Hielscher Ultrasonics GmbH Tel.: +49 (0)3328/437-3 Fax: +49 (0)3328/

Size: px
Start display at page:

Download "Hielscher Ultrasonics GmbH Tel.: +49 (0)3328/437-3 Fax: +49 (0)3328/"

Transcription

1 Ultrasonically-Assisted Fermentation for Bioethanol Production by Kathrin Hielscher, Hielscher Ultrasonics, Germany 1. Fermentation Fermentation can be an aerobic (= oxidative fermentation) or anaerobic process, which is used for biotechnological applications to convert organic material by bacterial, fungal or other biological cell cultures or by enzymes. By fermentation, energy is extracted from the oxidation of organic compounds, e.g. carbohydrates. Sugar is the most common substrate of fermentation, resulting after fermentation in products such as lactic acid, lactose, ethanol and hydrogen. Ethanol especially for use as fuel, but also for alcoholic beverages - is produced by fermentation. When certain yeast strains, such as Saccharomyces cerevisiae metabolize sugar, the yeast cells convert the starting material into ethanol and carbon dioxide. The chemical equations below summarize the conversion: C 6 H 12 O 6 2 CH 3 CH 2 OH + 2 CO 2 C 12 H 22 O 11 + H 2 O 4 CH 3 CH 2 OH + 4 CO 2 If the starting material is starch, e.g. from corn, firstly the starch must be converted into sugar. For bioethanol used as fuel, hydrolysis for the starch conversion is required. Typically, the hydrolysis is speeded up by acidic or enzymatic treatment or by combination of both. Normally, fermentation is carried out at around C. Overview over various fermentation processes: Biogas/ ethanol: - improvement of biogas/ bioethanol production from biomass - biogas production from sewage sludge Food: Drugs: - production & preservation - dairy (lactic acid fermentation), e.g. yogurt, buttermilk, kefir - lactic fermented vegetables, e.g. kimchi, miso, natto, tsukemono, sauerkraut - development of aromatics, e.g. soy sauce - decomposition of tanning agents, e.g. tea, cocoa, coffee, tobacco - alcoholic beverages, e.g. beer, wine, whiskey - production of medical compounds, e.g. insulin, hyaluronic acid Various research papers and tests in bench-top and pilot size have shown that ultrasound improves the fermentation process by making more biomass available for the enzymatic fermentation. In the following section, the effects of ultrasound in a liquid will be elaborated. 2. Effects of Ultrasonic Liquid Processing By high-power/ low-frequency ultrasound high amplitudes can be generated. Thereby, high-power/ low-frequency ultrasound can be used for the processing of liquids such as mixing, emulsifying, dispersing and deagglomeration, or milling. When sonicating liquids at high intensities, the sound waves that propagate into the

2 liquid media result in alternating high-pressure (compression) and low-pressure (rarefaction) cycles, with rates depending on the frequency. During the lowpressure cycle, high-intensity ultrasonic waves create small vacuum bubbles or voids in the liquid. When the bubbles attain a volume at which they can no longer absorb energy, they collapse violently during a high pressure cycle. This phenomenon is termed cavitation. Cavitation, that is "the formation, growth, and implosive collapse of bubbles in a liquid. Cavitational collapse produces intense local heating (~5000 K), high pressures (~1000 atm), and enormous heating and cooling rates (>109 K/sec)" and liquid jet streams (~400 km/h). (Suslick 1998) There are different means to create cavitation, such as by high-pressure nozzles, rotor-stator mixers, or ultrasonic processors. In all those systems the input energy is transformed into friction, turbulences, waves and cavitation. The fraction of the input energy that is transformed into cavitation depends on several factors describing the movement of the cavitation generating equipment in the liquid. The intensity of acceleration is one of the most important factors influencing the efficient transformation of energy into cavitation. Higher acceleration creates higher pressure differences. This in turn increases the probability of the creation of vacuum bubbles instead of the creation of waves propagating through the liquid. Thus, the higher the acceleration the higher is the fraction of the energy that is transformed into cavitation. In case of an ultrasonic transducer, the amplitude of oscillation describes the intensity of acceleration. Higher amplitudes result in a more effective creation of cavitation. In addition to the intensity, the liquid should be accelerated in a way to create minimal losses in terms of turbulences, friction and wave generation. For this, the optimal way is a unilateral direction of movement. Changing the intensity and parameters of the sonication process, ultrasound can be very hard or very soft. This makes ultrasound a very versatile tool for various applications. Soft applications, applying mild sonication under mild conditions, include degassing, emulsifying, and enzyme activation. Hard applications with high intensity/ high power ultrasound (mostly under elevated pressure) are wet-milling, deagglomeration & particle size reduction, and dispersing. For many applications such as extraction, disintegration or sonochemistry, the ultrasonic intensity requested depends on the specific material to be sonicated. By the variety of parameters, which can be adapted to the individual process, ultrasound allows finding the sweet spot for each individual process. Besides an outstanding power conversion, ultrasonication offers the great advantage of full control over the most important parameters: Amplitude, Pressure, Temperature, Viscosity, and Concentration. This offers the possibility to adjust all these parameters with the objective to find the ideal processing parameters for each specific material. This results in higher effectiveness as well as in optimized efficiency. 3. Ultrasound to Improve Fermentation Processes, explained exemplarily with the bioethanol production Bioethanol is a product of the decomposition of exclusively biomass or

3 biodegradable matter of waste by anaerobic or aerobic bacteria. The produced ethanol is mainly used as biofuel. This makes bioethanol a renewable and environmentally friendly alternative for fossil fuels, such as natural gas. To produce ethanol from biomass, sugar, starch, and lignocellulosic material can be used as feedstock. For industrial production size, sugar and starch are currently predominant as they are economically favorable. How ultrasound improves a customer-individual process with specific feedstock under given conditions can be tried out very simple by feasibility tests. At first step, the sonication of a small amount of the raw material slurry with an ultrasonic laboratory device will show, if ultrasound does affect the feedstock Feasibility Testing In the first testing phase, it is suitable to introduce a relatively high amount of ultrasonic energy into a small volume of liquid as thereby the chance increases to see if any results can be obtained. A small sample volume also shortens the time using a lab device and cuts down the costs for the first tests. The ultrasound waves are transmitted by the sonotrode s surface into the liquid. Beneth the sonotrode surface, the ultrasound intensity is most intense. Thereby, short distances between sonotrode and sonicated material are preferred. When a small liquid volume is exposed, the distance from the sonotrode can be kept short. The table below shows typical energy/volume levels for sonication processes after optimization. Since the first trials will not be run at optimum configuration, sonication intensity and time by 10 to 50 times of the typical value will show if there is any effect to the sonicated material or not. Process Energy/ Volume Sample Volume Power Time Simple <100Ws/mL 10mL 50W < 20 sec Medium 100Ws/mL 10mL 50W 20 to 100 sec Hard > 500Ws/mL 10mL 50W >100 sec Table 1 - Typical sonication values after process optimization The actual power input of the test runs can be recorded via PC-interface or by powermeter. In combination with the recorded data of amplitude setting and temperature, the results of each trial can be evaluated and a bottom line for the energy/volume can be established. If during the tests an optimal configuration has been chosen, this configuration performance could be verified during an optimization step and could be finally scaled up to commercial level. To facilitate the optimization, it is highly recommended to examine the limits of sonication, e.g. temperature, amplitude or energy/volume for specific formulations, too. As ultrasound could generate negative effects to cells, chemicals or particles, the critical levels for each parameter need to be examined in order to limit the following optimization to the parameter range where the negative

4 Picture 1 - ultrasonic lab device (100 watts) for feasibility tests effects are not observed. For the feasibility study small lab or bench-top units are recommended to limit the expenses for equipment and samples in such trials. Generally 100 to 1,000 Watts units serve the purposes of the feasibility study very well. (cf. Hielscher 2005) 3.2. Optimization The results achieved during the feasibility studies may show a quite high energy consumption regarding the small volume treated. But the purpose of the feasibility test is primarily to show the effects of ultrasound to the material. If in feasibility testing positive effects occurred, further efforts must be made to optimize the energy/volume ratio. This means to explore the ideal configuration of ultrasound parameters to achieve the highest yield using the less energy possible to make the process economically most reasonable and efficient. Chart 1 Flow chart for the optimization of an Ultrasonic Process

5 To find the optimal parameter configuration - regarding minimal energy input to obtain the intended benefits the correlation between the most important parameters amplitude, pressure, temperature and liquid composition have to be investigated. In this second step the change from batch sonication to a continuous sonication setup with flow cell reactor is recommended as the important parameter of pressure cannot be influenced for batch sonication. During sonication in a batch, the pressure is limited to ambient pressure. If the sonication process passes a pressurizable flow cell chamber, the pressure can be elevated (or reduced) which in general affects the ultrasonic cavitation drastically. By using a flow cell, the correlation between pressure and process efficiency can be determined. Ultrasonic processors between 500 watts and 2000 watts of power are most suitable to optimize a process Scale-Up to Commercial Production If the optimal configuration has been found, the further scale-up is simple as ultrasonic processes are fully reproducible on a linear scale. This means, when ultrasound is applied to an identical liquid formulation under identical processing parameter configuration, the same energy per volume is required to obtain an identical result independent of the scale of processing. (Hielscher 2005). That makes it possible to implement the optimal parameter configuration of ultrasound to the full scale production size. Virtually, the volume which can be processed ultrasonically is unlimited. Commercial ultrasonic systems with up to 16,000 watts per unit are Picture 2 Industrial ultrasonic processor with 16,000 watts power

6 available and can be installed in clusters. Such clusters of ultrasonic processors can be installed parallel or in series. By the cluster-wise installation of high power ultrasonic processors, the total power is almost unlimited so that high volume streams can be processed without problem. Also if an adaption of the ultrasonic system is required, e.g. to adjust the parameters to a modified liquid formulation, this can be mostly done by changing sonotrode, booster or flow cell. The linear reproducibility and the adaptability of ultrasound makes this innovative technology to an efficient and cost-effective. 4. Parameters of Ultrasonic Processing Ultrasonic liquid processing is described by a number of parameters. Most important are amplitude, pressure, temperature, viscosity, and concentration. The process result, such as particle size, for a given parameter configuration is a function of the energy per processed volume. The function changes with alterations in individual parameters. Furthermore, the actual power output per surface area of the sonotrode of an ultrasonic unit depends on the parameters. The power output per surface area of the sonotrode is the surface intensity (I). The surface intensity depends on the amplitude (A), pressure (p), the reactor volume (VR), the temperature (T), viscosity (η) and others. I[W / mm²]= ( A[µm], p[bar], VR [ml], T[ C], η[cp],...) The impact of the generated cavitation depends on the surface intensity. In the same way, the process result correlates. The total power output of an ultrasonic unit is the product of surface intensity (I) and surface area (S): 4.1. Amplitude P [W] I [W / mm²]* S[mm²] The amplitude of oscillation describes the way (e.g. 50 µm) the sonotrode surface travels in a given time (e.g. 1/20,000s at 20kHz). The larger the amplitude, the higher is the rate at which the pressure lowers and increases at each stroke. In addition to that, the volume displacement of each stroke increases resulting in a larger cavitation volume (bubble size and/or number). When applied to dispersions, higher amplitudes show a higher destructiveness to solid particles. Table 1 shows general values for some ultrasonic processes. Process Amplitude Dispersing/Deagglomeration Emulsifying Primary Particle Reduction 10 to 30 micron 20 to 60 micron 40 to 120 micron Table 2 - General Recommendations for Amplitudes

7 4.2. Pressure The boiling point of a liquid depends on the pressure. The higher the pressure the higher is the boiling point, and reverse. Elevated pressure allows cavitation at temperatures close to or above the boiling point. It also increases the intensity of the implosion, which is related to the difference between the static pressure and the vapor pressure inside the bubble (cf. Vercet et al. 1999). Since the ultrasonic power and intensity changes quickly with changes in pressure, a constant-pressure pump is preferable. When supplying liquid to a flow-cell the pump should be capable of handling the specific liquid flow at suitable pressures. Diaphragm or membrane pumps; flexible-tube, hose or squeeze pumps; peristaltic pumps; or piston or plunger pump will create alternating pressure fluctuations. Centrifugal pumps, gear pumps, spiral pumps, and progressive cavity pumps that supply the liquid to be sonicated at a continuously stable pressure are preferred. (Hielscher 2005) 4.3. Temperature By sonicating a liquid, power is transmitted into the medium. As ultrasonically generated oscillation causes turbulences and friction, the sonicated liquid in accordance with the law of thermodynamics - will heat up. Elevated temperatures of the processed medium can be destructive to the material and decrease the effectiveness of ultrasonic cavitation. Innovative ultrasonic flow cells are equipped with a cooling jacket (see picture). By that, the exact control over material s temperature during ultrasonic processing is given. For the beaker sonication of smaller volumes an ice bath for heat dissipation is recommended. Picture 3 Ultrasonic transducer UIP1000hd (1000 watts) with flow cell equipped with cooling jacket typical equipment for optimization steps or small scale production

8 4.4. Viscosity and Concentration Ultrasonic milling and dispersing are liquid processes. The particles have to be in a suspension, e.g. in water, oil, solvents or resins. By the use of ultrasonic flowthrough systems, it becomes possible to sonicate very viscous, pasty material. High-power ultrasonic processor can be run at fairly high solids concentrations. A high concentration provides the effectiveness of ultrasonic processing, as ultrasonic milling effect is caused by inter-particle collision. Investigations have shown that the breakage rate of silica is independent of the solid concentration up to 50% by weight. The processing of master batches with highly concentrated material s ratio is a common production procedure using ultrasonication Power and Intensity vs. Energy Surface intensity and total power do only describe the intensity of processing. The sonicated sample volume and the time of exposure at certain intensity have to be considered to describe a sonication process in order to make it scalable and reproducible. For a given parameter configuration the process result, e.g. particle size or chemical conversion, will depend on the energy per volume (E/V). Result = f (E /V ) Where the energy (E) is the product of the power output (P) and the time of exposure (t). E[Ws] = P[W]*t[s] Changes in the parameter configuration will change the result function. This in turn will vary the amount of energy (E) required for a given sample value (V) to obtain a specific result value. For this reason it is not enough to deploy a certain power of ultrasound to a process to get a result. A more sophisticated approach is required to identify the power required and the parameter configuration at which the power should be put into the process material. (Hielscher 2005) 5. Ultrasonically Assisted Production of Bioethanol It is already know that ultrasound improves the bioethanol production. It is recommendable to thicken the liquid with biomass to a highly viscous slurry that is still pumpable. Ultrasonic reactors can handle fairly high solid concentrations so that the sonication process can be run most efficient. The more material is contained in the slurry, the less carrier liquid, which will not profit from the sonication process, will be treated. As the input of energy into a liquid causes a heating of the liquid by law of thermodynamics, this means that the ultrasonic energy is applied to the target material, as far as possible. By such an efficient process design, a wasteful heating of the excess carrier liquid is avoided. Ultrasound assists the extraction of the intracellular material and makes it thereby available for the enzymatic fermentation. Mild ultrasound treatment can enhance enzymatic activity, but for biomass extraction more intense ultrasound will be required. Hence, the enzymes should be added to the biomass slurry after the sonication as intense ultrasound inactivates enzymes, which is a not desired effect.

9 Current results achieved by scientific research: The studies of Yoswathana et al. (2010) concerning with the bioethanol production from rice straw have shown that the combination of acid pre-treatment and ultrasonic before enzymatic treatment lead to an increased sugar yield of up to 44% (on rice straw basis). This shows the effectiveness of the combination of physical and chemical pretreatment before the enzymatic hydrolysis of lignocelluloses material to sugar. Chart 2 Ultrasonic enhancement of ethanol yield during fermentation (Yoswathana et al. 2010) The chart above illustrates the positive effects of ultrasonic irradiation during the bioethanol production from rice straw graphically. (Charcoal has been used to detoxify the pretreated samples from acid/ enzyme pretreatment and ultrasonic pretreatment.) In another recent study, the influence of ultrasonication on the extracellular and the intracellular levels of β-galactosidase enzyme has been examined. Sulaiman et al. (2011) could improve the productivity of bioethanol production substantially, using ultrasound at a controlled temperature stimulating the yeast growth of Kluyveromyces marxianus (ATCC 46537). The authors of the paper resumes that intermittent sonication with power ultrasound (20 khz) at duty cycles of 20% stimulated biomass production, lactose metabolism and ethanol production in K. marxianus at a relatively high sonication intensity of 11.8Wcm 2. Under the best conditions, sonication enhanced the final ethanol concentration by nearly 3.5-fold relative to control. This corresponded to a 3.5-fold enhancement in ethanol productivity, but required 952W of additional power input per cubic meter of broth through sonication. This additional requirement for energy was certainly within acceptable operational norms for bioreactors and, for high value products, could be easily compensated by the increased productivity.

10 6. Conclusion: Benefits from Ultrasonically-Assisted Fermentation Ultrasonic treatment has been shown as an efficient and innovative technique to enhance the bioethanol yield. Primarily, ultrasound is used to extract intracellular material from biomass, such as corn, soybeans, straw, lingo-cellulosic material or vegetable waste materials. Increase in bioethanol yield Disintegration/ Cell destruction and release of intra-cellular material Improved anaerobic decomposition Activation of enzymes by mild sonication Improvement of process efficiency by high concentration slurries The simple testing, reproducible scale-up and easy installation (also in already existing production streams) makes ultrasonics a profitable and efficient technology. Reliable industrial ultrasonic processors for commercial processing are available and make it possible to sonicate virtually unlimited liquid volumes. Picture 4 Setup with 1000W ultrasonic processor, flow cell, tank and pump

11 References: Hielscher, T. (2005): Ultrasonic Production of Nano-Size Emulsions and Dispersions. in: Proceedings of European Nanosystems Conference ENS'05. Jomdecha, C.; Prateepasen, A. (2006): The Research of Low-Ultrasonic Energy Affects to Yeast Growth in Fermentation Process. At: 12 th Asia-Pacific Conference on NDT, , Auckland, New Zealand. Kuldiloke, J. (2002): Effect of Ultrasound, Temperature and Pressure Treatments on Enzyme Activity an Quality Indicators of Fruit and Vegetable Juices; Ph.D. Thesis at Technische Universität. Berlin, Mokkila, M., Mustranta, A., Buchert, J., Poutanen, K. (2004): Combining power ultrasound with enzymes in berry juice processing. At: 2nd Int. Conf. Biocatalysis of Food and Drinks, , Stuttgart, Germany. Müller, M. R. A.; Ehrmann, M. A.; Vogel, R. F. (2000): Multiplex PCR for the Detection of Lactobacillus pontis and Two Related Species in a Sourdough Fermentation. Applied & Environmental Microbiology. 66/ pp Nikolic, S.; Mojovic, L.; Rakin, M.; Pejin, D.; Pejin, J. (2010): Ultrasound-assisted production of bioethanol by simoultaneous saccharification and fermentation of corn meal. In: Food Chemistry 122/2010. pp Sulaiman, A. Z.; Ajit, A.; Yunus, R. M.; Cisti, Y. (2011): Ultrasound-assisted fermentation enhances bioethanol productivity. Biochemical Engineering Journal 54/2011. pp Suslick, K. S. (1998): Kirk-Othmer Encyclopedia of Chemical Technology. 4 th ed. Wiley & Sons: New York, pp Yoswathana, N.; Phuriphipat, P.; Treyawutthiawat, P.; Eshtiaghi, M. N. (2010): Bioethanol Production from Rice Straw. In: Energy Research Journal 1/ pp

Pretreated biomass improves digestion

Pretreated biomass improves digestion ADVANTAGES OF CONTROLLED CAVITATION Pretreated biomass improves digestion Claudio Fabbri, Sergio Piccinini The anaerobic digestion process consists, as is known, in the first place in the degradation of

More information

THE USE OF ULTRASOUND TO ACCELERATE THE ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE. Ewa Neczaj, Joanna Lach

THE USE OF ULTRASOUND TO ACCELERATE THE ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE. Ewa Neczaj, Joanna Lach THE USE OF ULTRASOUND TO ACCELERATE THE ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE Ewa Neczaj, Joanna Lach Technical University of Czestochowa, Institute of Environmental Engineering, BrzeŸnicka 60a,

More information

IMPACT OF ULTRASOUND ON PROCESS EFFICIENCY IN FOOD INDUSTRY

IMPACT OF ULTRASOUND ON PROCESS EFFICIENCY IN FOOD INDUSTRY IMPACT OF ULTRASOUND ON PROCESS EFFICIENCY IN FOOD INDUSTRY Mladen Brnčić Faculty of Food Technology and Biotechnology Zagreb Croatia Sound waves at frequencies higher than the audible range (16 khz)

More information

THE RESEARCH OF LOW-ULTRASONIC ENERGY AFFECTS TO YEAST GROWTHIN FERMENTATION PROCESS

THE RESEARCH OF LOW-ULTRASONIC ENERGY AFFECTS TO YEAST GROWTHIN FERMENTATION PROCESS 12 th A-PCNDT 26 Asia-Pacific Conference on NDT, 5 th 1 th Nov 26, Auckland, New Zealand THE RESEARCH OF LOW-ULTRASONIC ENERGY AFFECTS TO YEAST GROWTHIN FERMENTATION PROCESS Jomdecha, C., Prateepasen,

More information

Industrial Biotechnology and Biorefining

Industrial Biotechnology and Biorefining Industrial Biotechnology and Biorefining Industrial Biotechnology and Biorefining The Centre for Process Innovation From innovation to commercialisation The High Value Manufacturing Catapult is a partnership

More information

Lab #2 Bioreactors and Fermentation

Lab #2 Bioreactors and Fermentation Lab #2 Bioreactors and Fermentation Outline Goals of Lab Yeast Fermentation Bioreactor Analysis equipment Hemacytometer, cellometer, spectrophotometer, HPLC system 2 Goals of Lab Familiarization with a

More information

EXPERTISE BIOMASS PRETREATMENT BIOMASS PRETREATMENT BIOCATALYSIS FERMENTATION GREEN CHEMISTRY PRODUCT RECOVERY AND PURIFICATION

EXPERTISE BIOMASS PRETREATMENT BIOMASS PRETREATMENT BIOCATALYSIS FERMENTATION GREEN CHEMISTRY PRODUCT RECOVERY AND PURIFICATION BIOMASS PRETREATMENT BIOMASS PRETREATMENT BIOCATALYSIS FERMENTATION GREEN CHEMISTRY PRODUCT RECOVERY AND PURIFICATION BIOMASS PRETREATMENT Equipment overview: Reactors for chemical pretreatment of biomass:

More information

INNOVATIVE ASEPTIC TECHNOLOGIES FOR FOODSTUFFS AND BIOTECHNOLOGY

INNOVATIVE ASEPTIC TECHNOLOGIES FOR FOODSTUFFS AND BIOTECHNOLOGY FRAUNHOFER INSTITUTE FOR INTERFACIAL ENGINEERING AND BIOTECHNOLOGY IGB INNOVATIVE ASEPTIC TECHNOLOGIES FOR FOODSTUFFS AND BIOTECHNOLOGY HYGIENIZATION CELL DISRUPTION EXTRACTION OF FUNCTIONAL INGREDIENTS

More information

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh Optimization of Fermentation processes Both at the Process and Cellular Levels 'Simultaneous saccharification and fermentation of starch to lactic acid' K. V. Venkatesh Department of Chemical Engineering

More information

Waste Management for Food & Agriculture Industry Cleaner Production for Food industries

Waste Management for Food & Agriculture Industry Cleaner Production for Food industries Waste Management for Food & Agriculture Industry Cleaner Production for Food industries Thilina Gunawardhana Dept. of Chemical & Process Engineering University of Moratuwa Cleaner Production In simple

More information

Module F06FB08. To gain knowledge about enzyme technology and production of enzymes and

Module F06FB08. To gain knowledge about enzyme technology and production of enzymes and Module F06FB08 Enzyme technology Introduction and Production of enzymes This module would focus on enzyme technology which deals with the enzymes, the metabolic catalysts and their use in various Industries.

More information

Biobed Advanced EGSB & Biothane Advanced UASB. Wastewater as a Resource WATER TECHNOLOGIES

Biobed Advanced EGSB & Biothane Advanced UASB. Wastewater as a Resource WATER TECHNOLOGIES Biobed Advanced EGSB & Biothane Advanced UASB Wastewater as a Resource WATER TECHNOLOGIES Why Biothane? Process expertise based on decades of experience, combined with a program of continuous research

More information

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center The sunliquid process - cellulosic ethanol from agricultural residues Dr. Ing. Paolo Corvo Biotech & Renewables Center Introduction to Clariant and the Biotech & Renewable Center Dr. Ing. Paolo Corvo Biotech

More information

Rice Straws and Husks Biofuel: Emphasizing on Selection of Pre-Treatment Method Elza Firdiani Shofia, Kharisma Bangsa Senior High School, Indonesia

Rice Straws and Husks Biofuel: Emphasizing on Selection of Pre-Treatment Method Elza Firdiani Shofia, Kharisma Bangsa Senior High School, Indonesia Rice Straws and Husks Biofuel: Emphasizing on Selection of Pre-Treatment Method Elza Firdiani Shofia, Kharisma Bangsa Senior High School, Indonesia Picture: Indonesian farmers are harvesting rice. There

More information

Influence of hydrodynamic induced cavitation on water pollutants

Influence of hydrodynamic induced cavitation on water pollutants Water and Society III 287 Influence of hydrodynamic induced cavitation on water pollutants A. Schmid University of Applied Sciences, Hof, Germany Abstract Hydrodynamic induced cavitation generates imploding

More information

BIOMASS (TO BIOETHANOL) SUPPLY CHAIN DESIGN AND OPTIMISATION

BIOMASS (TO BIOETHANOL) SUPPLY CHAIN DESIGN AND OPTIMISATION Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 BIOMASS (TO BIOETHANOL) SUPPLY CHAIN DESIGN AND OPTIMISATION DANIA K. 1, DRAKAKI

More information

Chapter 12 Respiration

Chapter 12 Respiration 2.2 Cell Metabolism Learning Objectives Chapter 12 Respiration 2.2.5 Respiration 1. Define, give the role and balanced equation for "aerobic respiration". 2. Explain the stages and molecules involved in

More information

BIOETHANOL PRODUCTION FROM RICE BRAN BY SACCHAROMYCES CEREVISIAE. *Corresponding author:

BIOETHANOL PRODUCTION FROM RICE BRAN BY SACCHAROMYCES CEREVISIAE. *Corresponding author: BIOETHANOL PRODUCTION FROM RICE BRAN BY SACCHAROMYCES CEREVISIAE K. Harismah 1, M. Da i 2, A. Asngad 3, Samlawi 4 1 Department of Chemical Engineering, 2 Department of Biology Education, 3 Faculty of Pharmacy

More information

BCT Loop Reactor Technology

BCT Loop Reactor Technology BCT Loop Reactor Technology By BUSS ChemTech AG www.buss-ct.com Hohenrainstrasse 10 CH-4133 Pratteln 1, Switzerland Tel. + 41 (0) 618 256 462 Fax. +41 (0) 618 256 737 Abstract This paper highlights the

More information

MEGANIZER High-Pressure Homogenizers. For Process and Product Safety

MEGANIZER High-Pressure Homogenizers. For Process and Product Safety MEGANIZER High-Pressure Homogenizers For Process and Product Safety Reliable diaphragm pump concept for leak-proof homogenization The MEGANIZER from Bran+Luebbe is designed to meet industry requirements

More information

Cellulosic Biomass Chemical Pretreatment Technologies

Cellulosic Biomass Chemical Pretreatment Technologies Life-changing Research and Development Cellulosic Biomass Chemical Pretreatment Technologies September 6, 2007 Keith Pauley Keith.Pauley@matricresearch.com 800-611-2296 Chemical and Environmental Technologies

More information

2014 MS Thesis topics HES-SO Valais Wallis, Biotechnology Unit Prof. Simon Crelier

2014 MS Thesis topics HES-SO Valais Wallis, Biotechnology Unit Prof. Simon Crelier 2014 MS Thesis topics HES-SO Valais Wallis, Biotechnology Unit Prof. Simon Crelier A. Lab s activities Hosted in the Life Technologies building of the HES-SO Valais Wallis in Sion, the laboratory is active

More information

NATIONAL 4 CHEMISTRY

NATIONAL 4 CHEMISTRY Farr High School NATIONAL 4 CHEMISTRY Unit 2 Nature s Chemistry Question Booklet 1 Fuels 1. What is meant by the word fuel? 2. Give three ways in which the formation of coal and oil are similar. 3. We

More information

FABRICATION OF BIOREACTOR UTILIZING HOLLOW FIBER MEMBRANE FOR RUMEN HYDROLYSIS OF SWEET SORGHUM

FABRICATION OF BIOREACTOR UTILIZING HOLLOW FIBER MEMBRANE FOR RUMEN HYDROLYSIS OF SWEET SORGHUM FABRICATION OF BIOREACTOR UTILIZING HOLLOW FIBER MEMBRANE FOR RUMEN HYDROLYSIS OF SWEET SORGHUM Raymond B. Barajas, George P. Qua, Kenneth A. Icaro, Florinda T. Bacani * Chemical Engineering Department,

More information

! TECHNICAL BRIEF OIL-WATER EMULSION BREAKING TECHNOLOGY

!  TECHNICAL BRIEF OIL-WATER EMULSION BREAKING TECHNOLOGY TECHNICAL BRIEF OIL-WATER EMULSION BREAKING TECHNOLOGY OrganoCat owns a commercially-practiced technology that is applicable for breaking emulsions of oil-in-water and water-in-oil, and removal of solids

More information

Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating

Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating Ethanol Production from Biomass - Optimization of Simultaneous Saccharification and Fermentation with Respect to Stirring and Heating JESPER NÖRGÅRD Department. of Chemical Engineering, Lund Institute

More information

Select and price substrates with AMPTS II Light

Select and price substrates with AMPTS II Light Select and price substrates with AMPTS II Light www.bioprocesscontrol.com Simplify the selection and pricing of substrates Determine a substrate s true energy content The AMPTS II Light allows users to

More information

Your Pump Solution for the Biogas Industry.

Your Pump Solution for the Biogas Industry. Your Pump Solution for the Biogas Industry. For a clean environment. Biogas plants play an increasingly important role in environmental protection around the world. Unlike burning fossil energy sources

More information

Alternative Paving Binders Gayle King Rocky Mountain Asphalt Conference

Alternative Paving Binders Gayle King Rocky Mountain Asphalt Conference Alternative Paving Binders Gayle King Rocky Mountain Asphalt Conference February 26, 2010 Mission Statement: Create a flexible pavement binder which: is derived from sustainable renewable resources enables

More information

Title: The Cell disruption method for various tissue. By: KIbrom Fitwi

Title: The Cell disruption method for various tissue. By: KIbrom Fitwi Title: The Cell disruption method for various tissue By: KIbrom Fitwi December 22, 2010 Out line Questioning The objective cell disruption Various method of cell disruption Evaluation of cell disruption

More information

Mitton Industrial Cavitation Reactor Systems. Using Cavitation to Reclaim our World s Water

Mitton Industrial Cavitation Reactor Systems. Using Cavitation to Reclaim our World s Water Mitton Industrial Cavitation Reactor Systems Using Cavitation to Reclaim our World s Water Corporate History 2004 Reactor originally engineered for automotive applications 2005 Unique harmonic characteristics

More information

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND DENMARK APRIL 2017

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND DENMARK APRIL 2017 INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND DENMARK APRIL 2017 07.04.2017 2 Weber Entec Company presentation STRATEGY: UNITED COMPETENCE IN ULTRASOUND Weber Ultrasonics AG Ultrasonic cleaning, welding

More information

ENVE 424 Anaerobic Treatment

ENVE 424 Anaerobic Treatment ENVE 424 Anaerobic Treatment Lecture 3 The Microbiology of Anaerobic Treatment 2012 2013 Fall 27-28 Sept 2012 Assist. Prof. A. Evren Tugtas Anaerobic Digestion Ref: Gerardi M. H. The Microbiology of Anaerobic

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Reduce sludge Increase gas yield Improve dewatering Improve CO footprint

Reduce sludge Increase gas yield Improve dewatering Improve CO footprint Reduce sludge Increase gas yield Improve dewatering Improve CO footprint 2 DesiUS AT WWTPs Weber Entec The company Weber Entec GmbH & Co. KG is a subsidiary of Weber Ultrasonics AG one of the global leaders

More information

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) Author: NPCS Board of Consultants & Engineers Format: Hardcover ISBN: 9788178331584 Code: NI289 Pages: 417 Price:

More information

Challenges of Ethanol Production from Lignocellulosic Biomass

Challenges of Ethanol Production from Lignocellulosic Biomass Challenges of Ethanol Production from Lignocellulosic Biomass Maha Dakar Varieties of Carbohydrates Sugar Starch Cellulose/Hemicellulose What All Plants Have in Common Cellulose Glucose Why is it difficult

More information

Ultrasonic Technology for Accurate Flow Measurement of Biogas

Ultrasonic Technology for Accurate Flow Measurement of Biogas Ultrasonic Technology for Accurate Flow Measurement of Biogas Accurately Measures Methane Standards Certification Education & Training Publishing Conferences & Exhibits Speaker: Alan Vance E+H Industry

More information

The German Lignocellulose Feedstock Biorefinery Project

The German Lignocellulose Feedstock Biorefinery Project The German Lignocellulose Feedstock Biorefinery Project Jochen Michels, Kurt Wagemann, DECHEMA e.v. Frankfurt am Main Project information Joint Project of 15 Partners Industrial: 4 Partners SME: Res. Inst.*:

More information

Emerging Technologies in Sludge Minimization

Emerging Technologies in Sludge Minimization Emerging Technologies in Sludge Minimization Overview for Municipal Wastewater Treatment Michigan Water Environment Association 84 th Annual Conference June 2009 Art K. Umble, Ph.D., P.E., BCEE Outline

More information

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND 18.04.2017 2 Weber Entec Company presentation STRATEGY: UNITED COMPETENCE IN ULTRASOUND Weber Ultrasonics AG Ultrasonic cleaning, welding and cutting Weber Entec

More information

Ho Nam Chang. Bioenergy II

Ho Nam Chang. Bioenergy II Bioenergy II (RIO DE JANEIRO 8-13 March, 2009) Biofuels Production from Volatile Fatty Acid Platform Ho Nam Chang Biofuel Professor of Biochemical Engineering Department of Chemical & Biomolecular Engineering,

More information

Cellulosic and starch-based Raw Materials in Ethanol Production

Cellulosic and starch-based Raw Materials in Ethanol Production Cellulosic and starch-based Raw Materials in Ethanol Production 2. European Bioethanol Technology Meeting Detmold (Germany) April 25-26, 2006 Sven Fleischer and Thomas Senn Technology with Education and

More information

Moyno. Sanitary Products

Moyno. Sanitary Products Moyno Sanitary Products Moyno Sanitary Products The Choice for Efficient, Cost-Effective Sanitary Pumping Moyno has been satisfying sanitary pump application requirements for nearly 75 years. High quality

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

Prof. J.K. Whitesell. Chem 151. Friday 2/28/2014. Ethanol: From Grains to Gas

Prof. J.K. Whitesell. Chem 151. Friday 2/28/2014. Ethanol: From Grains to Gas 1 Nawal Alteliani D2 Prof. J.K. Whitesell Chem 151 Friday 2/28/2014 Ethanol: From Grains to Gas Ethanol is a simple molecule containing only 9 atoms and known to humans long before the arrival of modern

More information

Reduced sludge Increased gas yield Improved dewatering Improved CO2 footprint

Reduced sludge Increased gas yield Improved dewatering Improved CO2 footprint Reduced sludge Increased gas yield Improved dewatering Improved CO2 footprint DesiUS AT WWTPs Weber Entec The company Weber Entec GmbH & Co. KG is a subsidiary of Weber Ultrasonics AG, one of the global

More information

Chapter 7 Mass Transfer

Chapter 7 Mass Transfer Chapter 7 Mass Transfer Mass transfer occurs in mixtures containing local concentration variation. For example, when dye is dropped into a cup of water, mass-transfer processes are responsible for the

More information

TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION

TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION 1 TOWARDS SUSTAINABLE AND EFFICIENT BIOFUELS PRODUCTION USE OF PERVAPORATION IN PRODUCT RECOVERY AND SEPARATION POKE Summer School 10. 16.8.2014 Saaremaa, Estonia D.Sc.(Tech.) Johanna Niemistö FACULTY

More information

Technical background on the LanzaTech Process

Technical background on the LanzaTech Process Technical background on the LanzaTech Process Introduction LanzaTech s gas fermentation process is a new approach to reduce CO 2 emissions while producing low carbon liquid fuels and chemicals. The technology

More information

MEETING WASTEWATER DISCHARGE REQUIREMENTS FOR A SOYBEAN OIL PLANT IN COSTA RICA

MEETING WASTEWATER DISCHARGE REQUIREMENTS FOR A SOYBEAN OIL PLANT IN COSTA RICA MEETING WASTEWATER DISCHARGE REQUIREMENTS FOR A SOYBEAN OIL PLANT IN COSTA RICA Isabel S. Fung (1) E.I.T., Received her B.S. degree in Civil Engineering from Texas A&M University, College Station, Texas

More information

Thomas Grotkjær Biomass Conversion, Business Development

Thomas Grotkjær Biomass Conversion, Business Development NOVOZYMES AND BETA RENEWABLES DEPLOY WORLD CLASS CELLULOSIC ETHANOL TECHNOLOGY TO MARKET FROM BIOMASS TO BIOENERGY BIO WORLD CONGRESS, PHILADELPHIA, 13 MAY 2014 Thomas Grotkjær Biomass Conversion, Business

More information

Simulation of the BioEthnaol Process

Simulation of the BioEthnaol Process Ian David Lockhart Bogle and Michael Fairweather (Editors), Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, 17-20 June 2012, London. 2012 Elsevier B.V. All rights reserved.

More information

Agitator Design Principles for Biofuels

Agitator Design Principles for Biofuels Agitator Design Principles for Biofuels Who Should Attend This is a course for people who must specify, purchase or optimize fluid agitation equipment used for Biofuel applications. Such applications include,

More information

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND 21.09.2017 2 Weber Entec Company presentation STRATEGY: UNITED COMPETENCE IN ULTRASOUND Weber Ultrasonics AG Ultrasonic cleaning, welding and cutting Weber Entec

More information

Cesar B. Granda, Ph.D. Chief Technology Officer Earth Energy Renewables Bryan, TX. Earth Energy Renewables

Cesar B. Granda, Ph.D. Chief Technology Officer Earth Energy Renewables Bryan, TX. Earth Energy Renewables Cesar B. Granda, Ph.D. Chief Technology Officer Earth Energy Renewables Bryan, TX Earth Energy Renewables 2017 1 Improving the Value Proposition of Industries that Generate Organic Effluents and By-products

More information

Mixing conditions of polymer and ceramic powder determined by ultrasound

Mixing conditions of polymer and ceramic powder determined by ultrasound International Journal of Applied Science and Engineering 2009. 6, 3: 239-244 Mixing conditions of polymer and ceramic powder determined by ultrasound C. C. Cheng * Dept. of Electrical Engineering, Hsiuping

More information

Introduction to SoniqueFlo and Applications

Introduction to SoniqueFlo and Applications Introduction to SoniqueFlo and Applications 1 Nameplate Capacity: 100,000MT 2 Agenda 1 Core Technology 2 Food and Beverage 3 Brewing 4 Industrial Mixing 5 BioEnergy 6 Waste Water 7 Oil & Gas Industry 3

More information

Corn Wet Mill Improvement and Corn Dry Mill Improvement Pathways Summary Description

Corn Wet Mill Improvement and Corn Dry Mill Improvement Pathways Summary Description Corn Wet Mill Improvement and Corn Dry Mill Improvement Pathways Summary Description DE Pathway bjectives The Biomass Program objective for both the corn wet mill and dry mill pathways is to improve the

More information

For Teachers - Fermentation Challenge: Making Ethanol from Cellulose

For Teachers - Fermentation Challenge: Making Ethanol from Cellulose Objective: For Teachers - Fermentation Challenge: Making Ethanol from Cellulose Due to concerns of dwindling supplies of fossil fuels and global climate change, scientists are investigating the use of

More information

ENERGY PRODUCTION FROM BIOMASS

ENERGY PRODUCTION FROM BIOMASS ENERGY PRODUCTION FROM BIOMASS B. Aylin Alagöz, Ph.D. Prof. Dr. Orhan Yenigün Prof. Dr. Ayşen Erdinçler Boğaziçi University Institute of Environmental Sciences İstanbul, Turkey Global Clean Energy Expected

More information

QUESTIONSHEET 1. The diagram shows a method of screening fungi for the production of an antibiotic. fungus A fungus B fungus C [2] ...

QUESTIONSHEET 1. The diagram shows a method of screening fungi for the production of an antibiotic. fungus A fungus B fungus C [2] ... QUESTIONSHEET 1 The diagram shows a method of screening fungi for the production of an antibiotic. test fungus petri dish containing nutrient agar 1 2 3 4 5 6 streaks of different test bacteria The diagrams

More information

VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE

VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE Saeid Baroutian, John Andrews, Murray Robinson, Anne-Marie Smit, Ben McDonald, Suren Wijeyekoon, Daniel Gapes

More information

FLOTTWEG SEDICANTER Discover New Potentials

FLOTTWEG SEDICANTER Discover New Potentials FLOTTWEG SEDICANTER Discover New Potentials DISCOVER NEW POTENTIALS Flottweg Sedicanter for Processing Fine and Pasty Products The Flottweg Sedicanter is an innovative solid bowl centrifuge (decanter centrifuge)

More information

1 Ultrasound targeting

1 Ultrasound targeting This lecture deals with the concepts involved in ultrasound targeting and the challenges involved therein. A snapshot of the challenges involved in targeting the brain acrosss the blood-brain barrier (BBB)

More information

Application of the AGF (Anoxic Gas Flotation) Process

Application of the AGF (Anoxic Gas Flotation) Process Application of the AGF (Anoxic Gas Flotation) Process Dennis A. Burke Environmental Energy Company, 6007 Hill Road NE, Olympia, WA 98516 USA (E-mail: dennis@makingenergy.com http//www.makingenergy.com)

More information

PERP Program - Ethanol New Report Alert

PERP Program - Ethanol New Report Alert PERP Program - Ethanol New Report Alert February 2006 Nexant s ChemSystems Process Evaluation/Research Planning program has published a new report, Ethanol (04/05-8). To view the table of contents or order

More information

Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization

Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization Geng Anli*, Wang Zhankun, Lai Kok Soon and Tan Wei Yi Mark, Goh Kiow Leng

More information

Improving Septic Tank Performance by Enhancing Anaerobic Digestion NOWRA Onsite Wastewater Mega-Conference

Improving Septic Tank Performance by Enhancing Anaerobic Digestion NOWRA Onsite Wastewater Mega-Conference Improving Septic Tank Performance by Enhancing Anaerobic Digestion NOWRA Onsite Wastewater Mega-Conference Christopher Jowett October 23, 2017 Outline Anaerobic 101 Important factors influencing treatment

More information

NOVOZYMES & RENEWABLE CHEMICALS

NOVOZYMES & RENEWABLE CHEMICALS NOVOZYMES & RENEWABLE CHEMICALS Per Falholt, CSO & EVP, Novozymes Nomura Global Chemical Leaders Conference 2013 Venice, March 21, 2013 Safe Harbor Statement This presentation and its related comments

More information

MICROBES IN INDUSTRY. INDUSTRIAL PRODUCTS Microbes are used in the production of many products

MICROBES IN INDUSTRY. INDUSTRIAL PRODUCTS Microbes are used in the production of many products MICROBES IN INDUSTRY INDUSTRIAL PROCESS USING MICROBES Yeast and bacteria are used in producing medicines Microbes are used in food production and they play significant roles in food spoilage and contamination

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food! The food involved in respiration is usually! Internal respiration is controlled by which allow energy to be released in!

More information

Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide

Biofuel production using total sugars from lignocellulosic materials. Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide Biofuel production using total sugars from lignocellulosic materials Diego Alonso Zarrin Fatima Szczepan Bielatowicz Oda Kamilla Eide scope of the presentation 1. Available lignocellulosic materials 2.

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010 2010 Aerobic and Anaerobic Biodegradation Danny Clark ENSO Bottles LLC 06/29/2010 Aerobic and Anaerobic Biodegradation A look into aerobic and anaerobic biodegradation By Danny Clark ENSO Bottles, LLC

More information

Dewatering Waste Activated Sludge Using Greenhouse-Gas Flotation followed by Centrifugation

Dewatering Waste Activated Sludge Using Greenhouse-Gas Flotation followed by Centrifugation Dewatering Waste Activated Sludge Using Greenhouse-Gas Flotation followed by Centrifugation Medhat El-Zahar Abstract The aim of this study is to develop a simple method for dewatering waste-activated sludge

More information

The Biorefinery approach to production of lignocellulosic ethanol and chemicals from lignocellulosic biomass

The Biorefinery approach to production of lignocellulosic ethanol and chemicals from lignocellulosic biomass The Biorefinery approach to production of lignocellulosic ethanol and chemicals from lignocellulosic biomass IEA Bioenergy Conference, Vienna 13-14.11.2012 Gisle L Johansen Senior Vice President R&D and

More information

Module 9 : Sewage And Storm water Pumping Stations. Lecture 11 : Sewage And Storm water Pumping Stations

Module 9 : Sewage And Storm water Pumping Stations. Lecture 11 : Sewage And Storm water Pumping Stations 1 P age Module 9 : Sewage And Storm water Pumping Stations Lecture 11 : Sewage And Storm water Pumping Stations 2 P age 9.1 Introduction There are certain locations where it is possible to convey sewage

More information

The CIMV organosolv Process. B. Benjelloun

The CIMV organosolv Process. B. Benjelloun The CIMV organosolv Process B. Benjelloun 2 BIOREFINERY CONCEPT THE CIMV PROCESS Based on the oil refining model. Promote 100% of the non-food Biomass in Biofuels and/or Bioproducts. High feedstocks fexilibility

More information

FLOTTWEG CENTRIFUGES, BELT PRESSES AND SYSTEMS For Efficient Solid-Liquid Separation

FLOTTWEG CENTRIFUGES, BELT PRESSES AND SYSTEMS For Efficient Solid-Liquid Separation FLOTTWEG CENTRIFUGES, BELT PRESSES AND SYSTEMS For Efficient Solid-Liquid Separation FLOTTWEG Our Company We have been manufacturing centrifuges, belt presses, and processing systems for mechanical solid-liquid

More information

Lignocellulosic conversion to ethanol: the environmental life cycle impacts

Lignocellulosic conversion to ethanol: the environmental life cycle impacts Lignocellulosic conversion to ethanol: the environmental life cycle impacts Aiduan Li, Marcelle C McManus, Geoff P Hammond Sustainable Energy Research Team University of Bath United Kingdom Contents Sustainable

More information

Development of Bioengineered Yeast for the Grain Ethanol Industry

Development of Bioengineered Yeast for the Grain Ethanol Industry Development of Bioengineered Yeast for the Grain Ethanol Industry Overcoming Challenges in Regulation and Intellectual Property Track 3: Advanced Biofuels and Biorefinery Platforms Session 5: Tuesday,

More information

Organic Chem II Lab 7 Part II Ethanol from Corn 4

Organic Chem II Lab 7 Part II Ethanol from Corn 4 Organic Chem II Lab 7 Part II Ethanol from Corn 4 Simple fermentation can only produce solutions that contain about 10-15% alcohol, because at this level the yeast organisms are actually poisoned by the

More information

Industrial microbiology

Industrial microbiology Industrial microbiology pp. 166-173, 1032-1038, 1039-1045,1046-1050 Ed van Niel Ed.van_Niel@tmb.lth.se We are here Industrial microbiology biotechnology Why the increased interest Microbiological versus

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation

Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation 13 th US-Korea Forum on Nanotechnology: Neuromorphic computing and Water & Energy Sustainability Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation

More information

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND

INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND INCREASE OF BIOGAS YIELD THROUGH ULTRASOUND ANTING GRAMS H E A D O F S A L E S T H AI - G E R M AN T E C H N O L O G Y C O N F E R E N C E B I O G AS 11 / 2 0 1 7 21.11.2017 2 Weber Entec Company presentation

More information

Agitator Design Principles for Bioprocessing and Pharmaceutical Applications

Agitator Design Principles for Bioprocessing and Pharmaceutical Applications Agitator Design Principles for Bioprocessing and Pharmaceutical Applications Who Should Attend This is a course for people who must specify, operate, purchase or optimize fluid agitation equipment used

More information

Basics of Composting Penn State Mushroom Conference David M. Beyer Professor-Extension Specialist

Basics of Composting Penn State Mushroom Conference David M. Beyer Professor-Extension Specialist Basics of Composting 2009 Penn State Mushroom Conference David M. Beyer Professor-Extension Specialist Mushroom substrate has developed from a hodge-podge of ingredients mixed with water, fed through a

More information

THE BENEFITS AND USES OF MICROBES

THE BENEFITS AND USES OF MICROBES MODULE 4 MICROBES AND MICROBIAL BIOTECHNOLOGY U N I T 2 THE BENEFITS AND USES OF MICROBES A. MICROBIAL BIOTECHNOLOGY 1 Read What is biotechnology? and decide which of the words below can be used instead

More information

IMPORTANCE OF CELLULASES IN BIOETHANOL FROM BIOMASS: A REVIEW

IMPORTANCE OF CELLULASES IN BIOETHANOL FROM BIOMASS: A REVIEW IMPORTANCE OF CELLULASES IN BIOETHANOL FROM BIOMASS: A REVIEW VERMA NITIN,KUMAR VIVEK,BANSAL M.C. DEPARTMENT OF PAPER TECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY,ROORKEE INTRODUCTION The continous depletion

More information

SUSTAINABLE BIOPLASTICS INDUSTRY FROM RENEWABLE RESOURCES IN MALAYSIA

SUSTAINABLE BIOPLASTICS INDUSTRY FROM RENEWABLE RESOURCES IN MALAYSIA SUSTAINABLE BIOPLASTICS INDUSTRY FROM RENEWABLE RESOURCES IN MALAYSIA Professor Mohd Ali Hassan University Putra Malaysia Professor Yoshihito Shirai Kyushu Institute of Technology Presentation Outline

More information

KINETIC ANALYSIS AND SIMULATION OF UASB ANAEROBIC TREATMENT OF A SYNTHETIC FRUIT WASTEWATER

KINETIC ANALYSIS AND SIMULATION OF UASB ANAEROBIC TREATMENT OF A SYNTHETIC FRUIT WASTEWATER Global NEST Journal, Vol 12, No 2, pp 175-180, 2010 Copyright 2010 Global NEST Printed in Greece. All rights reserved KINETIC ANALYSIS AND SIMULATION OF UASB ANAEROBIC TREATMENT OF A SYNTHETIC FRUIT WASTEWATER

More information

2015 AQ Summit: Research Update by Peter Van Walsum

2015 AQ Summit: Research Update by Peter Van Walsum The University of Maine DigitalCommons@UMaine Annual Maine Aquaculture R&D and Education Summits Conferences and Summits 1-14-2015 2015 AQ Summit: Research Update by Peter Van Walsum Peter Van Walsum Follow

More information

Powder Processing Equipment - General Catalog

Powder Processing Equipment - General Catalog Powder Processing Equipment - General Catalog Nisshin Engineering provides solutions for global needs through powder technology NISSHIN ENGINEERING INC. HEADQUARTERS 14-1 Koami-cho, Nihonbashi, Chuo-ku,

More information

OBTAINING BIOETHANOL USED AS BIOFUEL FOR AUTO-VEHICLES USING A SELF PRESSURED BIOREACTOR

OBTAINING BIOETHANOL USED AS BIOFUEL FOR AUTO-VEHICLES USING A SELF PRESSURED BIOREACTOR FACULTATEA DE MANAGEMENT AGRICOL OBTAINING BIOETHANOL USED AS BIOFUEL FOR AUTO-VEHICLES USING A SELF PRESSURED BIOREACTOR MARIANA DUMITRU, GEORGE MOISE, MARIUS BIBU, MIRELA STANCIU 1 Lucian Blaga University

More information

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor In: Scott, Charles D., ed. Proceedings of the 9th symposium on biotechnology for fuels and chemicals; 1987 May 5-8; Boulder, CO. In: Applied Biochemistry and Biotechnology. Clifton, NJ: Humana Press; 1988:

More information

Lignin conversion into bio-based chemicals

Lignin conversion into bio-based chemicals Engineering Conferences International ECI Digital Archives BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals Proceedings Spring 6-12-2013 Lignin conversion into bio-based

More information

Conversion of Thin Stillage from Corn-to-Ethanol Dry Mills into Biogas to Offset Natural Gas Consumption

Conversion of Thin Stillage from Corn-to-Ethanol Dry Mills into Biogas to Offset Natural Gas Consumption Conversion of Thin Stillage from Corn-to-Ethanol Dry Mills into Biogas to Offset Natural Gas Consumption Biofuels and Bioproducts Section Matthew T. Agler Marcelo L. Garcia Largus T. Angenent March 7,

More information