CFSSP: Chou and Fasman Secondary Structure Prediction server

CFSSP: Chou and Fasman Secondary Structure Prediction server Wide Spectrum, Vol. 1, No. 9, (2013) pp 15-19 CFSSP: Chou and Fasman Secondary Structure Prediction server T. Ashok Kumar Department of Bioinformatics, Noorul Islam College of Arts and Science, Kumaracoil

More information

From code to translation

From code to translation From code to translation What could be the role of the first peptides? Ádám Kun & Ádám Radványi Dpt. Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary Parmenides

More information

1) The penicillin family of antibiotics, discovered by Alexander Fleming in 1928, has the following general structure: O O

1) The penicillin family of antibiotics, discovered by Alexander Fleming in 1928, has the following general structure: O O ame: TF ame: LS1a Fall 06 Problem Set #3 Due Friday 10/13 at noon in your TF s drop box on the 2 nd floor of the Science Center All questions including the (*extra*) ones should be turned in 1) The penicillin

More information

Thr Gly Tyr. Gly Lys Asn

Thr Gly Tyr. Gly Lys Asn Your unique body characteristics (traits), such as hair color or blood type, are determined by the proteins your body produces. Proteins are the building blocks of life - in fact, about 45% of the human

More information

Problem: The GC base pairs are more stable than AT base pairs. Why? 5. Triple-stranded DNA was first observed in 1957. Scientists later discovered that the formation of triplestranded DNA involves a type

More information

DNA.notebook March 08, DNA Overview

DNA.notebook March 08, DNA Overview DNA Overview Deoxyribonucleic Acid, or DNA, must be able to do 2 things: 1) give instructions for building and maintaining cells. 2) be copied each time a cell divides. DNA is made of subunits called nucleotides

More information

Supplementary Data for Monti, et al.

Supplementary Data for Monti, et al. Supplementary Data for Monti, et al. Supplementary Figure S1 Legend to Supplementary Figure S1 Tumor spectrum associated with germline p53 alleles (restricted to the 7 most frequent tissue targets). Structural

More information

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns

Folding simulation: self-organization of 4-helix bundle protein. yellow = helical turns Folding simulation: self-organization of 4-helix bundle protein yellow = helical turns Protein structure Protein: heteropolymer chain made of amino acid residues R + H 3 N - C - COO - H φ ψ Chain of amino

More information

7.013 Spring 2005 Problem Set 1

7.013 Spring 2005 Problem Set 1 MIT Department of Biology 7.013: Introductory Biology Spring 005 Instructors: rofessor azel Sive, rofessor Tyler Jacks, Dr. laudette Gardel AME TA Section # 7.013 Spring 005 roblem Set 1 FRIDAY February

More information

Solutions to 7.02 Quiz II 10/27/05

Solutions to 7.02 Quiz II 10/27/05 Solutions to 7.02 Quiz II 10/27/05 Class Average = 83 Standard Deviation = 9 Range Grade % 87-100 A 43 74-86 B 39 55-73 C 17 > 54 D 1 Question 1 (56 points) While studying deep sea bacteria, you discover

More information

DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes

DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes Rakesh Kumar Gupta, Gunjan Sharma, ξ Rampal Pandey, Amit Kumar, Biplob Koch, ξ Pei- Zhou

More information

Description of Changes and Corrections for PDB File Format Version 4.0. Provisional Document April 12, 2011

Description of Changes and Corrections for PDB File Format Version 4.0. Provisional Document April 12, 2011 Description of Changes and Corrections for PDB File Format Version 4.0 Provisional Document April 12, 2011 The wwpdb has reviewed the PDB archive and created a new set of corrected files that will be released

More information

Station 1 DNA Evidence

Station 1 DNA Evidence Station 1 DNA Evidence Cytochrome-c is a protein found in the mitochondria that is used in cellular respiration. This protein consists of a chain of 104 amino acids. The chart below shows the amino acid

More information

Ch Biophysical Chemistry

Ch Biophysical Chemistry Ch 247.53. Biophysical Chemistry Nina Rosario L. Rojas 2012-2013 sem 1 Review of Protein Structure Why structure? Primary, secondary, tertiary structure Disulfide bonds scheme 2 STRUCTURE- REGULAR STRUCTURE

More information

Level 2 Biology, 2017

Level 2 Biology, 2017 91159 911590 2SUPERVISOR S Level 2 Biology, 2017 91159 Demonstrate understanding of gene expression 2.00 p.m. Wednesday 22 November 2017 Credits: Four Achievement Achievement with Merit Achievement with

More information

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

Protein Structure Analysis

Protein Structure Analysis BINF 731 Protein Structure Analysis http://binf.gmu.edu/vaisman/binf731/ Secondary Structure: Computational Problems Secondary structure characterization Secondary structure assignment Secondary structure

More information

7.014 Solution Set 4

7.014 Solution Set 4 7.014 Solution Set 4 Question 1 Shown below is a fragment of the sequence of a hypothetical bacterial gene. This gene encodes production of HWDWN, protein essential for metabolizing sugar yummose. The

More information

Supplemental Table 1. Amino acid sequences of synthetic kisspeptins

Supplemental Table 1. Amino acid sequences of synthetic kisspeptins Supplemental Data Supplemental Table 1. Amino acid sequences of synthetic kisspeptins Kisspeptins Symbol Sequence Human kisspeptin-10 H-10 Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Phe-NH 2 Rodent/Xenopus 1a

More information

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos Daily Agenda Warm Up: Review Translation Notes Protein Synthesis Practice Redos 1. What is DNA Replication? 2. Where does DNA Replication take place? 3. Replicate this strand of DNA into complimentary

More information

Pacific Symposium on Biocomputing 4: (1999)

Pacific Symposium on Biocomputing 4: (1999) Applications of Knowledge Discovery to Molecular Biology: Identifying Structural Regularities in Proteins Shaobing Su, Diane J. Cook, and Lawrence B. Holder University of Texas at Arlington sandy su@sabre.com,

More information

Amino Acids and Proteins

Amino Acids and Proteins Various Functions of Proteins SB203 Amino Acids and Proteins Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Enzymes Transport proteins utrient and storage proteins

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Frequencies of DQ2.5, DQ2.2, DQ8 and DQ7.5, the most common haplotypes in celiac disease cases. The map illustrates the differences among European countries and shows a clear gradient

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology Page 1 NRWEGIAN UNIVERSITY F SCIENCE AND TECNLGY DEPARTMENT F BITECNLGY Professor Bjørn E. Christensen, Department of Biotechnology Contact during the exam: phone: 73593327, 92634016 EXAM TBT4135 BIPLYMERS

More information

Algorithms in Bioinformatics ONE Transcription Translation

Algorithms in Bioinformatics ONE Transcription Translation Algorithms in Bioinformatics ONE Transcription Translation Sami Khuri Department of Computer Science San José State University sami.khuri@sjsu.edu Biology Review DNA RNA Proteins Central Dogma Transcription

More information

Granby Transcription and Translation Services plc

Granby Transcription and Translation Services plc ompany Resources ranby Transcription and Translation Services plc has invested heavily in the Protein Synthesis business. mongst the resources available to new recruits are: the latest cellphones which

More information

Comprehensive analysis of proteolysis in long-ripened hard cooked Old Saare cheese

Comprehensive analysis of proteolysis in long-ripened hard cooked Old Saare cheese Comprehensive analysis of proteolysis in long-ripened hard cooked Old Saare cheese Minna Varikmaa, Tiina Kriščiunaite, Natalja Kabanova, Irina Stulova, Viktoria Põžjanova, Raivo Vilu Competence Centre

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it What is life made of? 1665: Robert Hooke discovered that organisms are composed of individual compartments called cells

More information

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München

Structure formation and association of biomolecules. Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Structure formation and association of biomolecules Prof. Dr. Martin Zacharias Lehrstuhl für Molekulardynamik (T38) Technische Universität München Motivation Many biomolecules are chemically synthesized

More information

蛋白質體學. Proteomics Amino acids, Peptides and Proteins 陳威戎 & 21

蛋白質體學. Proteomics Amino acids, Peptides and Proteins 陳威戎 & 21 蛋白質體學 Proteomics 2015 Amino acids, Peptides and Proteins 陳威戎 2015. 09. 14 & 21 Outline 1. Amino Acids 2. Peptides and Proteins 3. Covalent Structure of Proteins Amino Acids Proteins are polymers of amino

More information

Nucleic acid and protein Flow of genetic information

Nucleic acid and protein Flow of genetic information Nucleic acid and protein Flow of genetic information References: Glick, BR and JJ Pasternak, 2003, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington DC, pages.

More information

a) Give the sequence of the mrna transcribed from this gene and indicate the 5 and 3 ends of the mrna.

a) Give the sequence of the mrna transcribed from this gene and indicate the 5 and 3 ends of the mrna. ame: Section : 7.014 Problem Set 4 nswers to this problem set are to be turned in at the box outside 68120 by 11:45 am, Wednesday, March 9. Problem sets will not be accepted late. Solutions will be posted

More information

Name Section Problem Set 3

Name Section Problem Set 3 Name Section 7.013 Problem Set 3 The completed problem must be turned into the wood box outside 68120 by 4:40 pm, Thursday, March 13. Problem sets will not be accepted late. Question 1 Based upon your

More information

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L-

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 37. The essential fatty acids are A. palmitic acid B. linoleic acid C. linolenic

More information

Residue Contact Prediction for Protein Structure using 2-Norm Distances

Residue Contact Prediction for Protein Structure using 2-Norm Distances Residue Contact Prediction for Protein Structure using 2-Norm Distances Nikita V Mahajan Department of Computer Science &Engg GH Raisoni College of Engineering, Nagpur LGMalik Department of Computer Science

More information

Unit 1. DNA and the Genome

Unit 1. DNA and the Genome Unit 1 DNA and the Genome Gene Expression Key Area 3 Vocabulary 1: Transcription Translation Phenotype RNA (mrna, trna, rrna) Codon Anticodon Ribosome RNA polymerase RNA splicing Introns Extrons Gene Expression

More information

The study of protein secondary structure and stability at equilibrium ABSTRACT

The study of protein secondary structure and stability at equilibrium ABSTRACT The study of protein secondary structure and stability at equilibrium Michelle Planicka Dept. of Physics, North Georgia College and State University, Dahlonega, GA REU, Dept. of Physics, University of

More information

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop Fishy Code Slips Fish 1 GGTTATAGAGGTACTACC Fish 2 GGCTTCAGAGGTACTACC Fish 3 CATAGCAGAGGTACTACC Fish 4 GGTTATTCTGTCTTATTG Fish 5 GGCTTCTCTGTCTTATTG Fish 6 CATAGCGCTGCAACTACC Fishy Amino Acid Codon UUU Phe

More information

The Stringent Response

The Stringent Response The Stringent Response When amino acids are limiting a response is triggered to shut down a wide range of biosynthetic processes This process is called the Stringent Response It results in the synthesis

More information

Proteins: Wide range of func2ons. Polypep2des. Amino Acid Monomers

Proteins: Wide range of func2ons. Polypep2des. Amino Acid Monomers Proteins: Wide range of func2ons Proteins coded in DNA account for more than 50% of the dry mass of most cells Protein func9ons structural support storage transport cellular communica9ons movement defense

More information

Homework. A bit about the nature of the atoms of interest. Project. The role of electronega<vity

Homework. A bit about the nature of the atoms of interest. Project. The role of electronega<vity Homework Why cited articles are especially useful. citeulike science citation index When cutting and pasting less is more. Project Your protein: I will mail these out this weekend If you haven t gotten

More information

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid

Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid Supplementary Figures Suppl. Figure 1: RCC1 sequence and sequence alignments. (a) Amino acid sequence of Drosophila RCC1. Same colors are for Figure 1 with sequence of β-wedge that interacts with Ran in

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 MIT Department of Biology 7.014 Introductory Biology, Spring 004 Question 1 Solutions to 7.014 Problem Set 1 a) Describe the conditions of the atmosphere on prebiotic earth and how these conditions differ

More information

Custom [ 125 I] Radioiodination

Custom [ 125 I] Radioiodination Page 1 Custom [ 125 I] Radioiodination Radioiodination of proteins and peptides may be performed by different methods, namely by targeting an iodine-accepting group on the protein or by the conjugation

More information

7.014 Quiz II Handout

7.014 Quiz II Handout 7.014 Quiz II Handout Quiz II: Wednesday, March 17 12:05-12:55 54-100 **This will be a closed book exam** Quiz Review Session: Friday, March 12 7:00-9:00 pm room 54-100 Open Tutoring Session: Tuesday,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 2 Supplementary Figure 1: Sequence alignment of HsHSD17B8 and HsCBR4 of with KAR orthologs. The secondary structure elements as calculated by DSSP and residue numbers are displayed

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

2018 Protein Modeling Exam Key

2018 Protein Modeling Exam Key 2018 Protein Modeling Exam Key Multiple Choice: 1. Which of the following amino acids has a negative charge at ph 7? a. Gln b. Glu c. Ser d. Cys 2. Which of the following is an example of secondary structure?

More information

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below).

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below). Protein Synthesis Instructions The purpose of today s lab is to: Understand how a cell manufactures proteins from amino acids, using information stored in the genetic code. Assemble models of four very

More information

Using DNA sequence, distinguish species in the same genus from one another.

Using DNA sequence, distinguish species in the same genus from one another. Species Identification: Penguins 7. It s Not All Black and White! Name: Objective Using DNA sequence, distinguish species in the same genus from one another. Background In this activity, we will observe

More information

Cristian Micheletti SISSA (Trieste)

Cristian Micheletti SISSA (Trieste) Cristian Micheletti SISSA (Trieste) michelet@sissa.it Mar 2009 5pal - parvalbumin Calcium-binding protein HEADER CALCIUM-BINDING PROTEIN 25-SEP-91 5PAL 5PAL 2 COMPND PARVALBUMIN (ALPHA LINEAGE) 5PAL 3

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms Dynamic Programming Algorithms Sequence alignments, scores, and significance Lucy Skrabanek ICB, WMC February 7, 212 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

Ali Yaghi. Tamara Wahbeh. Mamoun Ahram

Ali Yaghi. Tamara Wahbeh. Mamoun Ahram 28 Ali Yaghi Tamara Wahbeh Mamoun Ahram This sheet is a continuation of protein purification methods. Isoelectric focusing Separation of proteins based on Isoelectric points(charge),and it is a horizontal

More information

This is the knowledge that you should understand upon completing this section:

This is the knowledge that you should understand upon completing this section: DN 11 Syllabus hecklist This is the knowledge that you should understand upon completing this section: 11.1 DN DN occurs bound to proteins in chromosomes in the nucs and as unbound DN in the mitochondria.

More information

Steroids. Steroids. Proteins: Wide range of func6ons. lipids characterized by a carbon skeleton consis3ng of four fused rings

Steroids. Steroids. Proteins: Wide range of func6ons. lipids characterized by a carbon skeleton consis3ng of four fused rings Steroids Steroids lipids characterized by a carbon skeleton consis3ng of four fused rings 3 six sided, and 1 five sided Cholesterol important steroid precursor component in animal cell membranes Although

More information

Turning λ Cro into a

Turning λ Cro into a Turning λ Cro into a 3 Transcriptional Activator Figure by MIT pencourseware. Fred Bushman and Mark Ptashne Cell (1988) 54:191-197 Presented by atalie Kuldell for 0.90 February 4th, 009 Small patch of

More information

Structural bioinformatics

Structural bioinformatics Structural bioinformatics Why structures? The representation of the molecules in 3D is more informative New properties of the molecules are revealed, which can not be detected by sequences Eran Eyal Plant

More information

Protein Structure Analysis

Protein Structure Analysis BINF 731 Protein Structure Analysis http://binf.gmu.edu/vaisman/binf731/ Iosif Vaisman COMPUTATIONAL BIOLOGY COMPUTATIONAL STRUCTURAL BIOLOGY COMPUTATIONAL MOLECULAR BIOLOGY BIOINFORMATICS STRUCTURAL BIOINFORMATICS

More information

Chem 250 Answer Key In-class Quiz #3v1

Chem 250 Answer Key In-class Quiz #3v1 age 1 of 6 Quiz #3 ame. Chem 250 Answer Key In-class Quiz #3v1 This exam is composed of 20 questions. lease scan them all before starting. As discussed in the course syllabus, honesty and integrity are

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level ambridge International Examinations ambridge International Advanced Subsidiary and Advanced Level *8744875516* BIOLOGY 9700/22 Paper 2 AS Level Structured Questions October/November 2016 1 hour 15 minutes

More information

Supporting Information Contents

Supporting Information Contents Supporting Information Choy Theng Loh, Kiyoshi Ozawa, Kellie L. Tuck, Nicholas Barlow, Thomas Huber, Gottfried Otting, and Bim Graham Lanthanide tags for site-specific ligation to an unnatural amino acid

More information

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2. 1. Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.This subunit is composed of what 3 parts? 3.What molecules make

More information

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13 Bi190-2013 Lecture 3 Loss-of-function (Ch. 4A) Infer Gene activity from type of allele Loss-of-Function alleles are Gold Standard If organism deficient in gene A fails to accomplish process B, then gene

More information

Proteomics Informatics (BMSC-GA 4437)

Proteomics Informatics (BMSC-GA 4437) Proteomics Informatics (BMSC-GA 4437) Instructor David Fenyö Contact information David@FenyoLab.org htt://fenyolab.org/resentations/proteomics_informatics_2013/ Learning Objectives Be able analyze a roteomics

More information

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation 1. DNA, RNA structure 2. DNA replication 3. Transcription, translation DNA and RNA are polymers of nucleotides DNA is a nucleic acid, made of long chains of nucleotides Nucleotide Phosphate group Nitrogenous

More information

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3 Bio 111 Handout for Molecular Biology 4 This handout contains: Today s iclicker Questions Information on Exam 3 Solutions Fall 2008 Exam 3 iclicker Question #28A - before lecture Which of the following

More information

Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis

Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis Induced fit docking model Manfred T. Reetz* and Sheng Wu Max-Planck-Institut für Kohlenforschung

More information

Aipotu II: Biochemistry

Aipotu II: Biochemistry Aipotu II: Biochemistry Introduction: The Biological Phenomenon Under Study In this lab, you will continue to explore the biological mechanisms behind the expression of flower color in a hypothetical plant.

More information

C. Tight Turns. = -30, φ 3. = 0, and type II approximately = 120, φ 3. = -60, ψ 2. = -90, ψ 3. = +90, ψ 3

C. Tight Turns. = -30, φ 3. = 0, and type II approximately = 120, φ 3. = -60, ψ 2. = -90, ψ 3. = +90, ψ 3 Tight turns (also known as reverse turns, β turns, β bends, hairpin bends, 310 bends, kinks, widgets, etc.) are the first and most prevalent type of nonrepetitive structure that has been recognized. While

More information

Immune system IgGs. Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas. Group 2

Immune system IgGs. Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas. Group 2 Immune system IgGs Carla Cortinas, Eva Espigulé, Guillem Lopez-Grado, Margalida Roig, Valentina Salas Group 2 Index 1. Introduction 1.1. 1.2. 1.3. 1.4. 2. Immunoglobulins IgG formation IgG subclasses Structural

More information

LIST OF ACRONYMS & ABBREVIATIONS

LIST OF ACRONYMS & ABBREVIATIONS LIST OF ACRONYMS & ABBREVIATIONS ALA ARG ASN ATD CRD CYS GLN GLU GLY GPCR HIS hstr ILE LEU LYS MET mglur1 NHDC PDB PHE PRO SER T1R2 T1R3 TMD TRP TYR THR 7-TM VFTM ZnSO 4 Alanine, A Arginine, R Asparagines,

More information

Endomorphin-1 and Endomorphin-2. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing.

Endomorphin-1 and Endomorphin-2. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing. Cyclic Nucleotide Antisera Antiserum against Cyclic AMP ( rabbit ) lyophilized RIA-Titer: 1 :

More information

CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33

CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33 HPER 1 DN: he Hereditary Molecule SEION D What Does DN Do? hapter 1 Modern enetics for ll Students S 33 D.1 DN odes For Proteins PROEINS DO HE nitty-gritty jobs of every living cell. Proteins are the molecules

More information

Chapter Twelve Protein Synthesis: Translation of the Genetic Message

Chapter Twelve Protein Synthesis: Translation of the Genetic Message Mary K. Campbell Shawn O. Farrell international.cengage.com/ Chapter Twelve Protein Synthesis: Translation of the Genetic Message Paul D. Adams University of Arkansas 1 Translating the Genetic Message

More information

Supporting Information. Mitochondrial thioredoxin-responding off-on fluorescent probe

Supporting Information. Mitochondrial thioredoxin-responding off-on fluorescent probe Supporting Information Mitochondrial thioredoxin-responding off-on fluorescent probe 5 Min Hee Lee, a, Ji Hye Han, b, Jae-Hong Lee, a Hyo Gil Choi, c Chulhun Kang, b, * and Jong Seung Kim a, * a Department

More information

NRPS Code Project Summary

NRPS Code Project Summary NRPS Code Project Summary Nick ill. ata formatting/trimming he data used in this project was obtained from a paper which detailed a machine-learning approach to the prediction of amino-acids encoded by

More information

Fourier-based classification of protein secondary structures

Fourier-based classification of protein secondary structures Source: Biochemical and Biophysical Research Communications, Vol. 485, No. 4, pp. 731-735, 2017; DOI:./j.bbrc.2017.02.7 Fourier-based classification of protein secondary structures Jian-Jun SHU, Kian Yan

More information

X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction

X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction Tomohisa Shimasaki 1, Hiromi Yoshida 2, Shigehiro Kamitori 2 & Koji

More information