1 July 2014 Kultur- und Kongresszentrum Luzern

Size: px
Start display at page:

Download "1 July 2014 Kultur- und Kongresszentrum Luzern"

Transcription

1 EFCF FUEL CELL TUTORIAL by Tutors Dr. Günther G. Scherer Electrochemistry Laboratory Paul Scherrer Institute PSI Switzerland MER Dr. Jan Van Herle Laboratory of Industrial Energy Systems (LENI, EPFL) EPF Lausanne Switzerland 1 July 2014 Kultur- und Kongresszentrum Luzern On the occasion of the 11 th European SOFC and SOE Forum July European Fuel Cell Forum Obgardihalde 2, 6043 Luzern-Adligenswil, Switzerland

2 This tutorial manuscript and part of it must not be made available for sharing through any open electronic means or hardcopy or other media tools and channels. Copyright European Fuel Cell Forum AG EFCF Obgardihalde Luzern-Adligenswil Switzerland Paul Scherrer Institute PSI Electrochemistry Laboratory ECL 5232 Villigen PSI Switzerland EPF Lausanne EPFL Laboratory of Industrial Energy Systems LENI 1015 Lausanne Switzerland 2/196 Tutorial Lecture 1-6

3 Table of content TUTORS... 5 L1: Fundamentals of Electrochemical Energy Conversion (GGS)... 6 a. Introduction to fuel cells 6 b. Fundamentals of fuel cells 14 L2: Characteristics of the Important Fuel Cell Technologies (GGS) a. Overview of FC Technologies 26 b. PEFC 31 c. PAFC 39 d. AFC 40 e. MCFC 42 f. SOFC 45 g. Redox Flow Batteries 48 L3: Fuels for Fuel Cells, Fuel Processing (JVh) a. FC Types 50 b. Which fuel for which application? 54 c. Fuel Cell SYSTEM 59 d. H2 production 61 e. Fuel and electrical efficiency 64 f. Carbon deposition issue at high T from CHx fuels 69 g. CO adsorption issue in low T FC 71 h. Fuel processing summary 75 Lecture 1-6 Tutorial 3/196

4 L4: Applications of Polymer Electrolyte Fuel Cells PEFC (GGS) a. Systems issues: 79 Cost 79 Reliability 80 Humidification 81 Platinum loading, H2-purity 87 Gas diffucion layer, Bipolar plate 89 b. Mobile, stationary, portable applications 91 Mobile Application : H2 (on board) /Air 91 Stationary Applications :H2 (from natural gas, Methanol) / Air 102 Portable Applications : Methanol / Air 107 Mobile Applications : H2 (on board) /O2 (on board) 111 c. Future 116 L5: System Aspects, Applications of High Temperature Fuel Cells e.g. SOFC (JVh) a. Balance of Plant (BoP) Layout (e.g. SOFC) 119 b. Application Markets 121 c. System Aspects with H2 as Transport Fuel 132 d. SOFC System Modeling and Optimisation 145 e. Conclusion 151 L6: State-of-the-art, challenges per fuel cell type (JVh) a. Specifics of FC types 152 b. Fact Sheet of SOFC today Commercialisation 160 c. Factors to success Testing 164 d. Levels in development and modeling 170 e. Electrolyte and Anode 171 f. Interconnect 177 g. Cathode 180 h. Sealing 183 i. Modelling 184 j. System lifetime & efficiency 189 k. Solid Oxide Electrolysis: inverse fuel cell 190 l. Conclusion 193 4/196 Tutorial Lecture 1-6

5 TUTORS MER Dr. Jan Van Herle (JVh) Dr. Günther G. Scherer (GGS) Jan Van Herle obtained a chemistry degree from Basel University (Switzerland) in 1987 followed by a masters degree in Information Science in The same year he temporarily joined ABB in Baden for a SOFC demonstration project led by Dr Ulf Bossel, in preparing for his PhD. In 1993 he obtained a doctoral degree from Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) with a thesis on SOFC cathode reaction mechanisms. After a postdoc in Japan (Tsukuba, Prof. H Yokokawa, Prof. T Kawada) he returned to EPFL as scientific collaborator in SOFC research at the Chemistry Department, focusing on electrochemistry and materials. In 2000, he cofounded HTceramix, a Swiss SOFC company, and completed a masters degree in Energy Technology at EPFL, to join the Laboratory of Industrial Energy Systems (LENI, EPFL, Prof. D Favrat), as a lecturer and group leader of SOFC research, focusing on fuels and stacks. J. Van Herle has coauthored 165 publications and comanaged 50 SOFC projects in half of which he was the main applicant. In 2008 he was promoted to MER at EPFL (Research and Teaching Responsible). f Dr. Günther G. Scherer studied Chemistry at the Technical University Munich (Diplom-Chemiker) and obtained a PhD in Physical Chemistry from the Technical University Berlin in 1975, while working with Prof. Heinz Gerischer and Prof. Frank Willig at the Fritz-Haber Institut of the Max-Planck- Gesellschaft. After a stay as an IBM World Trade Post-Doctoral Fellow at the IBM Research Laboratory in San Jose, California, he joined the Battelle-Institut Frankfurt (Dr. G. Sandstede) with a scholarship of the German National Science Foundation, working on electrochemical oxygen reduction. In 1980 he moved on to the Brown Boveri Research Center, Baden, Switzerland, where he was involved in an R&D project on large scale water electrolysis, and from 1986 to 1989 he continued to work at Ingold Messtechnik, Urdorf, Switzerland, heading a research group on electrochemical sensors. In 1989 he joined Paul Scherrer Institut, Villigen, Switzerland and started PSI's activity on Polymer Electrolyte Fuel Cells (PEFCs). Since 2002 he is Head of the Electrochemistry Laboratory of Paul Scherrer Institut. Lecture 1-6 Tutorial 5/196

6 l. Conclusion Lecture 1-6 Tutorial 193/196

7 194/196 Tutorial Lecture 1-6

8 Lecture 1-6 Tutorial 195/196

9 196/196 Tutorial Lecture 1-6

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Zacharie Wuillemin, Antonin Faes, Stefan Diethelm, Arata Nakajo, Nordahl Autissier, Jan Van

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013

International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013 International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013 September 2014 The AFC IA, the Implementing Agreement for a Programme of Research,

More information

A0808. SOFC Operation on Biogas: Impurity Threshold Levels

A0808. SOFC Operation on Biogas: Impurity Threshold Levels A0808 SOFC Operation on Biogas: Impurity Threshold Levels Hossein Madi (1), Christian Ludwig (2), Jan Van herle (1) (1) FUELMAT Group, Faculty of Engineering Sciences (STI), Ecole Polytechnique Fédérale

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Solid Oxide Fuel Cells Perspective & Update on the State-of-the-Art Arkady Malakhov 771 Elmgrove Road, Rochester,

More information

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved.

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved. P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM Copyright 2006 P21 GmbH. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

Centre for Hydrogen and Fuel Cells Research

Centre for Hydrogen and Fuel Cells Research Centre for Hydrogen and Fuel Cells Research University of Birmingham College of Engineering and Physical Sciences School of Chemical Engineering Overview of Portfolio & Strategy Dr Ahmad El-kharouf CDT

More information

Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems

Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems Outline Introduction Motivation Methodof Analysis Results and Discussion Conclusions PEM Fuel Cell Introduction

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Potential of Mobile SOFC-GT Systems

Potential of Mobile SOFC-GT Systems W. Winkler 1) Potential of Mobile SOFC-GT Systems 1. Demands on commercial fuel cells 2. Motivation and design of mobile SOFC-GT systems 3. Basic mobile SOFC-GT Inventions 4. The mobile SOFC-GT system

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology TFRF05 Docent Jinliang Yuan October 30, 2008 Department of Energy Sciences, Lund University, Sweden Lectures: Docent Jinliang Yuan Home Works/Design Tasks: Dr. Jinliang Yuan Emails:

More information

FIRST WEEK PROGRAMME AN INTRODUCTION TO SOLID OXIDE FUEL CELL TECHNOLOGY

FIRST WEEK PROGRAMME AN INTRODUCTION TO SOLID OXIDE FUEL CELL TECHNOLOGY PROGRAMME FIRST WEEK Sunday, 21 st August 2011 19:00 Welcome, Early Registration, Dinner Monday, 22 nd August 2011 08:30-09:00 Welcome 09:00-11:00 Introduction to Fuel Cells: - Status and applications

More information

Fuel Cell Science & Technology

Fuel Cell Science & Technology 446.671671 Fuel Cell Science & Technology Instructor: Suk Won Cha Course Introduction Office: 301-1417, 1417, Phone: 880-1700, Email: swcha@snu.ac.kr, Office Hours: A/O TA: Young Seok Ji Office: 314-311,

More information

Heat and Electricity Storage

Heat and Electricity Storage Supported by Swiss Competence Center for Energy Research Heat and Electricity Storage SCCER HaE Storage, c/o Paul Scherrer Institut, 5232 Villigen, Switzerland, www.sccer-hae.ch The Mission The Swiss Competence

More information

DBBD17, 28. November 2017

DBBD17, 28. November 2017 Results and experiences from IEA Annex31 (22) PEM fuel cells DBBD17, 28. November 2017 Hans Aage Hjuler 1 Operations DPS Company Overview Large-scale PBI synthesis Membrane casting MEA Assembly and QC

More information

Chemical reacting transport phenomena and multiscale models for SOFCs

Chemical reacting transport phenomena and multiscale models for SOFCs Chemical reacting transport phenomena and multiscale models for SOFCs Updated version for group seminar Martin Andersson Dept. of Energy sciences Lund University, Sweden Heat Transfer 2008, 9-11 July,

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

GENeric diagnosis Instrument for SOFC Systems (245128)

GENeric diagnosis Instrument for SOFC Systems (245128) GENeric diagnosis Instrument for SOFC Systems (24528) Philippe MOÇOTÉGUY EIFER/Project Manager Genius Partnership & Budget 3 years collaboration project: 0-02-200 to 3-0-203 Total budget: 3928 k ; Total

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Institut für

More information

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas Fuel cells, myths and facts PhD candidate Ole-Erich aas 1 Outline Fuel cell, history and general principle Fuel cell types and chemical systems PEM fuel cells for transport sector Polymer membranes Electrodes

More information

Innovative SOFC Architecture based on Triode Operation. Deliverable D6.3. Dissemination through papers in specialized and non-specialized press

Innovative SOFC Architecture based on Triode Operation. Deliverable D6.3. Dissemination through papers in specialized and non-specialized press Innovative SOFC Architecture based on Triode Operation Deliverable D6.3 Dissemination through papers in specialized and non-specialized press June, 2016 PROJECT DETAILS Title: Innovative SOFC Architecture

More information

Industrial Collective Research on Fuel Cells

Industrial Collective Research on Fuel Cells RESEARCH FVV Projects Industrial Collective Research on Fuel Cells Late last year, the Research Association for Combustion Engines (FVV) launched its new Fuel Cell Planning Group with the primary objective

More information

GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager

GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager Genius Partnership & Budget 3 years collaboration project: 01-02-2010 to 31-01-2013 Total budget: 3928 k

More information

Swiss Hydrogen & Fuel Cell RD&D programmes

Swiss Hydrogen & Fuel Cell RD&D programmes ERA-Net HY-CO 2. Network Committee Meeting - Brussels -16th March 2005 Swiss Hydrogen & Fuel Cell RD&D programmes Dr. Michael Spirig Official Representative at TEMAS AG Dr. Alphons Hintermann Head of hydrogen

More information

Advanced integrated systems and design methods for improved energy efficiency

Advanced integrated systems and design methods for improved energy efficiency Energy Center Advanced integrated systems and design methods for improved energy efficiency World Future Energy Forum 2016, Beijing h"p://powersave1200.tumblr.com/ Prof Daniel Favrat Prof. emeritus daniel.favrat@epfl.ch

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS

INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS irap INNOVATIVE RESEARCH AND PRODUCTS, INC. EN-103 FUEL CELLS, HYDROGEN ENERGY AND RELATED NANOTECHNOLOGY A GLOBAL INDUSTRY AND MARKET ANALYSIS Alton Parish Project Analyst INNOVATIVE RESEARCH AND PRODUCTS

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Global Fuel Cell Market

Global Fuel Cell Market Published on Market Research Reports Inc. (https://www.marketresearchreports.com) Home > Global Fuel Cell Market 2015-2019 Global Fuel Cell Market 2015-2019 Publication ID: TNV0615127 Publication June

More information

Swiss Hydrogen & Fuel Cell RD&D programmes

Swiss Hydrogen & Fuel Cell RD&D programmes ERA-Net HY-CO 2. Network Committee Meeting - Brussels -16th March 2005 Swiss Hydrogen & Fuel Cell RD&D programmes Dr. Michael Spirig Official Representative at TEMAS AG Dr. Alphons Hintermann Head of hydrogen

More information

Proton Exchange Membrane Fuel Cells: An Overview

Proton Exchange Membrane Fuel Cells: An Overview WWJMRD 2015; 1(2): 18-22 www.wwjmrd.com e-issn: 2454-6615 Rahul Sharma MSc Student, Department of Chemistry, University of Delhi, Delhi, India Braham Dutt Arya Department of Chemistry, Pt. N.R.S. College,

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

Exemplar for Internal Achievement Standard. Chemistry Level 3

Exemplar for Internal Achievement Standard. Chemistry Level 3 Exemplar for Internal Achievement Standard Chemistry Level 3 This exemplar supports assessment against: Achievement Standard AS91393 Demonstrate understanding of oxidation-reduction processes An annotated

More information

Metamodel-based optimization and parameter estimation for solid oxide cell stack development

Metamodel-based optimization and parameter estimation for solid oxide cell stack development Metamodel-based optimization and parameter estimation for solid oxide cell stack development A. Nakajo a,b, F. Greco a, T. Cornu b, P. Caliandro a, Z. Wuillemin b, J. Van herle a, C. Zeichmeister c, S.

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

Current Status of Fuel Cell Technology

Current Status of Fuel Cell Technology Hydrogen, Carbon-Free-Fuel Democratizing the Energy Current Status of Fuel Cell Technology By Dr.-Ing. Syed Mushahid Hussain Hashmi Professor / Chairman Dept. of Automotive & Marine Engineering, NED University

More information

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY Fuel Cell Introduction NFCRC DR. JACK BROUWER MAE 214 Lecture #1 Spring, 2005 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types

More information

Fuel cells From the material to the finished product

Fuel cells From the material to the finished product FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Fuel cells From the material to the finished product Partner for research, service provider for industry. Are you interested in fuel cells and looking

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Fuelling a greener economy

Fuelling a greener economy Materials Foresight Making the future work for you Fuelling a greener economy The importance of materials for fuel cells and related technologies Foresight Fuel Cells Taskforce Members of the Foresight

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles 1 Introduction 1.1 Hydrogen Fuel Cells Basic Principles The basic operation of the hydrogen fuel cell is extremely simple. The first demonstration of a fuel cell was by lawyer and scientist William Grove

More information

Energie-Spiegel English ed. facts for the energy decisions of tomorrow

Energie-Spiegel English ed. facts for the energy decisions of tomorrow Research Collection Journal Issue Energie-Spiegel English ed. facts for the energy decisions of tomorrow Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-0095885 Rights / License:

More information

GENERAL CLASSIFICATION

GENERAL CLASSIFICATION GENERAL CLASSIFICATION M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 GENERAL CLASSIFICATION Type Electrolyte PEMFC DMFC DEFC PAFC AFC MCFC SOFC Proton exchange membrane fuel cell Direct methanol fuel

More information

Images from readings will be provided as a hard copy or an electronic form to help in the presentation.

Images from readings will be provided as a hard copy or an electronic form to help in the presentation. Renewable Energy Fuel Cell Technology Project/LAB Task One: Create a poster, power point, or any other computer based technology to present one of the sections below. Once completed, your job will be to

More information

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems First International Renewable Energy Storage Conference (IRES I) Gelsenkirchen, October, 30

More information

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY Mario Valentino Romeri Independent Consultant, Italy, Valentino.Romeri@Alice.it Overnight Costs and Levelized Costs of Generating Electricity

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

Materials Science &Technology

Materials Science &Technology PAUL SCHERRER INSTITUT Materials Science &Technology NANCER project partners: Rene Tölke, Barbara Scherrer, Henning Galinski, Thomas Ryll, Ludwig Gauckler, Nonmetallic Inorganic Materials, ETH Zurich Thomas

More information

Centre for Fuel Cells and Hydrogen Research

Centre for Fuel Cells and Hydrogen Research Centre for Fuel Cells and Hydrogen Research School of Chemical Engineering Bostjan Hari University of Birmingham College of Engineering and Physical Sciences School of Chemical Engineering Centre for Fuel

More information

Applicability of Dimethylether to Solid Oxide Fuel Cells

Applicability of Dimethylether to Solid Oxide Fuel Cells 17 Nov. 2011, 7th Asian DME Conference Applicability of Dimethylether to Solid Oxide Fuel Cells ~ Reforming and Cell Performance in Anode Off-gas Recycle ~ Yohei Tanaka, Katsutoshi Sato, Akihiko Momma,

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

Fuel Cell Characteristics

Fuel Cell Characteristics Fuel Cell Characteristics e - load depleted fuel and product gases out depleted oxidant and product gases out H 2 OH - O 2 H 2 O H 2 O H 2 H + O 2 H 2 O H 2 CO = O 2 CO 3 2 CO 2 H 2 O H 2 O 2 H 2 O O =

More information

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur.

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur. Roadmap: Batteries Self assembly A123 High production and material costs Reduce use of Cobalt, then replace it with low cost Replace Cobalt entirely with low cost Low production and material costs Low

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Linking electricity prices and costs in bottom-up top-down coupling under changing market environments

Linking electricity prices and costs in bottom-up top-down coupling under changing market environments Linking electricity prices and costs in bottom-up top-down coupling under changing market environments Sophie Maire, Frank Vöhringer, Philippe Thalmann SAEE/SCCER CREST Conference Energy: economics, consumer

More information

Fuel Cell Technology: A Review

Fuel Cell Technology: A Review Fuel Cell Technology: A Review Omkar Yarguddi 1, Dr. Anjali A. Dharme 2 Senior Undergraduate student, Dept. Of Electrical Engg, College of Engg, Pune, Maharashtra, India 1 Associate Professor, Dept. Of

More information

SOFC Development and Characterisation at DLR Stuttgart

SOFC Development and Characterisation at DLR Stuttgart SOFC Development and Characterisation at DLR Stuttgart G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics 2nd Indo-German Workshop on Fuel Cells and Hydrogen Energy, Karlsruhe,

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

Polymer Electrolyte Membrane (PEM) fuel cell seals durability

Polymer Electrolyte Membrane (PEM) fuel cell seals durability Loughborough University Institutional Repository Polymer Electrolyte Membrane (PEM) fuel cell seals durability This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Supply Chain Research Applied to Clean Hydrogen (SCRATCH)

Supply Chain Research Applied to Clean Hydrogen (SCRATCH) Supply Chain Research Applied to Clean Hydrogen (SCRATCH) K. Kendall, W. Bujalski, B.G. Pollet (Chem Eng) D. Book, R. Harris, A. Bevan (Metallurgy & Materials) L. Macaskie, M.D. Redwood (Biosciences) R.J.

More information

Supply Chain Research Applied to Clean Hydrogen (SCRATCH)

Supply Chain Research Applied to Clean Hydrogen (SCRATCH) Supply Chain Research Applied to Clean Hydrogen (SCRATCH) K. Kendall, W. Bujalski, B.G. Pollet (Chem Eng) D. Book, R. Harris, A. Bevan (Metallurgy & Materials) L. Macaskie, M.D. Redwood (Biosciences) R.J.

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

The Integrated Project SOFC600

The Integrated Project SOFC600 The Integrated Project SOFC600 Low-Temperature SOFC development Bert Rietveld Energy Research centre of the Netherlands (ECN) General Assembly FCH-JU, Brussels, 26/27 October 2009 Project data FW6 Integrated

More information

By janaka. Copyrights HIMT

By janaka. Copyrights HIMT By janaka Copyrights HIMT 2016 1 In container trade alone the equivalent of 125 million twenty-foot containers being shipped worldwide. It is these quantities that make shipping such a significant contributor

More information

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview (Please note: (S) denotes material in the Supplement (Extended syllabus) only) Learning Outcomes Suggested Teaching Activities Resources

More information

Galileo. Intelligent Heat. Clean Electricity.

Galileo. Intelligent Heat. Clean Electricity. Galileo Intelligent Heat. Clean Electricity. Galileo 1000 N: The name comes from Galileo Galilei. The Italian natural scientist born in 1564 was far ahead of his time and made groundbreaking discoveries

More information

Cesare Pianese. University of Salerno. Real operation pem fuel cell. HEALTH-state monitoring and diagnosis based on DC/DC

Cesare Pianese. University of Salerno. Real operation pem fuel cell. HEALTH-state monitoring and diagnosis based on DC/DC Cesare Pianese Real operation pem fuel cell University of Salerno HEALTH-state monitoring and diagnosis based on DC/DC pemfc.health-code.eu COnverter embedded Eis pianese@unisa.it Programme Review Days

More information

Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications

Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications Comparative Study of Fuel Cell Applications and Future Plant Conservation Applications María José Hermida Castro *1, Demetrio Hermida Castro 2, Xosé Manuel Vilar Martínez 3, José A. Orosa 4 Department

More information

Basic Hydrogen Strategy (key points)

Basic Hydrogen Strategy (key points) Basic Hydrogen Strategy (key points) 3. Basic strategy for realizing a hydrogen-based society (ii) (4) Hydrogen use in power generation Like natural gas power generation, hydrogen power generation can

More information

KeePEMalive (GA no.: )

KeePEMalive (GA no.: ) KeePEMalive (GA no.: 245113) Programme Review Day 2012 Brussels, 28 th /29 th November Steffen Møller-Holst SINTEF Materials & Chemistry Project & Partnership description Part 0, slide 1 of 1 Partner Country

More information

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1 PEFC Systems PEFC stacks require tight control of fuel and air feed quality, humidity level, and temperature for sustained high-performance operation. To provide this, PEFC stacks must be incorporated

More information

PEM Fuel Cell Investigation at Chiang Mai University, Thailand

PEM Fuel Cell Investigation at Chiang Mai University, Thailand International Energy Journal: Vol. 4, No. 2, December 23 119 PEM Fuel Cell Investigation at Chiang Mai University, Thailand Konlayutt Chailorm *, Songwut Nirunsin **, and Thirapat Vilaithong ** * Department

More information

MATERIALS SELECTION & R&D FOR COMMERCIAL FUEL CELLS

MATERIALS SELECTION & R&D FOR COMMERCIAL FUEL CELLS MATERIALS SELECTION & R&D FOR COMMERCIAL FUEL CELLS Dr Karl Föger Xinnotec Pty Ltd; previous Ceramic Fuel Cells Ltd Melbourne, Australia kf@xinnotec.com.au Introduction Fuel Cell Facts Today Fuel Cells

More information

Fuel Cell R&D at VTT Technical Research Centre of Finland

Fuel Cell R&D at VTT Technical Research Centre of Finland Fuel Cell R&D at VTT Technical Research Centre of Finland VTT Fuel Cells Fuel cells can be applied anywhere where electricity is needed. Typical applications are replacement of batteries in the W-power

More information

Fuel Cell Technologies in the Japanese National Innovation System

Fuel Cell Technologies in the Japanese National Innovation System Fuel Cell Technologies in the Japanese National Innovation System A Talk at International Conference on Innovation in Energy Technologies September 29-30, 2003. Washington, DC. Akira Maeda Keio University,

More information

Programme Review Day 2011 Brussels, 22 November

Programme Review Day 2011 Brussels, 22 November http://www.fch-ju.eu/ Programme Review Day 2011 Brussels, 22 November Development of an Internal Reforming Alcohol igh Temperature PEM Fuel Cell Stack IRAFC 245202 FC-JU-2008-1 Stylianos G. Neophytides

More information

MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen

MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen Tekes Fuel Cell Annual Seminar September 14, 2010 Espoo, Finland INDUSTRY STRUCTURE (The US Fuel Cell Council) Fuel Cell

More information

Multi-objective Optimization of Solid Oxide Fuel Cell Gas Turbine Hybrid Cycle and Uncertainty Analysis

Multi-objective Optimization of Solid Oxide Fuel Cell Gas Turbine Hybrid Cycle and Uncertainty Analysis PROCEEDINGS OF ECOS 2016 - THE 29 TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS JUNE 19-23, 2016, PORTOROŽ, SLOVENIA Multi-objective

More information

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS 10.1149/1.2214500, copyright The Electrochemical Society INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS T. I. Valdez 1, S. Firdosy

More information

A3-Falcon: Advanced FC Analysis, Diagnostics and its Application

A3-Falcon: Advanced FC Analysis, Diagnostics and its Application A3-Falcon: Advanced FC Analysis, Diagnostics and its Application A3PS Conference: Eco-Mobility 2014 Sean J. Ashton 2014 Intelligent Energy Limited The information in this document is the property of Intelligent

More information

NUTC R231 DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS. Isanaka, Sriram Praneeth, Austin Das, and Frank Liou

NUTC R231 DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS. Isanaka, Sriram Praneeth, Austin Das, and Frank Liou DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS by Isanaka, Sriram Praneeth, Austin Das, and Frank Liou NUTC R231 A National University Transportation Center at Missouri University of Science and

More information

Fuel Cell Science & Technology

Fuel Cell Science & Technology 446.671671 Fuel Cell Science & Technology Instructor: Suk Won Cha Course Introduction Office: 301-1417, 1417, Phone: 880-1700, Email: swcha@snu.ac.kr, Office Hours: A/O TA: Sanghoon Ji Office: 314-311,

More information

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time W H I T E P A P E R - 1 2 0 FABSTRACT Fuel cells offer the means for the conversion of chemical energy in hydrogen rich fuels (fossil and renewable) directly to electricity without having to generate thermal

More information

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University Alternatives to Alternative Energy - FUEL CELLS C.J. Kobus Oakland University Take Home Lesson Fuel cells can help us generate cleaner power from conventional sources more efficiently and can be conveniently

More information

Teaching Chemistry with Hydrogen and Fuel Cells. Maia Willcox. SEPUP Lawrence Hall of Science UC Berkeley. WSST Madison Friday, March 9, 2012

Teaching Chemistry with Hydrogen and Fuel Cells. Maia Willcox. SEPUP Lawrence Hall of Science UC Berkeley. WSST Madison Friday, March 9, 2012 Teaching Chemistry with Hydrogen and Fuel Cells Maia Willcox SEPUP Lawrence Hall of Science UC Berkeley WSST Madison Friday, March 9, 2012 SCHATZ ENERGY RESEARCH CENTER Please fill out the blue contact

More information

ENHANCING THE LIFETIME OF SOFC STACKS FOR COMBINED HEAT AND POWER APPLICATIONS SOF-CH

ENHANCING THE LIFETIME OF SOFC STACKS FOR COMBINED HEAT AND POWER APPLICATIONS SOF-CH Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Office fédéral de l énergie OFEN ENHANCING THE LIFETIME OF SOFC STACKS FOR COMBINED HEAT AND POWER APPLICATIONS SOF-CH Rapport

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information