MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction

Size: px
Start display at page:

Download "MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction"

Transcription

1 MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY Fuel Cell Introduction NFCRC DR. JACK BROUWER MAE 214 Lecture #1 Spring, 2005 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications 1

2 Fuel Cell History Sir William Grove, 1839, Reverse Hydrolysis Thomas Bacon, 1950s, Fuel Cell Stack Late 1950s, Alkaline Fuel Cell First Used In Space Program 1960s to Present: Used In Every Manned Space Program 1960s to Present: Other Fuel Cell Types Discovered Phosphoric Acid Solid Oxide Molten Carbonate Proton Exchange Membrane 1970s to Present: Land Applications - Stationary Power Production 1990 to Present: Seriously Considered For Terrestrial Transportation Applications Fuel Cell Basic Operation FUEL CELL FUEL AIR AIR ELECTROCHEMISTRY PRODUCTS ELECTRICITY THERMAL ENERGY EXHAUST SPECIES COMBUSTION FUEL AIR AIR COMBUSTION PRODUCTS THERMAL ENERGY EXHAUST SPECIES 2

3 BASIC OPERATION Continuous battery Fuel and oxidant (air) supplied - never needs charging Reverse hydrolysis - convert hydrogen to water Ionic transport through electrode-electrolyte assembly Electrode-electrolyte assembly - sandwich BASIC OPERATION 2e Load Fuel In Oxidant In Positive Ion or Negative Ion 1/2 O 2 H O 2 H O 2 Depleted Fuel and Product Gases Out Anode Electrolyte (Ion Conductor) Depleted Oxidant and Product Gases Out Cathode 3

4 Basic Operation: Fuel Cell Basic Operation: Fuel Cell 4

5 Basic Operation: Fuel Cell Triple Phase Boundary (TPB) Reactions Hydrogen Fuel Only (Most Basic Reactions) H + 2e 1/2 O 2 + 2H + 2e - O 5

6 TRIPLE PHASE BOUNDARY Interface between gas phase, electrode and electrolyte surfaces Place where electrochemistry actually takes place (molecular level) Increasing the available TPB is how one increases power density ELECTRODE ELECTROLYTE GAS PHASE 2-D Rendering of one fuel cell compartment Triple Phase Boundary (TPB) Larminie and Dicks,

7 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications FUEL CELL STACK Increase voltage to useful levels Bundle or stack many electrode-electrolyte assemblies together Stack 7

8 Fuel Cell Stack Larminie and Dicks, 2003 Fuel Cell Stack Larminie and Dicks,

9 Fuel Cell Stack Larminie and Dicks, 2003 Fuel Cell Stack Larminie and Dicks,

10 Fuel Cell Stack Larminie and Dicks, 2003 Fuel Cell Stack Larminie and Dicks,

11 Fuel Cell Stack Larminie and Dicks, 2003 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications 11

12 Fuel Cell Types Various types of Fuel Cell technology Characterized by electrolyte material PAFC MCFC SOFC PEMFC AFC Electrolyte Operating Temperature H 3 PO 4 ~ 200 C Molten Carbonate Salt ~ 650 C Ceramic YSZ (or LSGM) C ( C) Sulfonic -acid Polymer (or PBI) C (160 o C) KOH/ O C Fuels / Reformate /CO/ Reformate /CO/CH 4 / Reformate / Reformate Reforming External External/ Internal External/ Internal External Oxidant Electrical Efficiency (LHV)* O 2 /Air 36-45% CO 2 /O 2 / Air 45-55% * Based on natural gas operation (with reformation) O 2 /Air 40-50% O 2 /Air 32-40% O 2 /Air 32-40% Depleted fuel and product gases out SOFC PAFC and PEMFC Fuel in MCFC AFC Fuel Cell Types e Load O O O 2 CO 2 O H + O 2 O O 2 CO 3 CO 2 O 2 H (OH) 2 O O 2 2 Depleted oxidant & product gases out 1000 o C ( o C) 200 o C o C (160 o C) o C o C Oxidant in Anode Electrolyte (ion conductor) Cathode 12

13 Fuel Cell Types Throughout MAE 214 course: Touch on all fuel cell types Will focus instruction on one high temperature and one low temperature fuel cell Proton Exchange Membrane (PEMFC) Solid Oxide (SOFC) Both are solid-state fuel cells These are the two types of fuel cells currently receiving the most attention Government funding Industry and Market funding Rapid technology advancement today Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications 13

14 Fuel Cell System FUEL CELL POWER PLANT Fuel cell stack Fuel processing Reformer and gas clean-up Electric power conversion inverter and power conditioner Balance of plant heat exchangers, controls, valves, fans, Fuel Cell System MAJOR SYSTEM COMPONENTS Fuel processing Source for the hydrogen Water - need energy for hydrolysis Hydrocarbons - consume some of the fuel s energy Technology for conversion Emissions? Reliability Efficiency Cost Power conversion and electronics Direct current (DC) to alternating current (AC) Needed for today s end-use technologies Technology Efficiency Reliability Cost 14

15 Fuel Cell System MAJOR SYSTEM COMPONENTS (CONT D) Air In Controls Air Filter GT Turbine Reliability Exhaust Start GT Combustor Compressor By-Pass Valve Safety Recuperator Blow-Off Air Valve Hydrogen Start Air Solid Oxide Heater Fuel Cell (SOFC) Fuel Integration Desulfurizer AC Direct-Drive Generator DC Inert Gas Cooler Generator Reformed Fuel Flow Anode Exhaust Gas Flow Fuel Reforming Reactor Fuel Fuel By-Pass Flow Valve Rectifier Air In DC Current Out Balance of plant Valves Regulators Seals Plumbing Sensors/displays Heat exchangers Humidifiers / Condensers Fuel Heater Fuel Inlet (Natural Gas) Fuel Cell System Fuel Processor - System design variations Low temperature fuel cell system 15

16 Fuel Cell System Fuel Processor - System design variations High temperature fuel cell system Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications 16

17 Fuel Cell Advantages/Disadvantages ADVANTAGES: Zero To Ultra-low Pollutant Emissions (NOx, SOx, HC, CO) High Fuel-to-Electricity Conversion Efficiency Low Noise Modularity and Applicability to Diverse Applications stationary, mobile, portable, POTENTIAL FOR: High Reliability (No/Few Moving Parts) High Energy Density (e.g., compared to batteries) Power Quality Siting/Licensing Ease Distributed Generation Benefits DISADVANTAGES: Cost, Cost, Cost Track Record Low Power Density (e.g., compared to gas turbine engine) Reliability, Availability, Maintainability, Durability And User Friendliness (RAMDU) Fuel Cell Applications DISTRIBUTED GENERATION Stage: Initial Commercialization High-cost Residential Power Million Homes (> $0.10 / $ /kWhr, $500 Annual Savings New Homes 60% Natural Gas Connection Possible Developing World Market No Electricity - 2 Billion People DG Paradigm may offer cost savings (cellular phone analogy) Plug Power FuelCell Energy Hydrogenics UTC Fuel Cells Ballard-Ebara GM / Hydrogenics Idatech Nuvera Siemens Westinghouse 17

18 Fuel Cell Applications TRANSPORTATION Buses Passenger Vehicles / Light Trucks Electric Bikes Golf Carts Trucks Shipping/Submarines Locomotives Snowmobiles Aircraft Other SCHATZ ENERGY RESEARCH CENTER FORD FOCUS TOYOTA FCHV BOEING BWXT McDermott U.S. Navy POLARIS 440 PRO X RACER NEBUS MANHATTAN SCIENTIFICS BURLINGTON NORTHERN GERMAN TYPE U 212 Fuel Cell Applications GM_Opel Hydrogen 1 Honda FCX V3 Daimler Chrysler NeCar 4 Mazda Demio Nissan FCV Toyota FCHV Ford P2000 H2 BMW 700 Series GM Precept 18

19 Fuel Cell Applications PORTABLE POWER Low Power Remote (Hearing Aids, Smoke Detectors, Hotel Locks, Etc.) DCH / Enable PDAs Pagers Wireless Handsets/ Cellular Markets Laptop Computers Power Tools Toshiba Manhattan Scientifics Smart Fuel Cells Casio Fraunhofer ISE Ballard Power Systems Fuel Cell Applications Scooters Electric Wheelchair Camping Lanterns Medical Devices Lawnmowers Digital Cameras / Handheld Cameras Dedicated Handheld Game Devices Portable Signs Manhattan Scientifics Ballard Power Systems H Power Smart Fuel Cell H Power Ball Aerospace 19

20 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types Fuel Cell System Fuel Cell Advantages and Applications Fuel Cell Introduction Introductory Course Meant to be multi-disciplinary Mechanical engineering Aerospace engineering Chemical engineering Materials science Electrical engineering Chemistry Physics Social Sciences Several lecturers throughout quarter Prof. Jack Brouwer Prof. Scott Samuelsen Prof. Dan Mumm 20

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY SALAH I. AL-MOUSLY, member, IEEE, and ZIAD K. ALHAMDANI, member, ASA Faculty of Electronic Engineering, P.O. Box 38645, Libya ABSTRACT In the end

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

Fuel Cell Characteristics

Fuel Cell Characteristics Fuel Cell Characteristics e - load depleted fuel and product gases out depleted oxidant and product gases out H 2 OH - O 2 H 2 O H 2 O H 2 H + O 2 H 2 O H 2 CO = O 2 CO 3 2 CO 2 H 2 O H 2 O 2 H 2 O O =

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

FMI ENERGY CONFERENCE. Orlando September 2008

FMI ENERGY CONFERENCE. Orlando September 2008 FMI ENERGY CONFERENCE Orlando September 2008 FUEL CELL ORIGINS Sir William Grove invented the fuel cell in 1839 Demonstrated that reaction was reversible Fuel cell term introduced by Ludwig Mond and Charles

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Fuel Cells For a More Sustainable Energy Future

Fuel Cells For a More Sustainable Energy Future Fuel Cells For a More Sustainable Energy Future Calit2 - Clean Energy Challenge: Illuminating Environmentally Progressive Technologies Jack Brouwer, Ph.D. Associate Director May 14, 2009 National Fuel

More information

1. Introduction CHAPTER What Is a Fuel Cell?

1. Introduction CHAPTER What Is a Fuel Cell? CHAPTER 1 1. Introduction 1.1. What Is a Fuel Cell? A fuel cell is an electrochemical energy converter that converts chemical energy of fuel directly into DC electricity. Typically, a process of electricity

More information

ABB Automation & Power World: April 18-21, 2011 WRE Power Electronics for Hydrokinetics and Fuel Cells. ABB Inc. April 20, 2011 Slide 1

ABB Automation & Power World: April 18-21, 2011 WRE Power Electronics for Hydrokinetics and Fuel Cells. ABB Inc. April 20, 2011 Slide 1 ABB Automation & Power World: April 18-21, 2011 WRE-113-1 Power Electronics for Hydrokinetics and Fuel Cells ABB Inc. April 20, 2011 Slide 1 Content Power generation & the grid Introduction to Hydrokinetics

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

Chemical reacting transport phenomena and multiscale models for SOFCs

Chemical reacting transport phenomena and multiscale models for SOFCs Chemical reacting transport phenomena and multiscale models for SOFCs Updated version for group seminar Martin Andersson Dept. of Energy sciences Lund University, Sweden Heat Transfer 2008, 9-11 July,

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Solid Oxide Fuel Cells Perspective & Update on the State-of-the-Art Arkady Malakhov 771 Elmgrove Road, Rochester,

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

An experimental study of kit fuel cell car to supply power

An experimental study of kit fuel cell car to supply power An experimental study of kit fuel cell car to supply power Mustafa I. Fadhel Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia. mustafa.i.fadhel@mmu.edu.my

More information

Current Status of Fuel Cell Technology

Current Status of Fuel Cell Technology Hydrogen, Carbon-Free-Fuel Democratizing the Energy Current Status of Fuel Cell Technology By Dr.-Ing. Syed Mushahid Hussain Hashmi Professor / Chairman Dept. of Automotive & Marine Engineering, NED University

More information

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER NATIONAL FUEL CELL RESEARCH CENTER (NFCRC) UNIVERSITY OF CALIFORNIA IRVINE, CA 92697-3550 http://www.nfcrc.uci.edu OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER (2) FUEL CELL RESEARCH CHALLENGES NATIONAL

More information

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT Up until now, most of the

More information

By janaka. Copyrights HIMT

By janaka. Copyrights HIMT By janaka Copyrights HIMT 2016 1 In container trade alone the equivalent of 125 million twenty-foot containers being shipped worldwide. It is these quantities that make shipping such a significant contributor

More information

Fuel Cell Science & Technology

Fuel Cell Science & Technology 446.671671 Fuel Cell Science & Technology Instructor: Suk Won Cha Course Introduction Office: 301-1417, 1417, Phone: 880-1700, Email: swcha@snu.ac.kr, Office Hours: A/O TA: Young Seok Ji Office: 314-311,

More information

Fuel cells have least moving parts (only compressor), resulting in noise free operation and little maintenance.

Fuel cells have least moving parts (only compressor), resulting in noise free operation and little maintenance. FUEL CELLS TECHNOLOGY SCAN Fuel cells are the most efficient and extremely clean systems for generation from fossil fuels. Fuel cell is an electrochemical device that converts chemical energy of a fuel

More information

A STUDY OF FUEL CELL SYSTEMS

A STUDY OF FUEL CELL SYSTEMS A STUDY OF FUEL CELL SYSTEMS DECEMBER, 2002 A REPORT BY THE CONNECTICUT ACADEMY OF SCIENCE AND ENGINEERING FOR The Connecticut Department of Economic and Community Development and the Connecticut Economic

More information

Fuel Cells and Hydrogen What can they offer for our energy future?

Fuel Cells and Hydrogen What can they offer for our energy future? Praha, 2 to 4 April 2014 Fuel Cells and Hydrogen What can they offer for our energy future? Prof. Dr. Robert Steinberger-Wilckens Centre for Hydrogen & Fuel Cell Research School of Chemical Engineering

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved.

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved. P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM Copyright 2006 P21 GmbH. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose

More information

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas Fuel cells, myths and facts PhD candidate Ole-Erich aas 1 Outline Fuel cell, history and general principle Fuel cell types and chemical systems PEM fuel cells for transport sector Polymer membranes Electrodes

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology TFRF05 Docent Jinliang Yuan October 30, 2008 Department of Energy Sciences, Lund University, Sweden Lectures: Docent Jinliang Yuan Home Works/Design Tasks: Dr. Jinliang Yuan Emails:

More information

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University Alternatives to Alternative Energy - FUEL CELLS C.J. Kobus Oakland University Take Home Lesson Fuel cells can help us generate cleaner power from conventional sources more efficiently and can be conveniently

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

Applicability of Dimethylether to Solid Oxide Fuel Cells

Applicability of Dimethylether to Solid Oxide Fuel Cells 17 Nov. 2011, 7th Asian DME Conference Applicability of Dimethylether to Solid Oxide Fuel Cells ~ Reforming and Cell Performance in Anode Off-gas Recycle ~ Yohei Tanaka, Katsutoshi Sato, Akihiko Momma,

More information

MCFC/MGT Hybrid Generation System

MCFC/MGT Hybrid Generation System 36 Special Issue Core Technology of Micro Gas Turbine for Cogeneration System Research Report / Hybrid Generation System Osamu Azegami / Abstract A hybrid power system consisting of a pressurized molten

More information

MCFC/MGT Hybrid Generation System

MCFC/MGT Hybrid Generation System 36 Special Issue Core Technology of Micro Gas Turbine for Cogeneration System Research Report /MGT Hybrid Generation System Osamu Azegami Abstract A hybrid power system consisting of a pressurized molten

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

Alejandro Avendaño Friday April 21, 2006

Alejandro Avendaño Friday April 21, 2006 FUEL CELLS AND DISTRIBUTED GENERATION Alejandro Avendaño Friday April 21, 2006 Introduction Distributed Generation The Electric Power Research Institute (EPRI) defines distributed generation as the integrated

More information

Fuel cells From the material to the finished product

Fuel cells From the material to the finished product FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Fuel cells From the material to the finished product Partner for research, service provider for industry. Are you interested in fuel cells and looking

More information

Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History

Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History The principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein

More information

Fuel Cell Technology: A Review

Fuel Cell Technology: A Review Fuel Cell Technology: A Review Omkar Yarguddi 1, Dr. Anjali A. Dharme 2 Senior Undergraduate student, Dept. Of Electrical Engg, College of Engg, Pune, Maharashtra, India 1 Associate Professor, Dept. Of

More information

Microgrids & Leveraging Campus Utility Infrastructure

Microgrids & Leveraging Campus Utility Infrastructure Microgrids & Leveraging Campus Utility Infrastructure Using fuel cells as the generation backbone Michael Palmer Director, Business Development FuelCell Energy, Inc. October 18, 2016 Learning Outcomes

More information

Historical review and recent trends in nonconventional

Historical review and recent trends in nonconventional Historical review and recent trends in nonconventional energy source: Fuel Cell M.D.Mehare Department of Applied Physics Priyadarshini Indira Gandhi College of Engineering Nagpur,Maharastra,India Md.Zain

More information

Analysis of Residential Fuel Cell System

Analysis of Residential Fuel Cell System Analysis of Residential Fuel Cell System Raju Kumar 1, Avinash Kumar 2, Dr. K. B. Waghulde 3 Students, Department of Mechanical Engineering, J. T. Mahajan College of Engineering, Faizpur, Maharashtra,

More information

PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE

PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE PRB 01-16E FUEL CELLS Lynne C. Myers Science and Technology Division 10 September 2001 PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE The Parliamentary Research Branch of the Library

More information

SOFC DEVELOPMENT by Tokyo Gas, Kyocera, Rinnai and Gastar

SOFC DEVELOPMENT by Tokyo Gas, Kyocera, Rinnai and Gastar SOFC DEVELOPMENT by Tokyo Gas, Kyocera, Rinnai and Gastar Tadaaki Ishikawa, Tokyo Gas Co., Ltd. Shoji Yamashita, Kyocera Corporation Tsutomu Sobue, Rinnai Co., Ltd. Koji Hase, Gastar Co., Ltd. A table

More information

GENERAL CLASSIFICATION

GENERAL CLASSIFICATION GENERAL CLASSIFICATION M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 GENERAL CLASSIFICATION Type Electrolyte PEMFC DMFC DEFC PAFC AFC MCFC SOFC Proton exchange membrane fuel cell Direct methanol fuel

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles 1 Introduction 1.1 Hydrogen Fuel Cells Basic Principles The basic operation of the hydrogen fuel cell is extremely simple. The first demonstration of a fuel cell was by lawyer and scientist William Grove

More information

Fuel Cells and Hydrogen: U.S. Policy Update. MECA Annual Cape Cod Meeting Robert Rose

Fuel Cells and Hydrogen: U.S. Policy Update. MECA Annual Cape Cod Meeting Robert Rose Fuel Cells and Hydrogen: U.S. Policy Update MECA Annual Cape Cod Meeting Robert Rose H 2 Policy Time Line 01/02: Freedom Car 09/02: Path Forward Published 01/03: Bush State-of-the-Union: $1.7 Billion 02/03:

More information

FUEL CELL. Yann Bultel. Grenoble Institute of Technology

FUEL CELL. Yann Bultel. Grenoble Institute of Technology Yann Bultel Grenoble Institute of Technology October 2012 C O N T E N T S 1. PRINCIPLE OF OPERATION... 3 1.1. INTRODUCTION TO... 3 1.2. UNIT CELL PRINCIPLE... 4 1.3. STACK... 7 1.4. SYSTEM... 7 1.5. PERFORMANCE...

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Fuel cells hold promise for Forest

Fuel cells hold promise for Forest Engineering United States Department of Agriculture Forest Service Technology & Development Program April 2003 7100 0371-2307 MTDC Fuel Cells Are Coming Kathleen Snodgrass, Project Leader, and Longchaw

More information

Fuel Cells. any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology

Fuel Cells. any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology Fuel Cells any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology anna.martinelli@chalmers.se Outline Technical aspects Developments in PEM materials Current future

More information

International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013

International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013 International Energy Agency (IEA) Advanced Fuel Cells Implementing Agreement EXECUTIVE SUMMARY FOR THE ANNUAL REPORT 2013 September 2014 The AFC IA, the Implementing Agreement for a Programme of Research,

More information

STATIONARY & TRANSPORTATION FUEL CELL APPLICATIONS

STATIONARY & TRANSPORTATION FUEL CELL APPLICATIONS STATIONARY & TRANSPORTATION FUEL CELL APPLICATIONS Presented at the First International Conference on Energy Efficiency and Conservation, Hong Kong Conrad Hotel, January 15-17, 2003. ABSTRACT Mr. Ronald

More information

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE Bernd KOHLSTRUCK ALSTOM BALLARD GmbH ABSTRACT: The electric utility is in a period of rapid change. The deregulation

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

Advanced Analytical Chemistry Lecture 16. Chem 4631

Advanced Analytical Chemistry Lecture 16. Chem 4631 Advanced Analytical Chemistry Lecture 16 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA System Level modelling of fuel cell driven electric vehicles Master s thesis in Electric Engineering ALBERT CERDÁN CODINA Elteknik Power Electronics Department CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg,

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Brief Introduction to Fuel Cells, Hydrogen Production and Storage

Brief Introduction to Fuel Cells, Hydrogen Production and Storage Brief Introduction to Fuel Cells, Hydrogen Production and Storage Production Outline Intermediate Conversion Electrolysis Jens Oluf Jensen Energy Reforming Microbial Thermal Transmission Storage Fuel cells

More information

Global Fuel Cell Market

Global Fuel Cell Market Published on Market Research Reports Inc. (https://www.marketresearchreports.com) Home > Global Fuel Cell Market 2015-2019 Global Fuel Cell Market 2015-2019 Publication ID: TNV0615127 Publication June

More information

MECA0500: FUEL CELLS - Part 1: Fuel Cell

MECA0500: FUEL CELLS - Part 1: Fuel Cell MECA0500: FUEL CELLS - Part 1: Fuel Cell Pierre Duysinx LTAS-Automotive Engineering University of Liege Academic year 2018-2019 1 References C.C. Chan & K.T. Chau. Modern Electric Vehicle Technology. Oxford

More information

Fuel Cell Science & Technology

Fuel Cell Science & Technology 446.671671 Fuel Cell Science & Technology Instructor: Suk Won Cha Course Introduction Office: 301-1417, 1417, Phone: 880-1700, Email: swcha@snu.ac.kr, Office Hours: A/O TA: Sanghoon Ji Office: 314-311,

More information

Waste Heat Recovery System for Fuel Cell System

Waste Heat Recovery System for Fuel Cell System Waste Heat Recovery System for Fuel Cell System Lin, Wamei; Yuan, Jinliang; Sundén, Bengt Published: 2010-01-01 Link to publication Citation for published version (APA): Lin, W., Yuan, J., & Sundén, B.

More information

Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review

Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review International Journal of Renewable Energy, Vol. 3, No., July 008 Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review Wirungrong Sangarunlert a *, Sukruedee suhchai

More information

Current Trends in Automotive Fuel-Cell Air Management Systems

Current Trends in Automotive Fuel-Cell Air Management Systems VDI-Berichte Nr. 1932, 2006 A 8 205 Current Trends in Automotive Fuel-Cell Air Management Systems Aktuelle Trends bei Brennstoffzellen-Luftversorgungssystemen Dr.-Ing. T. v. Unwerth, Dr.-Ing. M. Romba,

More information

Outline of Phosphoric Acid Fuel Cell (PAFC) Package by Fuji Electric

Outline of Phosphoric Acid Fuel Cell (PAFC) Package by Fuji Electric Outline of Phosphoric Acid Fuel Cell (PAFC) Package by Fuji Electric 13 th December 2017 Fuji Electric Co., Ltd. 1 How was Fuji Electric founded? "Fuji Electric Co., Ltd." was established as a capital

More information

Challenges facing hydrogen fuel cell technology to replace combustion engines

Challenges facing hydrogen fuel cell technology to replace combustion engines Advanced Materials Research Online: 2013-08-16 ISSN: 1662-8985, Vols. 724-725, pp 715-722 doi:10.4028/www.scientific.net/amr.724-725.715 2013 Trans Tech Publications, Switzerland Challenges facing hydrogen

More information

Load. 2e- ½O2. Posit ive Ion or Negat ive Ion H 2O. Elect rolyt e (Ion Conduct or) Figure 1-1 Schematic of an Individual Fuel Cell

Load. 2e- ½O2. Posit ive Ion or Negat ive Ion H 2O. Elect rolyt e (Ion Conduct or) Figure 1-1 Schematic of an Individual Fuel Cell 1.1 Fuel Cell and Batteries Description Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly into electrical energy. The basic physical structure or building block

More information

Generatore Siemens CHP100 SOFC (Solid Oxide Fuel Cells) Esperienza Operativa In Ambiente Industriale

Generatore Siemens CHP100 SOFC (Solid Oxide Fuel Cells) Esperienza Operativa In Ambiente Industriale Generatore Siemens CHP100 SOFC (Solid Oxide Fuel Cells) Esperienza Operativa In Ambiente Industriale Operation of the Siemens Solid Oxide Fuel Cell Generator CHP100 in an industrial environment Ferrante

More information

California and U.S. Initiatives to Mitigate Greenhouse Gas Emissions in the Transportation Sector

California and U.S. Initiatives to Mitigate Greenhouse Gas Emissions in the Transportation Sector California and U.S. Initiatives to Mitigate Greenhouse Gas Emissions in the Transportation Sector Jack Brouwer, Ph.D. Associate Director July, 2008 National Fuel Cell Research Center, 2008 1/37 Setting

More information

Senior Vice. President. CTO and. Category: Cathodic. Protection. Dates of. Web site: SOFCs are. site. gas can be. SOFCs have

Senior Vice. President. CTO and. Category: Cathodic. Protection. Dates of. Web site: SOFCs are. site. gas can be. SOFCs have Title of Innovation: Fuel Cell Powered Cathodic Protection Nominee(s) Dr. Norman Bessettee CTO and Senior Vice President Acumentrics Corporation Category: Cathodic Protection Dates of Innovation Development:

More information

Use of Renewable Energy Resources

Use of Renewable Energy Resources Use of Renewable Energy Resources Lalina 1 1 Department of Electronics &Communication Engineering, Ganga Institute of Technology and Management, Kablana, Jhajjar, Haryana, India Absract: The electricity

More information

Workshop on Fuel Cells for Automotive Applications

Workshop on Fuel Cells for Automotive Applications Workshop on Fuel Cells for Automotive Applications A.M. Kannan (amk@asu.edu) Arizona State University Chulalongkorn University December 8, 2016 Thermal Electricity Electrocatalysis for Water Electrolyzer,

More information

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines?

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? What if carbon-capture was an integral part of a power cycle? Oxy-FC is a novel

More information

Modeling of Fuel Cell Connected Distribution Generation System

Modeling of Fuel Cell Connected Distribution Generation System International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 39-83X, (Print) 39-8 Volume 4, Issue (November 05), PP. 6-69 Modeling of Fuel Cell Connected Distribution Generation System

More information

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS Can Ozgur Colpan cocolpan@connect.carleton.ca Ibrahim Dincer, PhD Ibrahim.Dincer@uoit.ca Feridun Hamdullahpur, PhD Feridun_Hamdullahpur@carleton.ca

More information

MODELING A FUEL CELL SYSTEM FOR RESIDENTIAL DWELLINGS

MODELING A FUEL CELL SYSTEM FOR RESIDENTIAL DWELLINGS MODELING A FUEL CELL SYSTEM FOR RESIDENTIAL DWELLINGS Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee.

More information

Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar Plates

Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar Plates International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-9, September 2014 Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar

More information

Bulk Molding Compound Use in Automotive Fuel Cell Applications

Bulk Molding Compound Use in Automotive Fuel Cell Applications Bulk Molding Compound Use in Automotive Fuel Cell Applications 2011 Society of Plastics Engineers Automotive Composites Conference & Exposition Cedric Ball Abstract Hydrogen fuel cell-driven electric cars

More information

Analysis of a Fuel Cell Combustor in a Solid Oxide Fuel Cell Hybrid Gas Turbine Power System for Aerospace Application

Analysis of a Fuel Cell Combustor in a Solid Oxide Fuel Cell Hybrid Gas Turbine Power System for Aerospace Application Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Analysis of a Fuel Cell Combustor in a Solid Oxide Fuel Cell Hybrid Gas Turbine Power System for Aerospace

More information

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY I. INTRODUCTION. Chemical pollution is a serious problem that demands the attention of the scientific community in the early 21 st century. The consequences of pollution are numerous: heating of the atmosphere

More information

Modelling and Control of Fuel Cell and Micro Gas Turbine Hybrid Power System for Ship Application

Modelling and Control of Fuel Cell and Micro Gas Turbine Hybrid Power System for Ship Application Modelling and Control of Fuel Cell and Micro Gas Turbine Hybrid Power System for Ship Application JIQING HE *, PEILIN ZHOU and DAVID CLELLAND Dept. of Naval Architecture and Marine Engineering, University

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information