Chemical Looping Technology

Size: px
Start display at page:

Download "Chemical Looping Technology"

Transcription

1 Chemical Looping Technology by L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio U.S.A. ICEST June 2, 2014

2 Number of Publications with Chemical Looping in the Titles on Google Scholars Number of Publications Year

3 Combustion System

4 Gasification System Fly Ash By-Product Sulfur By-Product Slag By-Product IGCC Efficiency: 33% with CO 2 control Steigel and Ramezan, 2006

5 Chemical Looping Systems with CO 2 Generation or Separation Two typical types of looping reaction systems Oxygen Carrier (Type I) CO 2 Carrier (Type II) Me/MeO, MeS/MeSO 4 MeO/MeCO 3 1 st International Conference on Chemical Looping, Lyon, France, March (2010). 1 st Meeting of High Temperature Solids Looping 5 Cycle Network, Oviedo, Spain, September (2009).

6 Chemical Looping Systems with Non-CO 2 Generation Syngas CO + H 2 Chemicals H 2 O H 2 + O 2 chemical looping chemical looping chemical looping CH 4 or other Carbonaceous Fuels CH 4 or other Carbonaceous Fuels Solar Energy/ Nuclear Energy

7 CO 2 Capture from Fossil Energy Technological Solutions Source: José D. Figueroa, National Energy Technology Laboratory (NETL), USDOE

8 Comparison of OSU SYNGAS and Coal Direct Chemical Looping (CDCL) Processes with Traditional Coal to Hydrogen/Electricity Processes Overall Process Efficiency SCL Gasfication-WGS IGCC-SELEXOL Subcritical MEA Ultra-supercritical MEA Ultra-Supercritical Chilled Ammonia Syngas CLC H2 Membrane WGS CO2 Membrane WGS CDCL % Electricity Assumptions used are similar to those adopted by the USDOE baseline studies.

9 Exergy Analysis on Hydrogen Production Substance Enthalpy of degradation Exergy Exergy Rate (ε) Energy/Exery Loss Additional Energy Input Final Product Carbon kj/mol kj/mol 0 Heat Loss 48.8 kj Exergy Loss H 2 + CO Partial oxidation kj /Gasification kj ε = kj Heat Loss 36 kj Exergy Loss H 2 +CO kj Water Gas Shift kj ε = 0.82 I I. Contional Process Exergetic Efficiency 322.9/407.7 = 79.2% ε 1 Fe 3 O (0.395 mol) kj 71.9 kj ε = Fe kj Partial oxidation kj ε = kj Exergy Loss 77.8 kj thermal 380 K 12.41kJ Exergy H 2 + Fe 3 O kj kj ε = 0.82 II. Chemcial Looping Process Exergetic Efficiency 396.9/( )=94.5% ε = 0.16 II 9

10 Economics of Chemical Looping Process Water Coal Coal Prep. Existing equipment for repowering case Carrier Particle Makeup (Fe 2 O 3 ) CO 2 +H 2 O Reducer FeO/Fe Fe 2 O 3 Combustor Spent Air Steam Water Enhancer Gas Recycle Fan FGD HP Particulate Removal IP H 2 O Steam Cycle ID Fan CO 2 compressor LP FGD CO 2 Sequestration Stack Fly Ash and Carrier Particle Fines Electricity Base Plant MEA Plant CDCL Plant First-Year Capital ($/MWh) Fixed O&M ($/MWh) Coal ($/MWh) Variable O&M ($/MWh) TOTAL FIRST-YEAR COE ($/MWh) = +71% Air Existing equipment for repowering case ID Fan Pump Cooling Tower Existing equipment for repowering case = +33% Retrofit to conventional coal combustion process CDCL replaces existing PC boiler Additional equipment for CO 2 compression and transportation required Techno-Economic analysis performed comparing CDCL to Base Plant with no CO 2 capture and 90% CO 2 capture via post-combustion MEA process Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, Combustion Looping Using Composite Oxygen Carriers U.S. Patent No. 7,767,191 (2010, priority date 2003) The CDCL process can be also used for high efficient hydrogen production

11 Oxygen Carrier Particle Development Ellingham Diagram: Selection of Primary Metal

12 Force (N) Recyclability of Pure Fe 2 O 3 Recyclability of Composite Fe 2 O Cycle Pellet Reactivity 100 Cycle Pellet Strength Fresh 10 Cycles 100 Cycles

13 Structures of Iron Oxide FeO Fe 3 O 4 NaCl Type oxygen close-packed cubic pattern iron occupy all octahedral interstices inverse Spinel Type octahedral interstices 1/2 occupation rate tetrahedral interstices 1/8 occupation rate

14 Core-Shell Particle Formation through Cyclic Gas-Solid Reactions 4Fe (s) + 3O 2 (g) 2Fe 2 O 3 (s) (1) Fe 2 O 3 (s) + 3H 2 (g) 2Fe (s) + 3H 2 O (g) (2) If the cyclic reactions proceed through Fe cation diffusion, core-shell structure forms, e.g. Fe2O3 + Al2O3. If the cyclic reactions proceed through O anion diffusion, core-shell structure does not forms, e.g. Fe2O3 + TiO2. *Al2O3 is only a physical support, while TiO2 alters the solid-phase ionic diffusion mechanism

15 Fe2O3+Al2O3 VS Fe2O3+TiO2 after 50 redox cycles after 50 redox cycles

16 Evolution in Cyclic Binary Metal/Metal Oxide Systems: I. FeTi Original cross section Oxidation: cross section Oxidation: surface with platelets and whiskers EDS mapping of oxidized FeTi

17 Role of Support Oxidation of Fe and Fe/TiO 2 DFT Calculation Oxygen anion transfer in Wüstite and Ilemnite Energy barrier for O 2- can be reduced after support addition

18 Modes of CFB Chemical Looping Reactor Systems Mode 1- reducer: fluidized bed or co-current gas-solid (OC) flows Mode 2 - reducer: gas-solid (OC) countercurrent dense phase/moving bed flows Moving Bed Reducer CO 2 H 2 O Fluidized Bed Reducer CO 2, H 2 O Fuel Fuel Chalmers University CLC System OSU CLC System Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, Combustion Looping Using Composite Oxygen Carriers U.S. Patent No. 7,767,191 (2010) (priority date:2003).

19 FeO x FeO x CO 2 /H 2 O CO 2 /H 2 O Chemical Looping Reactor Design (x>y) Fluidized Bed v.s. Moving Bed FeO x FeO x CO 2 /H 2 O CO 2 /H 2 O 11.11% Maximum Solid Conversion 50.00% > U mfv Gas Velocity < U mfv (X>Y) Small 1.E+07 Particle Size Large (X>Y) FeO y CO/H 2 1.E+06 Fe 2 O 3 FeO y CO/H 2 1.E+05 Fluidized Bed Moving Bed 1.E+04 Fluidized Bed (x>y) Fe Moving Bed The Selected 3 O 4 Reactor Type 1.E+03 FeO y CO/H 2 1.E+02 FeO y CO/H 2 1.E+01 FeO 1.E+00 Fluidized Bed Moving Bed PCO2/PCO 1.E-01 Moving Bed Temperature (C) Fe 19

20 Particle Type Ni Cu Fe Type of Data Particle Type Lab Scale NiO/ MgAl 2 O 4 CFB 120 kw NiO/ MgAl 2 O 4 Lab Scale CFB 10kW Lab Scale kg/s or 14,000 36,000 ton/hour CFB 300W Moving Bed -H 2 25 kw CuO/ Fe 2 O 3 / Fe 2 O 3 / Al 2 O 3 CuO/Al 2 O 3 MgAl 2 O 4 Al 2 O 3 Composite Fe 2 O 3 Air Flow MWth and 10% Excess (mol/s) Volumetric Air Flow Rate at 1 atm and 900 ºC (m 3 /s) Particle Circulation 1000 MWth (kg/s) Reducer Solids Inventory (tonne) total Oxidizer Solids Inventory (tonne) n/a Total Medium Particle Size (μm) Particle Density (g/cm 3 ) Ut (m/s) Uc (m/s) Use (m/s) Typical Riser Superficial Gas Velocity (m/s) Bed Area Turbulent Section (if Required) at 1 atm (m 2 ) Bed Area Required for Riser Section at 1 atm (m 2 ) Corresponding Riser Diameter (m) Solids Flux at 1 atm (kg/m 2 s) Number of Beds Needed given 8 m ID Riser 3.23 <1 Number of Beds Needed given 1.5 m ID Riser Ug for a Single 1.5 m ID Riser at 1 atm (m/s) Ug for a Single 8 m ID riser at 1 atm (m/s) (Ug < Ut; N/A) Required Pressure for a Single 1.5m ID Riser (atm) Solids Flux for a Single 1.5 m ID Riser (kg/m 2 s) Required Pressure for a Single 8 m ID Riser (atm) 3.23 < 3,000 ton/hour Solids Flux for a Single 8 m ID Riser (kg/m 2 s) Ug < Ut; N/A

21 Scale OSU Chemical Looping Process Development Bench Scale Tests Sub-Pilot SCL Integrated Tests Particle Fixed Bed Tests Time

22 25 kw th OSU Sub-Pilot CDCL Demonstration for Coal Combustion Fully assembled and operational 500+ hours of operational experience 200+ hours continuous successful operation Smooth solid circulation Confirmed non-mechanical gas sealing under reactive conditions 13 test campaigns completed

23 Concentration (%) O2 Concentration (%) CO, CH4, CO2 Carbon Conversion (%) Concentration CO2 (%) Concentration CO, CH4, O2 (%) 200+ Hour Sub-Pilot Continuous Run - Sample Results Once-Through Reducer Carbon Conversion Profile 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Time of reaction (min) Continuous steady >90% carbon conversion from reducer throughout all solid fuel loading (5-25kW th ) <0.25% CO and CH 4 in reducer outlet = full fuel conversion to CO 2 /H 2 O <0.1% CO, CO 2, and CH 4 in combustor = negligible carbon carry over, nearly 100% carbon capture CDCL NO x /SO x Analysis Reducer Combustor SO x (ppm) NO X (lb/mmbtu) * ~ 0 *Conventional PC Boiler NO x Generation = lb/mmbtu 1 1. NETL. Cost and Performance Baseline for Fossil Energy Plants Volume 1 & 3b 100% 99% 98% 97% 96% 95% 94% 93% 92% 91% 90% Reducer Gas Concentration Profile CO Time (min) CH 4 CO CO2 CO CH4 Combustor Gas Concentration Profile 5% 5% 4% 4% 3% 3% 2% 2% 1% 1% 0% Time (min) CO2 O2 CO CH

24 Concentration (%) Concentration (%) 25 kw th OSU Sub-Pilot SCL Unit for Hydrogen Generation Recent Unit Demonstration 100 Reducer Gas Composition Over 300+ hours operation Average CO 2 purity generated throughout run > 99% >99.99% hydrogen purity at steady state Steady Pressure Profile throughout Test run H2 CO CO Differential Pressure Profile 0 8:52:48 AM 10:19:12 AM 11:45:36 AM 1:12:00 PM 100 Oxidizer Gas Composition 8 80 Pressure (" H20) DP2 DP3 DP H2 CO CO Hours 0 13:33:36 14:09:36 14:45:36 15:21:36

25 Concluding Remarks Chemical Looping embodies all elements of particle science and technology - particle synthesis, reactivity and mechanical properties, flow stability and contact mechanics, gas-solid reaction engineering OSU processes characterized by the moving bed reducer configuration are compact in design and high efficiency in operation. Success achieved in the operation of 200+ hour continuous sub-pilot CDCL run using coal and progress made in the on-going SYNGAS Chemical Looping pilot demonstration reflect the likelihood of commercialization of these technologies in the near future.

26 My Graduate Students and Research Associates Ted Thomas Himanshu Gupta Puneet Gupta Alissa Park Mahesh Iyer Luis Velazquez-Vargas Bartev Boghos Sakadjian Danny Wong Fanxing Li Shwetha Ramkumar FuChen Yu Fei Wang Liang Zeng Deepak Sridhar Ray Kim Dawei Wang Elena Chung Samuel Bayham Zhenchao Sun Mandar Kathe William Wang Songgeng Li Andrew Tong Nihar Phalak Siwei Luo Yao Wang Niranjani Deshpande Omar McGiveron Ankita Majumder

27 Industrial Collaborators Clear Skies: Bob Statnick B&W: Tom Flynn, Luis Vargas, Doug Devault, Bartev Sakadjian, Tom Flynn and Hamid Sarv CONSOL Energy: Dan Connell, Richard Winschel, and Steve Winberg Air Products: Robert Broekhuis, Bernard Toseland Shell/CRI: Tom Brownscombe PSRI: Reddy Kerry, Ted Knowlton and Ray Cocco

Chemical Looping Technology and CO 2 Capture

Chemical Looping Technology and CO 2 Capture Chemical Looping Technology and CO 2 Capture by L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210 May 3, 2011 Chemical Looping for Hydrogen Production

More information

Carbonation-Calcination Reaction(CCR) Process for High Temperature CO 2 and Sulfur Removal

Carbonation-Calcination Reaction(CCR) Process for High Temperature CO 2 and Sulfur Removal Carbonation-Calcination Reaction(CCR) Process for High Temperature CO 2 and Sulfur Removal Shwetha Ramkumar, William Wang, Dr. Songgeng Li, Siddharth Gumuluru, Zhenchao Sun, Nihar Phalak, Danny Wong, Mahesh

More information

Overview of Alstom s Chemical Looping Programs

Overview of Alstom s Chemical Looping Programs Overview of Alstom s Chemical Looping Programs Frank Kluger, I. Abdulally, H. Andrus, A. Levasseur, C.Beal, J.Marion 5 Th Meeting of the IEAGHG International Oxyfuel Combustion Research Network Wuhan,

More information

Activities within the German Research project "Lime Stone based Absorption of CO2" (LISA)

Activities within the German Research project Lime Stone based Absorption of CO2 (LISA) Petersenstrasse 30 64287 Darmstadt / Germany Phone: +49 6151 16 2191 www.est.tu-darmstadt.de Activities within the German Research project "Lime Stone based Absorption of CO2" (LISA) Bernd Epple Technische

More information

Advanced Coal Technologies for Power Generation

Advanced Coal Technologies for Power Generation Advanced Coal Technologies for Power Generation Briggs M. White, PhD Project Manager, Strategic Center for Coal December 17, 2013 National Energy Technology Laboratory National Energy Technology Laboratory

More information

Chemical Looping Reforming an Efficient Process for the Production of Hydrogen from Coal

Chemical Looping Reforming an Efficient Process for the Production of Hydrogen from Coal Submitted for: American Institute of Chemical Engineers, Annual Conference, Nov 12-17 2006, San Francisco, USA Paper 694f, Session 694: Sustainable Engineering in Process Development Chemical Looping Reforming

More information

Status and Outlook for CO 2 Capture Systems

Status and Outlook for CO 2 Capture Systems Status and Outlook for CO 2 Capture Systems Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation

More information

TRONDHEIM CCS CONFERENCE

TRONDHEIM CCS CONFERENCE TRONDHEIM CCS CONFERENCE June 15, 2011 6th Trondheim Conference on CO 2 Capture, Transport and Storage Pedro Casero Cabezón (pcasero@elcogas.es) ELCOGAS S.A (www.elcogas.es) 1 SCOPE IGCC & ELCOGAS, S.A

More information

ENCAP SP4 Chemical looping combustion

ENCAP SP4 Chemical looping combustion ENCAP SP4 Chemical looping combustion CASTOR-ENCAP-CACHET-DYNAMIS workshop Thierry GAUTHIER, IFP 1 Content Background Chemical Looping Combustion (CLC) SP4 objectives SP4 Development of stable reactive

More information

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture 5 th IEA-GHG Network Meeting September 2013 Robert Symonds*, Dennis Lu, and Scott Champagne CanmetENERGY

More information

Advanced Coal Technology 101

Advanced Coal Technology 101 Advanced Coal Technology 101 National Conference of State Legislators Conference November 1, 2007 Dr. Jeffrey N. Phillips Program Manager Advanced Coal Generation Options CO 2 Capture in Coal Power Systems

More information

Cost and Performance Baseline for Fossil Energy Plants

Cost and Performance Baseline for Fossil Energy Plants Cost and Performance Baseline for Fossil Energy Plants CMU Seminar September 26, 2007 Julianne Klara, National Energy Technology Laboratory Fossil Energy Plant Baseline Study -Report Contains- Subcritical

More information

The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal

The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal Zhenghua Dai*, Zhonghua Sun, Xin Gong, Zhijie Zhou, Fuchen Wang Institute

More information

Clean Coal Technology Roadmap CURC/EPRI/DOE Consensus Roadmap

Clean Coal Technology Roadmap CURC/EPRI/DOE Consensus Roadmap Clean Coal Technology Roadmap CURC/EPRI/DOE Consensus Roadmap http://www.netl.doe.gov/coalpower/ccpi/pubs/cct-roadmap.pdf Roadmap Goals Develop unified coal program roadmap Integrate CURC, EPRI, DOE roadmaps

More information

Chemical Looping Reforming with Packed Bed Technology: Experimental Study and Modelling

Chemical Looping Reforming with Packed Bed Technology: Experimental Study and Modelling Chemical Looping Reforming with Packed Bed Technology: Experimental Study and Modelling V. Spallina, B. Marinello, M.C. Romano, F. Gallucci, M. van Sint Annaland OUTLINE Motivation of the study Description

More information

The Cost of CO 2 Capture and Storage

The Cost of CO 2 Capture and Storage The Cost of Capture and Storage Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation to the

More information

ES Hydrogen Production via the Iron/Iron Oxide Looping Cycle. Copyright 2011 by ASME

ES Hydrogen Production via the Iron/Iron Oxide Looping Cycle. Copyright 2011 by ASME Proceedings of the ASME 2011 5th International Conference on Energy Sustainability ES2011 August 7-10, 2011, Washington, DC, USA ES2011-54 Abstract Hydrogen Production via the Iron/Iron Oxide Looping Cycle

More information

Available online at GHGT-9

Available online at  GHGT-9 Available online at www.sciencedirect.com Energy Procedia00 1 (2008) (2009) 000 000 27 34 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Natural minerals as oxygen

More information

Clean coal conversion processes progress and challenges

Clean coal conversion processes progress and challenges / Journal Homepage / Table of Contents for this issue PERSPECTIVE www.rsc.org/ees Energy & Environmental Science Clean coal conversion processes progress and challenges Fanxing Li and Liang-Shih Fan* Received

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

BLUE OPTION White space is filled with one or more photos

BLUE OPTION White space is filled with one or more photos Driving Innovation Delivering Results BLUE OPTION White space is filled with one or more photos Performance Baseline for Direct-Fired sco 2 Cycles Nathan Weiland, Wally Shelton NETL Chuck White, David

More information

Coal based IGCC technology

Coal based IGCC technology Coal based IGCC technology Ola Maurstad, post doc Based on work during stay at Massachusetts Institute of Technology 2004-2005 1 Gasification Gasification is the conversion of a solid fuel to a combustible

More information

Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding

Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding 14 November 2014 EEC Conference Delhil Doosan and India a Total Solution

More information

Advanced Hydrogen and CO 2 Capture Technology for Sour Syngas

Advanced Hydrogen and CO 2 Capture Technology for Sour Syngas Advanced Hydrogen and CO 2 Capture Technology for Sour Syngas Air Products and Chemicals, Inc. Jeffrey Hufton, Timothy Golden, Robert Quinn, Jeffrey Kloosterman, Charles Schaffer, Reed Hendershot and Kevin

More information

PRESENTATION SLIDES: Fluidized Bed Combustion for Clean Energy

PRESENTATION SLIDES: Fluidized Bed Combustion for Clean Energy Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 PRESENTATION SLIDES: Fluidized Bed Combustion

More information

Economic Assessment of Deploying Advanced Coal Power Technologies in the Chinese Context

Economic Assessment of Deploying Advanced Coal Power Technologies in the Chinese Context Economic Assessment of Deploying Advanced Coal Power Technologies in the Chinese Context Lifeng Zhao, Ph.D. Research Fellow Energy Technology Innovation Policy Belfer Center for Science and International

More information

Coupling gasification and metallurgical applications

Coupling gasification and metallurgical applications Coupling gasification and metallurgical applications Robert Pardemann, Tanja Schaaf, Jochen Grünig, Katharina Förster, Andreas Orth International Freiberg Conference on IGCC & XtL Technologies 12 16 June

More information

Membranes: An Emerging CO 2 Capture Technology

Membranes: An Emerging CO 2 Capture Technology Membranes: An Emerging CO 2 Capture Technology Tim Merkel and Brice Freeman Membrane Technology and Research, Inc. (MTR) U.S. Energy Association June 29, 2017 1 Outline Introduction and membrane background

More information

DOE Perspective on Advanced Energy Materials

DOE Perspective on Advanced Energy Materials DOE Perspective on Advanced Energy Materials Robert Romanosky, Technology Manager National Energy Technology Laboratory October 9-10, 2008 Energy Materials Meeting Loughborough University, October 9-10,

More information

Electricity Generation

Electricity Generation Electricity Generation Page 1 Outline Combustion Generation Based on - Thermodynamic Cycles, Chapter 4 of Energy Resources and Systems by T.K. Ghosh and M.A. Prelas, Springer 2009. - Structure Operation

More information

Development status of the EAGLE Gasification Pilot Plant

Development status of the EAGLE Gasification Pilot Plant Development status of the EAGLE Gasification Pilot Plant Gasification Technologies 2002 San Francisco, California, USA October 27-30, 2002 Masaki Tajima Energy and Environment Technology Development Dept.

More information

Chapter 3 Coal-Based Electricity Generation

Chapter 3 Coal-Based Electricity Generation Chapter 3 Coal-Based Electricity Generation INTRODUCTION In the U.S., coal-based power generation is expanding again; in China, it is expanding very rapidly; and in India, it appears on the verge of rapid

More information

A Polygeneration System Based on Multi-Input Chemical Looping Combustion

A Polygeneration System Based on Multi-Input Chemical Looping Combustion Energies 2014, 7, 7166-7177; doi:10.3390/en7117166 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies A Polygeneration System Based on Multi-Input Chemical Looping Combustion Xiaosong

More information

Redox reforming based, integrated solar-natural gas plants: Reforming and thermodynamic cycle efficiency

Redox reforming based, integrated solar-natural gas plants: Reforming and thermodynamic cycle efficiency Redox reforming based, integrated solar-natural gas plants: Reforming and thermodynamic cycle efficiency The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Comparison of a New Warm-Gas Desulfurization Process versus Traditional Scrubbers for a Commercial IGCC Power Plant

Comparison of a New Warm-Gas Desulfurization Process versus Traditional Scrubbers for a Commercial IGCC Power Plant Comparison of a New Warm-Gas Desulfurization Process versus Traditional Scrubbers for a Commercial IGCC Power Plant Jerry Schlather Eastman Chemical Company Brian Turk RTI International Gasification Technologies

More information

Performance of CLOU process in the combustion of different types of coal with CO 2 capture

Performance of CLOU process in the combustion of different types of coal with CO 2 capture Performance of CLOU process in the combustion of different types of with CO capture I. Adánez-Rubio*, P. Gayán, A. Abad, L. F. de Diego, F. García-Labiano, J. Adánez Instituto de Carboquímica (ICB-CSIC),

More information

RTI/Eastman Warm Syngas Clean-up Technology: Integration with Carbon Capture

RTI/Eastman Warm Syngas Clean-up Technology: Integration with Carbon Capture RTI/Eastman Warm Syngas Clean-up Technology: Integration with Carbon Capture Raghubir Gupta, Brian Turk, and Markus Lesemann Center for Energy Technology RTI International Research Triangle Park, NC Presented

More information

Overview of learning curves. Application to power plants Application to emission control technologies Implications for future CCS costs

Overview of learning curves. Application to power plants Application to emission control technologies Implications for future CCS costs Reducing the Cost of through Learning By Doing Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University it Pittsburgh, Pennsylvania Presentation

More information

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Coal and Biomass Char Reactivity Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Project Overview: There is considerable

More information

Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture

Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture John Davison IEA Greenhouse Gas R&D Programme, Cheltenham, UK Paper by Luca Mancuso, Noemi Ferrari Amec FosterWheeler,

More information

Post Combustion CO 2 Capture Scale Up Study

Post Combustion CO 2 Capture Scale Up Study Post Combustion CO 2 Capture Scale Up Study Prachi Singh and Mike Haines International Greenhouse Gas R&D programme 6 th International Conference on Clean Coal Technologies (CCT 2013) 12-16 th May 2013

More information

Oxy-fuel combustion integrated with a CO 2 processing unit

Oxy-fuel combustion integrated with a CO 2 processing unit POLISH STRATEGIC PROGRAM ADVANCED TECHNOLOGIES FOR ENERGY GENERATION Oxy-fuel combustion integrated with a CO 2 processing unit coordinator: Wojciech Nowak AGH University of Science and Technology Kraków,

More information

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

Autothermal Reforming for efficient and versatile syngas production. Esben Sorensen, Haldor Topsoe Inc. GSTC 2017 Syngas Technologies Conference

Autothermal Reforming for efficient and versatile syngas production. Esben Sorensen, Haldor Topsoe Inc. GSTC 2017 Syngas Technologies Conference Autothermal Reforming for efficient and versatile syngas production Esben Sorensen, Haldor Topsoe Inc. GSTC 2017 Syngas Technologies Conference Haldor Topsoe Company Established in 1940 by Dr. Haldor Topsoe.

More information

Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali. CO 2 pollutant or resource?

Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali. CO 2 pollutant or resource? Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali CO 2 pollutant or resource? Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova Geological

More information

Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009)

Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009) Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009) The most expensive part of the overall carbon capture and storage process

More information

Public Workshops on Carbon Capture and Sequestration

Public Workshops on Carbon Capture and Sequestration Carbon Capture & Sequestration Economics Public Workshops on Carbon Capture and Sequestration Howard Herzog MIT February 13-14, 14, 2008 Overview Capture primer Costs CCS as part of a mitigation portfolio

More information

ScienceDirect. Oxyfuel combustion in a bubbling fluidized bed combustor

ScienceDirect. Oxyfuel combustion in a bubbling fluidized bed combustor Available online at www.sciencedirect.com ScienceDirect Energy Procedia 86 (2016 ) 116 123 The 8th Trondheim Conference on CO2 Capture, Transport and Storage Oxyfuel combustion in a bubbling fluidized

More information

ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL

ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL Professor James Harrison FRSC FEng 1 National Coal Board 1947 Mines 958 Manpower 718000 Use electricity 28 -domestic 37 -steel 43 -other 80 Total

More information

Research Activities on Oxyfuel Combustion at IVD, Universität Stuttgart

Research Activities on Oxyfuel Combustion at IVD, Universität Stuttgart 1 st Young Researchers Forum Developments in Oxy-Combustion Technology for Power Plants with CCS Hamburg, Germany 8 th December 26 Hosted by: Institute of Energy Systems Technical University of Hamburg-Harburg

More information

PROGRESS ON THE CALCIUM LOOPING POSTCOMBUSTION PROCESS

PROGRESS ON THE CALCIUM LOOPING POSTCOMBUSTION PROCESS PROGRESS ON THE CALCIUM LOOPING POSTCOMBUSTION PROCESS Carlos Abanades abanades@incar.csic.es CO 2 Capture Group Spanish Research Council (INCAR CSIC) Outline Why post combustion CO 2 capture by CaL? Current

More information

Advanced Coal Technologies. Laufer Energy Symposium. Dianna Tickner Peabody Energy April 5, 2013

Advanced Coal Technologies. Laufer Energy Symposium. Dianna Tickner Peabody Energy April 5, 2013 Advanced Coal Technologies Laufer Energy Symposium Dianna Tickner Peabody Energy April 5, 2013 What is 21st Century Coal? Clean Coal Defined Use of modern, highly efficient methods and technology in the

More information

Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU) Tobias Mattisson

Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU) Tobias Mattisson Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU) Tobias Mattisson Department of Energy and Environment Division of Energy Technology

More information

Fundación Ciudad de la Energía CIUDEN

Fundación Ciudad de la Energía CIUDEN Fundación Ciudad de la Energía Ponferrada 9 th to 13 th September 2013 Experiences in commissioning and operation of s Technological Development Plant under oxycombustion conditions Organised by: Hosted

More information

Fundamental oxy-fuel combustion research carried out within the ENCAP project

Fundamental oxy-fuel combustion research carried out within the ENCAP project Oxy-fuel workshop, Cottbus, 29-3 th November 25 Fundamental oxy-fuel combustion research carried out within the ENCAP project KLAS ANDERSSON Department of Energy and Environment, Chalmers University of

More information

UPDATE ON THE KEMPER COUNTY IGCC PROJECT Gasification Technologies Conference

UPDATE ON THE KEMPER COUNTY IGCC PROJECT Gasification Technologies Conference UPDATE ON THE KEMPER COUNTY IGCC PROJECT 2012 Gasification Technologies Conference Kemper County IGCC Overview 2x1 Integrated Gasification Combined Cycle (IGCC) 2 Transport Gasifiers 2 Siemens SGT6-5000F

More information

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Timo Jäntti, Kalle Nuortimo, Marko Ruuskanen, Juha Kalenius Foster Wheeler Energia Oy Finland Abstract

More information

Smart CHP from Biomass and Waste

Smart CHP from Biomass and Waste Smart CHP from Biomass and Waste It Cost Money to Throw Energy Away Gasification Technology Conference William (Bill) Partanen, P.E October 13-16, 2013 Colorado Springs, CO. SRF and RDF and recycled wood

More information

"Post-combustion CO 2 capture by Ca-looping"

Post-combustion CO 2 capture by Ca-looping "Post-combustion CO 2 capture by Ca-looping" Borja Arias Rozada CO 2 Capture Group National Institute of Coal (INCAR-CSIC) Workshop on Mathematical Modelling of Combustion 23-25 May, Santiago de Compostela,

More information

Gasification: Thermochemical Conversion

Gasification: Thermochemical Conversion Technologies for Treating Dairy Manure Gasification Developing Projects and Partners to Comprehensively Treat Dairy Manure in the San Joaquin Valley 11 January 2006 Modesto, California Bryan M. Jenkins,

More information

Technology Development Partner

Technology Development Partner Technology Development Partner Vann Bush Managing Director, Energy Supply and Conversion August 25, 2015 1 st Clean Coal Industry Forum, Billings, Montana Company Overview ESTABLISHED 1941 > Independent,

More information

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs 1 October 1 November 2006 Royal Sonesta Hotel, Cambridge, MA Oxyfuel Pathways Rodney Allam Consultant Air Products PLC, UK Oxyfuel Technology

More information

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen:

More information

IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND

IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND Artur Blaszczuk, Rafał Kobylecki, Wojciech Nowak, Marcin Klajny, Szymon Jagodzik 18 th Symposium on Fluidization and

More information

POST COMBUSTION CO 2 CAPTURE SCALE UP STUDY

POST COMBUSTION CO 2 CAPTURE SCALE UP STUDY 19 September 2013 POST COMBUSTION CO 2 CAPTURE SCALE UP STUDY TOM GUENTHER PROJECT MANAGER POWER GENERATION SERVICES PURPOSE OF STUDY Retained by IEA Environmental Projects Ltd. In order for CCS to impact

More information

Factors that Affect the Design and Implementation of Clean Coal Technologies in Indiana

Factors that Affect the Design and Implementation of Clean Coal Technologies in Indiana Factors that Affect the Design and Implementation of Clean Coal Technologies in Indiana Interim Report June 6, 2005 Purdue Energy Research Modeling Groups Purdue University West Lafayette, Indiana Ronald

More information

with Physical Absorption

with Physical Absorption meinschaft Mitglied der Helmholtz-Gem Pre-Combustion Carbon Capture with Physical Absorption Sebastian Schiebahn, Li Zhao, Marcus Grünewald 5. Juli 2011 IEK-3, Forschungszentrum Jülich, Germany ICEPE Frankfurt

More information

Synfuels China CTL Technologies

Synfuels China CTL Technologies 中科合成油技术有限公司 SynfuelsChina Synfuels China CTL Technologies Yongbin Cui Synfuels China Technology Co., Ltd. cuiyongbin@synfuelschina.com.cn SFC Background Established in 2006 Registered Capital: 1b RMB Synfuels

More information

Carpet Waste Gasification:

Carpet Waste Gasification: Carpet Waste Gasification: Technical, Economic, Environmental Assessment for Carpet Mills ENGR4300 University of Tennessee at Chattanooga May 6, 2011 Project Team: Jordan Buecker Christopher Burns Katharine

More information

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation Fakultät Maschinenwesen Institut für Energietechnik, Professur für Verbrennung, Wärme- & Stoffübertragung ADECOS II Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 S. Grahl, A. Hiller,

More information

Synthesis Gas Production from Biomass

Synthesis Gas Production from Biomass Gasification Technologies Conference 2011, October 9-12 San Francisco CA Andras Horvath, Kari Salo, Jim Patel www.andritz.com ANDRITZ Company Profile Business Groups Electromechanical equipment for hydropower

More information

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005-002 RP Prepared by: Ram C. Sekar* Massachusetts Institute of Technology Laboratory for Energy & the Environment

More information

Optimisation of hydrogen production with CO 2 capture by methane. steam reforming integrated with a chemical-looping combustion.

Optimisation of hydrogen production with CO 2 capture by methane. steam reforming integrated with a chemical-looping combustion. Optimisation of hydrogen production with CO 2 capture by methane steam reforming integrated with a chemical-looping combustion system Miguel A. Pans, Alberto Abad*, Luis. de Diego, rancisco García-Labiano,

More information

SYNGAS PRODUCTION WITH A DUAL FLUIDIZED BED GASIFIER FOR POLYGENERATION

SYNGAS PRODUCTION WITH A DUAL FLUIDIZED BED GASIFIER FOR POLYGENERATION Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 21 SYNGAS PRODUCTION WITH A DUAL FLUIDIZED BED

More information

CO 2 Capture and Storage: Options and Challenges for the Cement Industry

CO 2 Capture and Storage: Options and Challenges for the Cement Industry CO 2 Capture and Storage: Options and Challenges for the Cement Industry Martin Schneider, Düsseldorf, Germany CSI Workshop Beijing, 16 17 November 2008 CO 2 abatement costs will tremendously increase

More information

Evaluation of 1 MW th long-term pilot testing of the carbonate looping process

Evaluation of 1 MW th long-term pilot testing of the carbonate looping process Otto-Berndt-Straße 2 64287 Darmstadt / Germany Phone: +49 6151 16 23002 www.est.tu-darmstadt.de Evaluation of 1 MW th long-term pilot testing of the carbonate looping process M. Helbig, J. Hilz, M. Haaf,

More information

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes International Journal of Emerging Engineering Research and Technology Volume 3, Issue 9, September, 2015, PP 1-7 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design of a Small Scale CFB Boiler Combustion

More information

Chemical production of hydrogen with insitu

Chemical production of hydrogen with insitu Chemical production of hydrogen with insitu separation Ian S. Metcalfe Professor of Chemical Engineering Newcastle University i.metcalfe@ncl.ac.uk 21 May 2013 Introduction Uses of hydrogen How is hydrogen

More information

A 1.5D model of a complex geometry laboratory scale fuidized bed clc equipment

A 1.5D model of a complex geometry laboratory scale fuidized bed clc equipment Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-23-2016 A 1.5D model of a complex geometry laboratory scale fuidized bed clc equipment Jaroslaw Krzywanski Jan Dlugosz

More information

The Gas Flow in the Loop Seals of a Dual Circulating Fluidized Bed: Splitting of the Fluidizing Agent and Gas Leakage through the Loop Seals

The Gas Flow in the Loop Seals of a Dual Circulating Fluidized Bed: Splitting of the Fluidizing Agent and Gas Leakage through the Loop Seals Engineering Conferences International ECI Digital Archives The 14th International Conference on Fluidization From Fundamentals to Products Refereed Proceedings 2013 The Gas Flow in the Loop Seals of a

More information

Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production

Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production Ulrich Koss, Holger Schlichting Gasification Technologies 2005 San Francisco, 9. 12.

More information

Efficient and sustainable power plants : emerging technology options an academic perspective

Efficient and sustainable power plants : emerging technology options an academic perspective Efficient and sustainable power plants : emerging technology options an academic perspective Prof.dr.ir. Adrian Verkooijen Faculty of Mechanical, maritime and Materials Engineering Laboratory for Energy

More information

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Reginald Mitchell, Paul Campbell and Liqiang Ma High Temperature Gasdynamics Laboratory Group Mechanical Engineering

More information

Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor

Hydrogen and Syngas Generation from Gasification of Coal in an Integrated Fuel Processor Applied Mechanics and Materials Online: 214-9-12 ISSN: 1662-7482, Vol. 625, pp 644-647 doi:1.28/www.scientific.net/amm.625.644 214 Trans Tech Publications, Switzerland Hydrogen and Syngas Generation from

More information

Technical Aspects of Clean Hydrogen Production

Technical Aspects of Clean Hydrogen Production Technical Aspects of Clean Hydrogen Production GCEP Energy Workshop Stanford University Stanford, CA April 26, 2004 Charles E. Taylor, Leader Methane Hydrates Research Group National Energy Technology

More information

Impact of novel PCC solvents on existing and new Australian coal-fired power plants 1 st PCC Conference, Abu-Dhabi

Impact of novel PCC solvents on existing and new Australian coal-fired power plants 1 st PCC Conference, Abu-Dhabi Impact of novel PCC solvents on existing and new Australian coal-fired power plants 1 st PCC Conference, Abu-Dhabi Dr Narendra Dave Principal Research Engineer CSIRO Energy Technology, North Ryde, Australia

More information

Welcome to. Kendal Power Station

Welcome to. Kendal Power Station Welcome to Kendal Power Station Technical Overview of the power station Scope General Overview Coal Handling Milling Plant Boiler Plant Turbine Train Steam Flow Path Ash Handling Generator HV Yard Cooling

More information

Sandhya Eswaran, Song Wu, Robert Nicolo Hitachi Power Systems America, Ltd. 645 Martinsville Road, Basking Ridge, NJ 07920

Sandhya Eswaran, Song Wu, Robert Nicolo Hitachi Power Systems America, Ltd. 645 Martinsville Road, Basking Ridge, NJ 07920 ABSTRACT COAL-GEN 2010 Advanced Amine-based CO 2 Capture for Coal-fired Power Plants Sandhya Eswaran, Song Wu, Robert Nicolo Hitachi Power Systems America, Ltd. 645 Martinsville Road, Basking Ridge, NJ

More information

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Akira Nakamura*, Toshihiko Iwasaki**, Takashi Noto*, Hisanao Hashimoto***, Nobuyuki Sugiyama**** and Masahiro Hattori***** *

More information

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Timo Jäntti Kalle Nuortimo Foster Wheeler Energia Oy Finland Presented at Russia Power Moscow, Russia

More information

Appendix 3.C Electricity Generation Economics: Bases and Assumptions

Appendix 3.C Electricity Generation Economics: Bases and Assumptions Appendix 3.C Electricity Generation Economics: Bases and Assumptions LEVELIZED COST OF ELECTRICITY The levelized cost of electricity (COE) is the constant dollar electricity price that would be required

More information

Transportation in a Greenhouse Gas Constrained World

Transportation in a Greenhouse Gas Constrained World Transportation in a Greenhouse Gas Constrained World A Transition to Hydrogen? Rodney Allam Director of Technology Air Products PLC, Hersham, UK 3 4 The Problem: demand and cause People Prosperity Pollution

More information

Gestão de Sistemas Energéticos 2017/2018

Gestão de Sistemas Energéticos 2017/2018 Gestão de Sistemas Energéticos 2017/2018 Exergy Analysis Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt Conceptualizing Chemical Exergy The logarithmic term typically contributes only a few percent to

More information

Study of Standpipe and Loop Seal Behavior in a Circulating Fluidized Bed for Geldart B Particles

Study of Standpipe and Loop Seal Behavior in a Circulating Fluidized Bed for Geldart B Particles Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-4-2011 Study of

More information

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT AN EXERGY COST ANALYSIS OF A COGENERATION PLANT L. P. Gonçalves, and F. R. P. Arrieta Pontifícia Universidade Católica de Minas Gerais Programa de Pós-Graduação em Engenharia Mecânica Av. Dom José Gaspar,

More information

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant J.-M. Amann 1, M. Kanniche 2, C. Bouallou 1 1 Centre Énergétique et Procédés (CEP), Ecole Nationale Supérieure des Mines

More information

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021031 181

More information

GASIFICATION AND THE MIDREX DIRECT REDUCTION PROCESS

GASIFICATION AND THE MIDREX DIRECT REDUCTION PROCESS GASIFICATION AND THE MIDREX DIRECT REDUCTION PROCESS By: Rob Cheeley Senior Sales Engineer Midrex Direct Reduction Corporation 201 S. College Street, Suite 2100 Charlotte, NC 28244 Phone: 704-378-3343

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H 2 Production Plant

Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H 2 Production Plant Molecules 2015, 20, 4998-5023; doi:10.3390/molecules20034998 Article OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic

More information