Supplementary Data for Monti, et al.

Size: px
Start display at page:

Download "Supplementary Data for Monti, et al."

Transcription

1 Supplementary Data for Monti, et al. Supplementary Figure S1 Legend to Supplementary Figure S1 Tumor spectrum associated with germline p53 alleles (restricted to the 7 most frequent tissue targets). Structural regions within the DNA binding domain are indicated based on a previously adopted classification (20): N-ter for N-terminus and C-ter for C-terminus containing the tetramerization domain (tet). The distribution of PD and SD missense mutant alleles in the structural groups is reported. PD and SD alleles are distributed in all structural regions of the DNA binding domains with somewhat different frequencies. 1

2 Supplementary Table S1A: Summary of available data retrieved from IARC database for SD alleles. Codon WT Mutant functional N. Families Individuals tumors n of generations ALL NA nofh FH LFL LFS 132 Lys Glu Met Arg ;2 138 Ala Pro Cys Tyr ;3 151 Pro Ser Pro Thr n.a. 152 Pro Leu ;2;3;3;5;4 154 Gly Val Thr Asn Arg Gly Ile Asn Tyr Cys Arg Gly Arg His ;3;3;4;3;4;2;2 ;3;3;4;1;3;na 193 His Arg ) 197 Val Glu ) 213 Arg Gln Tyr Cys ;3;2 220 Tyr Ser Tyr Cys ;2 236 Tyr Cys Met Ile Cys Ser Ser Phe Ser Thr Cys Tyr ;1;4 245 Gly Asp Gly Cys Gly Val Arg Gln ;2;3;na;1;2;2; 2;2;2;2;2 248 Arg Trp ;2;3;2;3;3;3;2 ;2;2 257 Leu Gln Glu Lys Leu Pro Arg Cys ;2;3;3;3;2;2;2 273 Arg Gly Arg His ;2;1;1;1;4;2;1 ;3;3;2 273 Arg Leu Cys Tyr ;5 277 Cys Tyr Pro Leu Pro Ser Arg Lys Asp Val Arg Trp ;2;3;2;3;2;2 283 Arg His Glu Ala Lys Met Leu Pro ;1 Total Notes 2

3 Supplementary Table S1B: Summary of available data retrieved from IARC database for PD alleles. Codon WT Mutant functional N. Families Individuals tumors n of generations ALL NA nofh FH LFL LFS 82 Pro Leu Val Ile ) 105 Gly Cys Ser Arg Met Thr ;3;4 138 Ala Ser Gln Leu ) 156 Arg His Arg His ;3;5 167 Gln Lys Arg Gly Glu Lys Arg Cys Arg His Arg Leu ) 189 Ala Val Arg Pro Pro Ser His Asp ) 235 Asn Asp Asn Ser ;1;4 238 Cys Tyr Gly Ser ;3;2;3;3;2;2;1 ;3;3 246 Met Val Ile Met Thr Ile Arg Gln ;3 271 Glu Val Val Leu Arg Ser ) 282 Arg Gln Glu Gln Arg His Lys Ile Gly Trp Arg Pro Gly Val ) 337 Arg Cys ;2;3 365 His Tyr na 3) 366 Ser Ala ) Total Notes Legend to Supplementary Tables S1A and S1B. The dataset was limited to the seven most frequent tumor types: soft tissue sarcomas and osteosarcomas, breast cancer, brain tumors, haematopoietic tumors (leukaemia + lymphoma), adrenocortical carcinoma and bronchus/lung cancer. These account for ~72% of the reported cases. The remaining data were highly heterogeneous with very few observed cases in more than 20 different tumor types examined. This restriction on tissue targets excluded two partial function p53 3

4 alleles (N210Y, S227T) from consideration as they are associated with only 5 rare tumors. We have also excluded from the analyses individuals with inherited R337H, a unique PD p53 allele rather frequent in the Brazilian population, that appears to predispose only to paediatric adrenocortical carcinomas. The tables present the families with a given allele, the clinical classification (NA, nofh, FH, LFL, LFS), the individuals studied and reported in the IARC database, the total N of tumors with SD (Table 1A) and PD (Table 1B) alleles and the number of generations reported in the IARC database. When multiple families had the same mutant allele, we reported the n of generations for each family ordered by clinical classification (NA, nofh, FH, LFK, LFS) and, within each clinical classification, by family ID 1 ). In some cases information was not available (na). Notes: 1) data is limited to only one individual of a clinically defined cancer prone family because family members were not available for molecular testing. 2) at least two individuals and two generations were studied, but only 1 individual and 1 tumor are considered in our analyses because of the described restriction on tissue types. 3) de novo germline mutation (or suspected de novo mutation). Families #194 and #64 1 show multiple p53 mutations; the former was excluded from the analysis since functional classification was impossible, while the latter is a SD allele and was included, but duplicated entries were removed. A summary functional for each of the tested alleles on 8 REs (or 3 REs) is indicated: a value of 8 (or 3) indicates that a mutant allele exhibited >25% of wild type p53 activity toward every RE. We defined as SD a mutant exhibiting <25% of wild-type activity towards all 8 REs. PD alleles are mutants that showed >25% of wild type activity toward at least one reporter (see Materials and Methods). 1 see 4

5 Supplementary Table S2A. Summary of functional subgroups of PD alleles based on. Score n Alleles n Families n Individuals n Tumors > Numbers of families, individuals, and tumors carrying germline PD alleles with a specific functional (see legend to supplementary Tables 1A and B for definition). Supplementary Table S2B: Impact of different functional subgroups of p53 mutant alleles on severity of cancer risk. Distribution of clinical classes. PD* PD =1 PD >2RE PD=8 SD* Functional Class: >1 1 >2 8 0 p53 alleles Clinical Classes Families n % n % n % n % n % Not Available 2 3,4% 0 0,0% 2 5,4% 1 6,3% 5 4,2% nofh 8 13,8% 3 14,3% 5 13,5% 2 12,5% 19 16,0% FH 18 31,0% 5 23,8% 13 35,1% 8 50,0% 15 12,6% LFL 17 29,3% 6 28,6% 11 29,7% 3 18,8% 29 24,4% LFS 13 22,4% 7 33,3% 6 16,2% 2 12,5% 51 42,9% Total N families ,0% ,0% ,0% ,0% ,0% * the data from Table 1A are reported here for comparison A significantly lower percentage of FH families carried SD alleles than carried PD alleles of higher functionality (PD* vs SD: p=0.0067; PD>2 vs SD: p=0.0032; PD=8 vs SD: p=0.0012; Fisher s exact test). The percentage of FH families that carried SD and PD=1 alleles did not differ significantly. A significantly higher percentage of LFS families carried SD alleles than carried PD alleles of higher functionality (PD* vs SD: p=0.008; PD>2 vs SD: p=0.0033; PD=8 vs SD: p=0.0272; 5

6 Fisher s exact test). The percentage of LFS families that carried SD and PD=1 alleles did not differ significantly. Supplementary Table S2C. Impact of different functional grouping of p53 mutant alleles on severity of cancer risk. Multiple tumors. Functional Class: PD* PD=1 PD>2 PD=8 SD* Number of: n % n % n % n % n % Families Families where at least one individual has 19 33% 6 29% 13 35% 4 25% 66 55% multiple tumors * the data from Table 1A are reported here for comparison Families where at least one individual had multiple tumors more commonly carried SD than PD alleles (PD* vs SD: p=0.0062; PD=1 vs SD: p= ; PD>2 vs SD: p= ; PD=8 vs SD: p=0.0316; Fisher s exact test). 6

7 Supplementary Table S3: Germline p53 functionality and occurrence of multiple tumors (restricted to confirmed carriers). Functional Class: PD SD O-SD PD for REs SD for REs Number of: Alleles Tumors Families Families where at least one individual has multiple tumors Individuals Individuals with multiple tumors Families where at least one individual had multiple tumors more commonly carried SD than PD alleles (p=0.002) and more commonly carried SD alleles for REs than PD alleles for REs (p=0.04) (Fisher s exact test). Comparisons between O-SD and either PD (p=0.18) or SD (p=0.12) were not statistically significant. 2 Individuals with multiple tumors more commonly carried SD than PD or O-SD alleles (p= and 0.02, respectively) and more commonly carried SD alleles for REs than PD alleles for REs (p=0.03) [Within-Cluster Resampling test (24)]. The comparison between PD and O- SD alleles (p=0.25). was not statistically significant. 7

11 questions for a total of 120 points

11 questions for a total of 120 points Your Name: BYS 201, Final Exam, May 3, 2010 11 questions for a total of 120 points 1. 25 points Take a close look at these tables of amino acids. Some of them are hydrophilic, some hydrophobic, some positive

More information

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&!

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&! First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins& 1.& a. b. c. d. e. 2.& a. b. c. d. e. f. & UsingtheCahn Ingold Prelogsystem,assignstereochemicaldescriptorstothe threeaminoacidsshownbelow.

More information

466 Asn (N) to Ala (A) Generate beta dimer Interface

466 Asn (N) to Ala (A) Generate beta dimer Interface Table S1: Amino acid changes to the HexA α-subunit to convert the dimer interface from α to β and to introduce the putative GM2A binding surface from β- onto the α- subunit Residue position (α-numbering)

More information

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13 Bi190-2013 Lecture 3 Loss-of-function (Ch. 4A) Infer Gene activity from type of allele Loss-of-Function alleles are Gold Standard If organism deficient in gene A fails to accomplish process B, then gene

More information

DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes

DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes DNA/Protein Binding, Molecular Docking and in Vitro Anti-cancer Activity of some Thioether-Dipyrrinato Complexes Rakesh Kumar Gupta, Gunjan Sharma, ξ Rampal Pandey, Amit Kumar, Biplob Koch, ξ Pei- Zhou

More information

7.014 Solution Set 4

7.014 Solution Set 4 7.014 Solution Set 4 Question 1 Shown below is a fragment of the sequence of a hypothetical bacterial gene. This gene encodes production of HWDWN, protein essential for metabolizing sugar yummose. The

More information

Amino Acid Sequences and Evolutionary Relationships

Amino Acid Sequences and Evolutionary Relationships Amino Acid Sequences and Evolutionary Relationships One technique used to determine evolutionary relationships is to study the biochemical similarity of organisms. Though molds, aardvarks, and humans appear

More information

03-511/711 Computational Genomics and Molecular Biology, Fall

03-511/711 Computational Genomics and Molecular Biology, Fall 03-511/711 Computational Genomics and Molecular Biology, Fall 2011 1 Problem Set 0 Due Tuesday, September 6th This homework is intended to be a self-administered placement quiz, to help you (and me) determine

More information

Amino Acid Sequences and Evolutionary Relationships. How do similarities in amino acid sequences of various species provide evidence for evolution?

Amino Acid Sequences and Evolutionary Relationships. How do similarities in amino acid sequences of various species provide evidence for evolution? Amino Acid Sequences and Evolutionary Relationships Name: How do similarities in amino acid sequences of various species provide evidence for evolution? An important technique used in determining evolutionary

More information

Supplemental Table 1. Amino acid sequences of synthetic kisspeptins

Supplemental Table 1. Amino acid sequences of synthetic kisspeptins Supplemental Data Supplemental Table 1. Amino acid sequences of synthetic kisspeptins Kisspeptins Symbol Sequence Human kisspeptin-10 H-10 Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Phe-NH 2 Rodent/Xenopus 1a

More information

7.013 Problem Set 3 FRIDAY October 8th, 2004

7.013 Problem Set 3 FRIDAY October 8th, 2004 MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert. Weinberg, Dr. laudette ardel Name: T: 7.013 Problem Set 3 FRIDY October 8th, 2004 Problem

More information

DNA.notebook March 08, DNA Overview

DNA.notebook March 08, DNA Overview DNA Overview Deoxyribonucleic Acid, or DNA, must be able to do 2 things: 1) give instructions for building and maintaining cells. 2) be copied each time a cell divides. DNA is made of subunits called nucleotides

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it Life The main actors in the chemistry of life are molecules called proteins nucleic acids Proteins: many different

More information

Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis

Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis Laboratory Evolution of Robust and Enantioselective Baeyer-Villiger Monooxygenases for Asymmetric Catalysis Induced fit docking model Manfred T. Reetz* and Sheng Wu Max-Planck-Institut für Kohlenforschung

More information

Amino Acid Sequences and Evolutionary Relationships

Amino Acid Sequences and Evolutionary Relationships Amino Acid Sequences and Evolutionary Relationships Pre-Lab Discussion Homologous structures -- those structures believed to have a common origin but not necessarily a common function -- provide some of

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

In silico measurements of twist and bend. moduli for beta solenoid protein self-

In silico measurements of twist and bend. moduli for beta solenoid protein self- In silico measurements of twist and bend moduli for beta solenoid protein self- assembly units Leonard P. Heinz, Krishnakumar M. Ravikumar, and Daniel L. Cox Department of Physics and Institute for Complex

More information

7.014 Quiz II Handout

7.014 Quiz II Handout 7.014 Quiz II Handout Quiz II: Wednesday, March 17 12:05-12:55 54-100 **This will be a closed book exam** Quiz Review Session: Friday, March 12 7:00-9:00 pm room 54-100 Open Tutoring Session: Tuesday,

More information

1) The penicillin family of antibiotics, discovered by Alexander Fleming in 1928, has the following general structure: O O

1) The penicillin family of antibiotics, discovered by Alexander Fleming in 1928, has the following general structure: O O ame: TF ame: LS1a Fall 06 Problem Set #3 Due Friday 10/13 at noon in your TF s drop box on the 2 nd floor of the Science Center All questions including the (*extra*) ones should be turned in 1) The penicillin

More information

BS 50 Genetics and Genomics Week of Oct 24

BS 50 Genetics and Genomics Week of Oct 24 BS 50 Genetics and Genomics Week of Oct 24 Additional Practice Problems for Section Question 1: The following table contains a list of statements that apply to replication, transcription, both, or neither.

More information

Dr. R. Sankar, BSE 631 (2018)

Dr. R. Sankar, BSE 631 (2018) Pauling, Corey and Branson Diffraction of DNA http://www.nature.com/scitable/topicpage/dna-is-a-structure-that-encodes-biological-6493050 In short, stereochemistry is important in determining which helices

More information

Mutagenesis. Classification of mutation. Spontaneous Base Substitution. Molecular Mutagenesis. Limits to DNA Pol Fidelity.

Mutagenesis. Classification of mutation. Spontaneous Base Substitution. Molecular Mutagenesis. Limits to DNA Pol Fidelity. Mutagenesis 1. Classification of mutation 2. Base Substitution 3. Insertion Deletion 4. s 5. Chromosomal Aberration 6. Repair Mechanisms Classification of mutation 1. Definition heritable change in DNA

More information

Important points from last time

Important points from last time Important points from last time Subst. rates differ site by site Fit a Γ dist. to variation in rates Γ generally has two parameters but in biology we fix one to ensure a mean equal to 1 and the other parameter

More information

a) Give the sequence of the mrna transcribed from this gene and indicate the 5 and 3 ends of the mrna.

a) Give the sequence of the mrna transcribed from this gene and indicate the 5 and 3 ends of the mrna. ame: Section : 7.014 Problem Set 4 nswers to this problem set are to be turned in at the box outside 68120 by 11:45 am, Wednesday, March 9. Problem sets will not be accepted late. Solutions will be posted

More information

Computational Methods for Protein Structure Prediction

Computational Methods for Protein Structure Prediction Computational Methods for Protein Structure Prediction Ying Xu 2017/12/6 1 Outline introduction to protein structures the problem of protein structure prediction why it is possible to predict protein structures

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it What is life made of? 1665: Robert Hooke discovered that organisms are composed of individual compartments called cells

More information

Supplementary Table 1: List of CH3 domain interface residues in the first chain (A) and

Supplementary Table 1: List of CH3 domain interface residues in the first chain (A) and Supplementary Tables Supplementary Table 1: List of CH3 domain interface residues in the first chain (A) and their side chain contacting residues in the second chain (B) a Interface Res. in Contacting

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Frequencies of DQ2.5, DQ2.2, DQ8 and DQ7.5, the most common haplotypes in celiac disease cases. The map illustrates the differences among European countries and shows a clear gradient

More information

Outline. Pseudogenes. Pseudo-genes. The genetic code (DNA version) What is a gene? What is a gene? Dead genes Vitamin C Urate oxidase. Alan R.

Outline. Pseudogenes. Pseudo-genes. The genetic code (DNA version) What is a gene? What is a gene? Dead genes Vitamin C Urate oxidase. Alan R. Pseudogenes Alan R. Rogers January 15, 2016 Dead genes Vitamin C Urate oxidase ψmyh16 GBA Globins 1 / 35 2 / 35 Pseudo-genes Genes are DNA sequences that code for protein. Some genes are broken and cannot

More information

National PHL TB DST Reference Center PSQ Reporting Language Table of Contents

National PHL TB DST Reference Center PSQ Reporting Language Table of Contents PSQ Reporting Language Table of Contents Document Page Number PSQ for Rifampin 2-6 Comparison table for rpob Codon Numbering 2 rpob mutation list (new numbering system) 3-5 rpob interpretations 6 PSQ for

More information

Supporting Information. Mitochondrial thioredoxin-responding off-on fluorescent probe

Supporting Information. Mitochondrial thioredoxin-responding off-on fluorescent probe Supporting Information Mitochondrial thioredoxin-responding off-on fluorescent probe 5 Min Hee Lee, a, Ji Hye Han, b, Jae-Hong Lee, a Hyo Gil Choi, c Chulhun Kang, b, * and Jong Seung Kim a, * a Department

More information

NRPS Code Project Summary

NRPS Code Project Summary NRPS Code Project Summary Nick ill. ata formatting/trimming he data used in this project was obtained from a paper which detailed a machine-learning approach to the prediction of amino-acids encoded by

More information

From code to translation

From code to translation From code to translation What could be the role of the first peptides? Ádám Kun & Ádám Radványi Dpt. Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary Parmenides

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms Dynamic Programming Algorithms Sequence alignments, scores, and significance Lucy Skrabanek ICB, WMC February 7, 212 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 29 September 2005 Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Last modified 9 September 005 Focus concept Purification of a novel seed storage protein allows sequence analysis and

More information

Name Section Problem Set 3

Name Section Problem Set 3 Name Section 7.013 Problem Set 3 The completed problem must be turned into the wood box outside 68120 by 4:40 pm, Thursday, March 13. Problem sets will not be accepted late. Question 1 Based upon your

More information

Mutations. Lecture 15

Mutations. Lecture 15 Mutations Lecture 15 Objectives 1: Mutation Define mutation. Describe the types of mutations and their effects on the protein that is produced Distinguishing between spontaneous and induced mutations.

More information

Proteomics Informatics (BMSC-GA 4437)

Proteomics Informatics (BMSC-GA 4437) Proteomics Informatics (BMSC-GA 4437) Instructor David Fenyö Contact information David@FenyoLab.org htt://fenyolab.org/resentations/proteomics_informatics_2013/ Learning Objectives Be able analyze a roteomics

More information

Ali Yaghi. Tamara Wahbeh. Mamoun Ahram

Ali Yaghi. Tamara Wahbeh. Mamoun Ahram 28 Ali Yaghi Tamara Wahbeh Mamoun Ahram This sheet is a continuation of protein purification methods. Isoelectric focusing Separation of proteins based on Isoelectric points(charge),and it is a horizontal

More information

Protein NMR II. Lecture 5

Protein NMR II. Lecture 5 Protein NMR II Lecture 5 Standard and NMR chemical shifts in proteins Residue N A A B O Ala 123.8 4.35 52.5 19.0 177.1 ys 118.8 4.65 58.8 28.6 174.8 Asp 120.4 4.76 54.1 40.8 177.2 Glu 120.2 4.29 56.7 29.7

More information

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below).

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below). Protein Synthesis Instructions The purpose of today s lab is to: Understand how a cell manufactures proteins from amino acids, using information stored in the genetic code. Assemble models of four very

More information

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3

iclicker Question #28B - after lecture Shown below is a diagram of a typical eukaryotic gene which encodes a protein: start codon stop codon 2 3 Bio 111 Handout for Molecular Biology 4 This handout contains: Today s iclicker Questions Information on Exam 3 Solutions Fall 2008 Exam 3 iclicker Question #28A - before lecture Which of the following

More information

Amino Acids and Proteins

Amino Acids and Proteins Various Functions of Proteins SB203 Amino Acids and Proteins Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Enzymes Transport proteins utrient and storage proteins

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

7.014 Problem Set 3 Please print out this problem set and record your answers on the printed copy.

7.014 Problem Set 3 Please print out this problem set and record your answers on the printed copy. MIT Department of Biology 7.014 Introductory Biology, Spring 2004 Name: 7.014 Problem Set 3 Please print out this blem set and record your answers on the printed copy. Problem sets will not be accepted

More information

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor

Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Case 7 A Storage Protein From Seeds of Brassica nigra is a Serine Protease Inhibitor Focus concept Purification of a novel seed storage protein allows sequence analysis and determination of the protein

More information

Supporting Information

Supporting Information Supporting Information Supplementary Figure-1 Results of Phage Display Screening Against TNT The sequences seen in Supplementary Figure-1 represent the phages sequenced after the third and fourth rounds

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 2 Supplementary Figure 1: Sequence alignment of HsHSD17B8 and HsCBR4 of with KAR orthologs. The secondary structure elements as calculated by DSSP and residue numbers are displayed

More information

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L-

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 37. The essential fatty acids are A. palmitic acid B. linoleic acid C. linolenic

More information

www.lessonplansinc.com Topic: Gene Mutations WS Summary: Students will learn about frame shift mutations and base substitution mutations. Goals & Objectives: Students will be able to demonstrate how mutations

More information

7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web.

7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions will be posted on the web. MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Name: Section : 7.014 Problem Set 4 Answers to this problem set are to be turned in. Problem sets will not be accepted late. Solutions

More information

Programme Good morning and summary of last week Levels of Protein Structure - I Levels of Protein Structure - II

Programme Good morning and summary of last week Levels of Protein Structure - I Levels of Protein Structure - II Programme 8.00-8.10 Good morning and summary of last week 8.10-8.30 Levels of Protein Structure - I 8.30-9.00 Levels of Protein Structure - II 9.00-9.15 Break 9.15-11.15 Exercise: Building a protein model

More information

蛋白質體學. Proteomics Amino acids, Peptides and Proteins 陳威戎 & 21

蛋白質體學. Proteomics Amino acids, Peptides and Proteins 陳威戎 & 21 蛋白質體學 Proteomics 2015 Amino acids, Peptides and Proteins 陳威戎 2015. 09. 14 & 21 Outline 1. Amino Acids 2. Peptides and Proteins 3. Covalent Structure of Proteins Amino Acids Proteins are polymers of amino

More information

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words).

Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words). 1 Quiz1 Q1 2011 Alpha-helices, beta-sheets and U-turns within a protein are stabilized by (hint: two words) Value Correct Answer 1 noncovalent interactions 100% Equals hydrogen bonds (100%) Equals H-bonds

More information

Custom [ 125 I] Radioiodination

Custom [ 125 I] Radioiodination Page 1 Custom [ 125 I] Radioiodination Radioiodination of proteins and peptides may be performed by different methods, namely by targeting an iodine-accepting group on the protein or by the conjugation

More information

Examining the components of your peptide sample with AccuPep QC. Lauren Lu, Ph.D. October 29, 2015, 9:00-10:00 AM EST

Examining the components of your peptide sample with AccuPep QC. Lauren Lu, Ph.D. October 29, 2015, 9:00-10:00 AM EST Examining the components of your peptide sample with AccuPep QC Lauren Lu, Ph.D. October 29, 2015, 9:00-10:00 AM EST When do I need custom peptides? Custom peptides play an important role in many research

More information

6-Foot Mini Toober Activity

6-Foot Mini Toober Activity Big Idea The interaction between the substrate and enzyme is highly specific. Even a slight change in shape of either the substrate or the enzyme may alter the efficient and selective ability of the enzyme

More information

7.014 Quiz II 3/18/05. Write your name on this page and your initials on all the other pages in the space provided.

7.014 Quiz II 3/18/05. Write your name on this page and your initials on all the other pages in the space provided. 7.014 Quiz II 3/18/05 Your Name: TA's Name: Write your name on this page and your initials on all the other pages in the space provided. This exam has 10 pages including this coversheet. heck that you

More information

CFSSP: Chou and Fasman Secondary Structure Prediction server

CFSSP: Chou and Fasman Secondary Structure Prediction server Wide Spectrum, Vol. 1, No. 9, (2013) pp 15-19 CFSSP: Chou and Fasman Secondary Structure Prediction server T. Ashok Kumar Department of Bioinformatics, Noorul Islam College of Arts and Science, Kumaracoil

More information

Using DNA sequence, distinguish species in the same genus from one another.

Using DNA sequence, distinguish species in the same genus from one another. Species Identification: Penguins 7. It s Not All Black and White! Name: Objective Using DNA sequence, distinguish species in the same genus from one another. Background In this activity, we will observe

More information

Protein Synthesis. Application Based Questions

Protein Synthesis. Application Based Questions Protein Synthesis Application Based Questions MRNA Triplet Codons Note: Logic behind the single letter abbreviations can be found at: http://www.biology.arizona.edu/biochemistry/problem_sets/aa/dayhoff.html

More information

Pacific Symposium on Biocomputing 4: (1999)

Pacific Symposium on Biocomputing 4: (1999) Applications of Knowledge Discovery to Molecular Biology: Identifying Structural Regularities in Proteins Shaobing Su, Diane J. Cook, and Lawrence B. Holder University of Texas at Arlington sandy su@sabre.com,

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology Page 1 NRWEGIAN UNIVERSITY F SCIENCE AND TECNLGY DEPARTMENT F BITECNLGY Professor Bjørn E. Christensen, Department of Biotechnology Contact during the exam: phone: 73593327, 92634016 EXAM TBT4135 BIPLYMERS

More information

Endomorphin-1 and Endomorphin-2. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing.

Endomorphin-1 and Endomorphin-2. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing. These items may be or may be not in stock anymore. Please contact us, if you are interestet in purchasing. Cyclic Nucleotide Antisera Antiserum against Cyclic AMP ( rabbit ) lyophilized RIA-Titer: 1 :

More information

Disease and selection in the human genome 3

Disease and selection in the human genome 3 Disease and selection in the human genome 3 Ka/Ks revisited Please sit in row K or forward RBFD: human populations, adaptation and immunity Neandertal Museum, Mettman Germany Sequence genome Measure expression

More information

7.016 Problem Set 3. 1 st Pedigree

7.016 Problem Set 3. 1 st Pedigree 7.016 Problem Set 3 Question 1 The following human pedigree shows the inheritance pattern of a specific disease within a family. Assume that the individuals marrying into the family for all generations

More information

(a) Which enzyme(s) make 5' - 3' phosphodiester bonds? (c) Which enzyme(s) make single-strand breaks in DNA backbones?

(a) Which enzyme(s) make 5' - 3' phosphodiester bonds? (c) Which enzyme(s) make single-strand breaks in DNA backbones? EXAMPLE QUESTIONS AND ANSWERS 1. Topoisomerase does which one of the following? (a) Makes new DNA strands. (b) Unties knots in DNA molecules. (c) Joins the ends of double-stranded DNA molecules. (d) Is

More information

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation

1. DNA, RNA structure. 2. DNA replication. 3. Transcription, translation 1. DNA, RNA structure 2. DNA replication 3. Transcription, translation DNA and RNA are polymers of nucleotides DNA is a nucleic acid, made of long chains of nucleotides Nucleotide Phosphate group Nitrogenous

More information

Worksheet: Mutations Practice

Worksheet: Mutations Practice Worksheet: Mutations Practice There are three ways that DNA can be altered when a mutation (change in DNA sequence) occurs. 1. Substitution one base-pairs is replaced by another: Example: G to C or A to

More information

Supplementary Data. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

Supplementary Data. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy Supplementary Data Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy Lai Yue Chan, 1 David J. Craik, 1* and Norelle L. Daly 2* 1 The University of Queensland, Institute

More information

Chem 250 Answer Key In-class Quiz #3v1

Chem 250 Answer Key In-class Quiz #3v1 age 1 of 6 Quiz #3 ame. Chem 250 Answer Key In-class Quiz #3v1 This exam is composed of 20 questions. lease scan them all before starting. As discussed in the course syllabus, honesty and integrity are

More information

Thr Gly Tyr. Gly Lys Asn

Thr Gly Tyr. Gly Lys Asn Your unique body characteristics (traits), such as hair color or blood type, are determined by the proteins your body produces. Proteins are the building blocks of life - in fact, about 45% of the human

More information

NAME:... MODEL ANSWER... STUDENT NUMBER:... Maximum marks: 50. Internal Examiner: Hugh Murrell, Computer Science, UKZN

NAME:... MODEL ANSWER... STUDENT NUMBER:... Maximum marks: 50. Internal Examiner: Hugh Murrell, Computer Science, UKZN COMP710, Bioinformatics with Julia, Test One, Thursday the 20 th of April, 2017, 09h30-11h30 1 NAME:...... MODEL ANSWER... STUDENT NUMBER:...... Maximum marks: 50 Internal Examiner: Hugh Murrell, Computer

More information

7.013 Spring 2005 Problem Set 1

7.013 Spring 2005 Problem Set 1 MIT Department of Biology 7.013: Introductory Biology Spring 005 Instructors: rofessor azel Sive, rofessor Tyler Jacks, Dr. laudette Gardel AME TA Section # 7.013 Spring 005 roblem Set 1 FRIDAY February

More information

The Stringent Response

The Stringent Response The Stringent Response When amino acids are limiting a response is triggered to shut down a wide range of biosynthetic processes This process is called the Stringent Response It results in the synthesis

More information

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2. 1. Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.This subunit is composed of what 3 parts? 3.What molecules make

More information

BME205: Lecture 2 Bio systems. David Bernick

BME205: Lecture 2 Bio systems. David Bernick BME205: Lecture 2 Bio systems David Bernick Bioinforma;cs Infer pa>erns from life biological sequences structures molecular pathways. Suggest hypotheses from inferred pa>erns Structure and Func;on Novel

More information

Level 2 Biology, 2017

Level 2 Biology, 2017 91159 911590 2SUPERVISOR S Level 2 Biology, 2017 91159 Demonstrate understanding of gene expression 2.00 p.m. Wednesday 22 November 2017 Credits: Four Achievement Achievement with Merit Achievement with

More information

Supplementary Online Material. An Expanded Eukaryotic Genetic Code 2QH, UK. * To whom correspondence should be addressed.

Supplementary Online Material. An Expanded Eukaryotic Genetic Code 2QH, UK. * To whom correspondence should be addressed. Supplementary Online Material An Expanded Eukaryotic Genetic Code Jason W. Chin 1, T. Ashton Cropp, J. Christopher Anderson, Mridul Mukherji, Zhiwen Zhang and Peter G. Schultz* Department of Chemistry

More information

Module 3. Lecture 5. Regulation of Gene Expression in Prokaryotes

Module 3. Lecture 5. Regulation of Gene Expression in Prokaryotes Module 3 Lecture 5 Regulation of Gene Expression in Prokaryotes Recap So far, we have looked at prokaryotic gene regulation using 3 operon models. lac: a catabolic operon which displays induction via negative

More information

DE NOVO GENOME ASSEMBLY OF THE AFRICAN CATFISH (CLARIAS GARIEPINUS)

DE NOVO GENOME ASSEMBLY OF THE AFRICAN CATFISH (CLARIAS GARIEPINUS) DE NOVO GENOME ASSEMBLY OF THE AFRICAN CATFISH (CLARIAS GARIEPINUS) Kovács B. a,, Barta E. c, Pongor S. L. b, Uri Cs. a, Patócs A. b, Orbán L. d, Müller T. a, Urbányi B. a a Department of Aquaculture,

More information

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks Rationale of Genetic Studies Some goals of genetic studies include: to identify the genetic causes of phenotypic variation develop genetic tests o benefits to individuals and to society are still uncertain

More information

Fundamentals of Protein Structure

Fundamentals of Protein Structure Outline Fundamentals of Protein Structure Yu (Julie) Chen and Thomas Funkhouser Princeton University CS597A, Fall 2005 Protein structure Primary Secondary Tertiary Quaternary Forces and factors Levels

More information

Station 1 DNA Evidence

Station 1 DNA Evidence Station 1 DNA Evidence Cytochrome-c is a protein found in the mitochondria that is used in cellular respiration. This protein consists of a chain of 104 amino acids. The chart below shows the amino acid

More information

Algorithms in Bioinformatics ONE Transcription Translation

Algorithms in Bioinformatics ONE Transcription Translation Algorithms in Bioinformatics ONE Transcription Translation Sami Khuri Department of Computer Science San José State University sami.khuri@sjsu.edu Biology Review DNA RNA Proteins Central Dogma Transcription

More information

Cristian Micheletti SISSA (Trieste)

Cristian Micheletti SISSA (Trieste) Cristian Micheletti SISSA (Trieste) michelet@sissa.it Mar 2009 5pal - parvalbumin Calcium-binding protein HEADER CALCIUM-BINDING PROTEIN 25-SEP-91 5PAL 5PAL 2 COMPND PARVALBUMIN (ALPHA LINEAGE) 5PAL 3

More information

Virtual bond representation

Virtual bond representation Today s subjects: Virtual bond representation Coordination number Contact maps Sidechain packing: is it an instrumental way of selecting and consolidating a fold? ASA of proteins Interatomic distances

More information

2018 Protein Modeling Exam Key

2018 Protein Modeling Exam Key 2018 Protein Modeling Exam Key Multiple Choice: 1. Which of the following amino acids has a negative charge at ph 7? a. Gln b. Glu c. Ser d. Cys 2. Which of the following is an example of secondary structure?

More information

A Zero-Knowledge Based Introduction to Biology

A Zero-Knowledge Based Introduction to Biology A Zero-Knowledge Based Introduction to Biology Konstantinos (Gus) Katsiapis 25 Sep 2009 Thanks to Cory McLean and George Asimenos Cells: Building Blocks of Life cell, membrane, cytoplasm, nucleus, mitochondrion

More information

Project 07/111 Final Report October 31, Project Title: Cloning and expression of porcine complement C3d for enhanced vaccines

Project 07/111 Final Report October 31, Project Title: Cloning and expression of porcine complement C3d for enhanced vaccines Project 07/111 Final Report October 31, 2007. Project Title: Cloning and expression of porcine complement C3d for enhanced vaccines Project Leader: Dr Douglas C. Hodgins (519-824-4120 Ex 54758, fax 519-824-5930)

More information

Ch Biophysical Chemistry

Ch Biophysical Chemistry Ch 247.53. Biophysical Chemistry Nina Rosario L. Rojas 2012-2013 sem 1 Review of Protein Structure Why structure? Primary, secondary, tertiary structure Disulfide bonds scheme 2 STRUCTURE- REGULAR STRUCTURE

More information

G+C content. 1 Introduction. 2 Chromosomes Topology & Counts. 3 Genome size. 4 Replichores and gene orientation. 5 Chirochores.

G+C content. 1 Introduction. 2 Chromosomes Topology & Counts. 3 Genome size. 4 Replichores and gene orientation. 5 Chirochores. 1 Introduction 2 Chromosomes Topology & Counts 3 Genome size 4 Replichores and gene orientation 5 Chirochores 6 7 Codon usage 121 marc.bailly-bechet@univ-lyon1.fr Bacterial genome structures Introduction

More information

7.012 Final Exam

7.012 Final Exam 7.012 Final Exam 2006 You have 180 minutes to complete this exam. There are 19 pages including this cover page, the AMINO AID page, and the GENETI ODE page at the end of the exam. Please write your name

More information

Translating the Genetic Code. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences

Translating the Genetic Code. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences Translating the Genetic Code DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences An overview of gene expression Figure 13.2 The Idea of A Code 20 amino acids 4 nucleotides How do nucleic acids

More information

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop

Fishy Amino Acid Codon. UUU Phe UCU Ser UAU Tyr UGU Cys. UUC Phe UCC Ser UAC Tyr UGC Cys. UUA Leu UCA Ser UAA Stop UGA Stop Fishy Code Slips Fish 1 GGTTATAGAGGTACTACC Fish 2 GGCTTCAGAGGTACTACC Fish 3 CATAGCAGAGGTACTACC Fish 4 GGTTATTCTGTCTTATTG Fish 5 GGCTTCTCTGTCTTATTG Fish 6 CATAGCGCTGCAACTACC Fishy Amino Acid Codon UUU Phe

More information

Model Peptides Reveal Specificity of IV -Acetyltransferase from Saccharomyces cerevisiae*

Model Peptides Reveal Specificity of IV -Acetyltransferase from Saccharomyces cerevisiae* THE JOURNAL OF B~OLOCICAL CHEMISTRY 0 1990 by The American Society for Biochemistry and Molecular Biology, Inc. Vol. 265, No. 20, Issue of July 15, pp. 11576-11580,19!30 Printed in U.S. A. Model Peptides

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 MIT Department of Biology 7.014 Introductory Biology, Spring 004 Question 1 Solutions to 7.014 Problem Set 1 a) Describe the conditions of the atmosphere on prebiotic earth and how these conditions differ

More information