Back to Basics (plus a little extra) on Geotechnical Engineering: Ground Compaction

Size: px
Start display at page:

Download "Back to Basics (plus a little extra) on Geotechnical Engineering: Ground Compaction"

Transcription

1 Back to Basics (plus a little extra) on Geotechnical Engineering: Ground Compaction

2 Alan Parrock First exposed to soil mechanics at university 1973 Natal Roads Department 1976 Professional engineer 1976 NITRR of the CSIR 1978 BKS now Aecom 1982 First exposed to rock mechanics 1993 Founded ARQ 2007 Fellow of SAICE 2010 Geotechnical Division Gold Medal 2011 Keynote address 15 ARC in Maputo 2013 Keynote address Geo Africa Ghana Convenor SABS TC98 SC006 responsible for drafting the new SA geotechnical design code and reliability based design approach

3 COMPACTION in the beginning TMH1-1979

4

5 Test Mass (kg) Drop height (m) Number of blows Layers Input energy (knm) Volume Energy/Volume (m 3 ) (knm/m 3 ) Mod AASHTO NRB Proctor Impact roller Five sided * 132 Three sided * 224 Ram compaction* 7*7* RIC 3.5x3.5x *5* *5* Vibratory compaction Bomag ** 323 * = 1m depth ** = 0.15m depth, 10 passes, 3.6m/sec and 30 vibrations/second

6 Energy (knm/m 3 ) y = e x R² = Density as a percentage of Mod AASHTO

7 Vs=1935/2700=0.72 Vv=0.28 Vw=1935x0.101=0.195 E=Vv/Vs=0.28/0.72=0.40 DOS= Vw/Vv=0.195/0.28 = 70% Air voids= =8.50%

8 CBR

9 CBR =5.5/13.344=41

10 Stiffness plate load test E=πσr(1-ν 2 )/2δ

11

12 Bearing capacity for derivation of shear strength

13

14 Tested at Medupi c (kpa) φ( ) γd = 2021 OMC = 11.1

15 Now some theory

16

17

18 Effect of moisture on stiffness

19

20 Effect of moisture on stiffnesspractical considerations

21

22

23

24

25

26 Effects on hyperbolic parameters

27

28

29

30

31 So how do we know if materials are going to compact easily

32

33

34 Attributes of field rollers and stiffness achieved after compaction

35 Eccentric masses

36

37

38

39

40

41 Vibratory roller compaction Input cells Centrifugal force Frequency Amplitude Operating speed Roller width Layer thickness 530 kn 1560 Vibrations/minute 2.85 mm 0.5 m/sec 2.13 m 2 m Energy input knm Volume in 1 second 2.13 m 3 Energy input/volume knm/m 3 Number of passes for 90% 29 93% 45 95% 61 98% % 131 Actual optimum derived from field trial was 32

42

43 Depth (m) Vs (ms/) Go=ρVs 2 Go=2000x300 2 Go=180MPa Eo=2.7xGo Eo=486MPa E insitu =49MPa CSW-1 CSW-2 CSW-3 CSW-4 CSW-5 CSW-6

44

45 Vibration Compaction Vibration compaction Vibration replacement

46

47 Impact compaction DC, RIC and Impact rolling

48 Comparison Property Compaction Method DC RIC Mass (tonne) Drop Height (m) Energy (kj/blow) Momentum (tm/s) Blow Rate (blows/min) < Compaction Depth (m)

49 RIC Speed Safety Mobility Portability

50 Applications of RIC Foundation support Stone columns Floor slab strengthening Liquefaction mitigation Waste stabilisation

51 Theory Method of calculating effect of heavy tamping was refined in the early 90 s by Takada and Oshima Testing was conducted in centrifuge models at the Osaka City University in Japan Testing was aimed at determining relationship between compacted area and ram momentum

52 Theory cont. Testing was conducted under field stresses of 100g Typical example of the propagation of compacted area for a mass of 20t, drop height of 20m and tamper area of 4m 2 for 5, 10, 20 and 40 blows

53 Theory cont. Comparison of compacted area under different ram masses Comparison of compacted areas under different drop heights

54 Theory cont. Comparison of compacted area under different masses and drop heights

55 Theory cont. The compacted area is defined by: Depth and radius of compacted area are given by the following expressions:

56 Theory Cont. Relationship between compacted area momentum and energy

57 Theory Cont. Findings of the analyses: Compacted area is governed better by ram momentum rather than ram kinetic energy, Depth and radius of the compacted area are in proportion to logarithm of total ram momentum.

58 Oshima and Takada (1997:1641) Z = a Z +b Z log(mvn) R= a R +b R log(mvn) v = 2gH ΔD r (%) a z b Z a R b R D r = d max d. d d - max - d min d min

59 Spreadsheet to calculate the increase in relative density Taken from the equations as given on page 31 of "Soil Mechanics" by TW Lambe and RV Whitman (1969) Maximum dry density 1800 Relative density Depth Minimum dry density 1350 Relative density 0 Insitu dry density 1521 Relative density 45 Required dry density 1700 Relative density Change in relative density 37 = Input Mass and fall properties of Dynamic Compaction Hammer Mass = 9 tonnes Fall = 1 metres Radial Vel = 4.4 metres/second Taken from Oshima A and Takada N - Relation between compacted area and ram momentum by heavy tamping - 14th ICSMFE Hamburg pp Depth calculation For DR = 20% For DR = 40%

60 Let us look at some numbers..

61 Test Mass (kg) Drop height (m) Number of blows Layers Input energy (knm) Volume Energy/Volume (m 3 ) (knm/m 3 ) Mod AASHTO NRB Proctor Impact roller Five sided * 132 RIC 3.5x3.5x Three sided * 224 Ram compaction* 7*7* *5* *5* Vibratory compaction Bomag ** 323 * = 1m depth ** = 0.15m depth, 10 passes, 3.6m/sec and 30 vibrations/second

62 Impact rolling Speed Safety Mobility? Portability?

63 Impact roller 30kNm

64 Impact roller 15kNm

65

66

67

68

69

70

71 Impact rolling -theory Theory suggests depth of compaction is some 1.3m after 30 passes, Tests conducted indicate this is very dependent on material being compacted.

72 Case Study - Dorsfontein Construction of a tunnel housing a conveyor system underneath a coal slot, Conveyor system very sensitive to movement.

73 Dorsfontein

74 Stone column layout

75 Options Remove about 5m of weak material and replace with G6 quality material compacted to 93% Mod AASHTO density Installing stone columns which greatly reduces costs

76 Design parameters E value determined by Continuous Surface Wave (CSW) tests Material strength parameter determined from shearbox and triaxial tests

77 Dorsfontein cont. Site conditions:

78 Dorsfontein cont. Stone columns installed using the RIC technique suggested to mitigate differential settlement Analysis conducted using Rocscience s Phase2 with Duncan Chang Hyperbolic material properties

79 Dorsfontein cont. Results obtained: Noticeable reduction in settlement Spacing of columns varied to combat differential settlements effectively Reduced time of consolidation Scenario Settlement (mm) Expected Differential No culvert, no piled raft Piled raft, no culvert Culvert, no piled raft Piled raft, culvert (joints) Piled raft, culvert (no joints) 45 8

80

81 Case Study Richards Bay Construction of container yard Typical profile: m: Hydraulic fill 2.5 9m: Very soft silty clay m: Residual calcarenite m: Cretaceous siltstone t 90 = 15 months preloaded with a 3m fill Installation of stone columns using Rapid Impact Compaction suggested as a manner of reducing t 90

82 Case Study Richards Bay

83 Case Study Richards Bay

84 Case Study Richards Bay

85 Richards Bay Cont. Four trials were conducted in test area: Two trials with compaction of in situ material with a 1.5m diameter foot only One trial with a stone column spacing of 7.5m with one in the middle One trial with a stone column spacing of 5m with one in the middle Testing was conducted before/after compaction and installation of stone columns Testing conducted included: Continuous Surface Wave (CSW) tests and Dynamic Probe Super Heavy (DPSH) tests

86 Richards Bay Cont. Results revealed the following: No change for the areas not treated with stone columns Improvement in CSW results however no improvement in DPSH results for 7.5m spacing Improvement in DPSH results however no improvement in CSW results for 5m spacing t 90 reduced to between 2 and 8 months

87 Case Study Midfield Terminal Comprised construction of a 6 8m fill over site The site was divided into three zones:

88 Midfield Terminal cont. Material properties: Area 90% E (MPa) Ferricrete 12 6 Swampy - <2 Seepage 1-2 2

89 Midfield Terminal 4 5m soft clay layer. E value = 6MPa Founding solutions considered Do nothing Remove and replace Stone column installation

90 Columns increase in-situ stiffness thus reducing settlements from 400mm to 200mm Stone columns provide reduced drainage path length

91 Midfield Terminal Cont. Construction of fill to induce a bearing pressure of approximately 160kPa Settlement over seepage and swampy area expected to range between 130 and 400mm Time of consolidation expected to be approximately 4-5 years

92 Midfield Terminal Cont. Recommendations were given to construct stone columns in combination with high strength geosynthetic and gravel raft to provide a piled raft solution

93 Midfield Terminal Cont. Piled Raft constructed using combination of RIC and DC DC used in the soft swampy area RIC used in the stiffer seepage area DC stone columns installed using blows RIC stone columns installed using 8 passes with blows per pass

94 Midfield Terminal cont.

95 Midfield Terminal Cont.

96 Case Study Midfield Terminal Quality assurance testing of the RIC stone columns included: Plate load tests to verify stiffness Excavation of stone column to verify structural integrity

97 Midfield Terminal Cont. Results obtained Stone columns exhibited an elastic modulus of approximately 50 60MPa Material around stone columns increased in stiffness from 6MPa to approximately 14MPa Settlements would be reduced to between 100 and 200mm Time of consolidation reduced from 4-5 years to just 7 months Construction time expected to be 8 months therefore settlements will be built out during construction

98 The site

99 Measuring points

100 Settlement (mm) Measured settlement Settlement vs. Time Plate 1 Plate Plate 3 Plate Time (Date)

101 Piezometer reading (m) Piezometer levels Piezometer readings Piezometer 1 Piezometer 2 Piezometer 3 Piezometer 4 Piezometer 7 Piezometer Time (Days)

102 Midstream Hospital

103 In-cab instrumentation

104 CSW testing

105 CSW Testing

106 CSW in the Alps-John Rigby Jones

107 Depth (m) Midstream hospital CSW results Vs (m/s) CSW1 CSW2 CSW3 CSW4 CSW5 CSW6

108 Midstream Hospital CSW testing The magic number is 160m/sec, As Go = V 2 x ρ, This would translate into Go=46MPa, As E = 2(1 + ν) x G, This would generate an Eo value of some 2.7 times G ie Eo = 124MPa, But using the softening coefficient of 0.3 this generates an insitu E value = 37MPa For a 2m x 2m base loaded to 150kPa δ = 5.5mm giving a relative rotation of 1:900 OK

109 Softening function for soils

110 Dry density (kg/m 3 ) Unload/reload E value (MPa) Stiffness from Packard Moisture content (%) Zero air voids dry density E value Poly. (E value)

111 And a little further from home

112 In Kenya

113 In Israel

114 In Israel contd.

115 RIC in action in Dubai

116 Dubai Calcareous Sand Trials

117 Dubai 2m above sea level 3m above sea level

118 Thank you ladies and gentlemen

Evaluation the Effectiveness of Rapid Impact Compaction (RIC) as a Ground Improvement Technique

Evaluation the Effectiveness of Rapid Impact Compaction (RIC) as a Ground Improvement Technique Evaluation the Effectiveness of Rapid Impact Compaction (RIC) as a Ground Improvement Technique Bashar Tarawneh, Ph.D, P.E Assistant Professor Civil Engineering Department The University of Jordan Amman,

More information

Topic #4 Soil Compaction

Topic #4 Soil Compaction Topic #4 Soil Compaction What is Compaction? A simple ground improvement technique, where the soil is densified through external compactive effort. Compactive Effort + Water = 2 Compaction and Phase Diagram

More information

Experiences on embankment fill in land expressway over soft ground

Experiences on embankment fill in land expressway over soft ground Second International Seminar on the Design & Construction of the Second Penang Bridge Experiences on embankment fill in land expressway over soft ground Prepared by ; AZMI MADMARJUKI Project Location JAMBATAN

More information

USE OF DIPP PILES FOR A NEW SUP BRIDGE IN WEST MELBOURNE

USE OF DIPP PILES FOR A NEW SUP BRIDGE IN WEST MELBOURNE USE OF DIPP PILES FOR A NEW SUP BRIDGE IN WEST MELBOURNE If you want to put a photo on the title slide use this layout with colour photos (delete this box) Michael Wei, Jawad Zeerak & David Barton 8 th

More information

Geotechnical Investigation Reports and Foundation Recommendations -Present status in India -Examples

Geotechnical Investigation Reports and Foundation Recommendations -Present status in India -Examples Geotechnical Investigation Reports and Foundation Recommendations -Present status in India -Examples Prof. V.S.Raju (Formerly: Director, IIT Delhi & Professor and Dean, IIT Madras) Email: rajuvs_b@yahoo.com

More information

PE Exam Review - Geotechnical

PE Exam Review - Geotechnical PE Exam Review - Geotechnical Resources and Visual Aids Item Page I. Glossary... 11 II. Parameters... 9 III. Equations....11 IV. Tables, Charts & Diagrams... 14 1. Module 1 - Soil Classification... 14

More information

REPORT STATUS: DATE: Report n :

REPORT STATUS: DATE: Report n : REPORT: Expanded clay LWA in CEA Lightweight fill and thermal insulation products for civil engineering applications. Installation and structural quality control on site. STATUS: Technical report DATE:

More information

Soil Mechanics IX. SOIL IMPROVEMENT

Soil Mechanics IX. SOIL IMPROVEMENT Soil Mechanics IX. SOIL IMPROVEMENT Methods for Soil Improvement Ground Reinforcement Stone Columns Soil Nails Deep Soil Nailing Micropiles (Mini-piles) Jet Grouting Ground Anchors Geosynthetics Fiber

More information

APPROXIMATE ANALYSIS OF PILED RAFT. Rameez Gahlot1, Roshni J John2

APPROXIMATE ANALYSIS OF PILED RAFT. Rameez Gahlot1, Roshni J John2 APPROXIMATE ANALYSIS OF PILED RAFT Rameez Gahlot1, Roshni J John2 1 PG Student, Dept of Civil Engg, Saraswati College of Engineering, Kharghar-4121, India rameezgahlot@gmail.com.2 Head of Civil Engineering

More information

PRACTICAL COURSE III CLASSIFICATION & COMPACTION. Res. Assist. İREM KALIPCILAR

PRACTICAL COURSE III CLASSIFICATION & COMPACTION. Res. Assist. İREM KALIPCILAR PRACTICAL COURSE III CLASSIFICATION & COMPACTION Res. Assist. İREM KALIPCILAR Group index REMINDER GI = (F 200-35)[0.2 + 0.005 (LL-40)]+0.01(F 200-15)(PI-10) FOR GROUP A-2-6 and A-2-7 GI = 0.01(F 200-15)(PI-10)

More information

t ghi yr Cop

t ghi yr Cop In many situations, soil itself is used as a construction material Highway embankments Railway embankments Earth dams Highway / Airfield pavements Backfilled trenches Landfills When soil is used as foundation

More information

CHAPTER 21 SOIL IMPROVEMENT 21.1 INTRODUCTION

CHAPTER 21 SOIL IMPROVEMENT 21.1 INTRODUCTION CHAPTER 21 SOIL IMPROVEMENT 21.1 INTRODUCTION General practice is to use shallow foundations for the foundations of buildings and other such structures, if the soil close to the ground surface possesses

More information

Ground Improvement. Martin G. Taube, P.E., P.G. February 4, 2003

Ground Improvement. Martin G. Taube, P.E., P.G. February 4, 2003 ODOT Geotechnical Information Exchange Seminar Ground Improvement Martin G. Taube, P.E., P.G. February 4, 2003 Nicholson Construction Company 12 McClane Street Cuddy, PA 15031 ph. (412) 221-4500 fax (412)

More information

CE 240 Soil Mechanics & Foundations Lecture 4.1. Soil Compaction: Field work (Das, Ch. 5)

CE 240 Soil Mechanics & Foundations Lecture 4.1. Soil Compaction: Field work (Das, Ch. 5) CE 240 Soil Mechanics & Foundations Lecture 4.1 Soil Compaction: Field work (Das, Ch. 5) Outline of this Lecture 1. Factors controlling degree of compaction 2. Compaction field work 3. Compaction quality

More information

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN FILIPPO MONTANELLI TENAX SPA, ITALY AIGEN ZHAO TENAX CORPORATION, USA PIETRO RIMOLDI TENAX SPA, ITALY ABSTRACT A large scale experimental program

More information

Ground Improvement Specialists

Ground Improvement Specialists is a design-build specialty geotechnical contractor offering expertise on ground improvement for sites with poor soil. We combine value engineering and innovative techniques to deliver practical, sustainable

More information

A POORLY GRADED SAND COMPACTION CASE STUDY

A POORLY GRADED SAND COMPACTION CASE STUDY Proceedings of Softsoils 2014, October, 21-23 rd 2014 A POORLY GRADED SAND COMPACTION CASE STUDY Liu Yu 1, Marcello Djunaidy 2 ABSTRACT: One 350 hectare artificial island using hydraulic dredging sand

More information

Application of Vibro Techniques for Infrastructure Projects in India

Application of Vibro Techniques for Infrastructure Projects in India Application of Vibro Techniques for Infrastructure Projects in India Rainer Wegner Contract Manager, Keller Grundbau GmbH, Germany Dr. V.R. Raju Director, Keller Ground Engineering India Pvt Ltd, India

More information

A Case Study: Foundation Design in Liquefiable Site

A Case Study: Foundation Design in Liquefiable Site RESEARCH ARTICLE OPEN ACCESS A Case Study: Foundation Design in Liquefiable Site Tahar Ayadat* *(Department of Civil Engineering, College of Engineering, PMU University, P.O. Box 1664, Al-Khobar, 31952,

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 9

More information

Earthwork and Ground Technology. Site Improvement

Earthwork and Ground Technology. Site Improvement Earthwork and Ground Technology Site Improvement Slides adapted and upgraded from original presentation slide by College of Engineering, University of Washington. Methods of site improvement Removal and

More information

MONITORING OF SOIL STIFFNESS DURING GROUND IMPROVEMENT USING SEISMIC SURFACE WAVES

MONITORING OF SOIL STIFFNESS DURING GROUND IMPROVEMENT USING SEISMIC SURFACE WAVES . MONITORING OF SOIL STIFFNESS DURING GROUND IMPROVEMENT USING SEISMIC SURFACE WAVES October 2 A L Moxhay, R D Tinsley and J A Sutton A L Moxhay (Principal Author) Ground Improvement Consultant R D Tinsley

More information

Better ZSOIL, Better Geotechnical Analysis

Better ZSOIL, Better Geotechnical Analysis SYMPOSIUM : NUMERICS IN GEOTECHNICS & STRUCTURES 26 YEARS ZSOIL.PC DATE :1-2.09.2011 Better ZSOIL, Better Geotechnical Analysis Practice of Pile Foundation Treatment Based on ZSOIL.PC YIN JI 1,2 Email:sh_geofem@hotmail.com

More information

Spectrum of Axles Approach

Spectrum of Axles Approach Spectrum of Axles Approach Typical Axle Load Spectrum Axle Load (kn) Single Number of Axles Tandem Tridem Quad 50 60 5,000 400 100 5 61 80 3,000 2,000 500 10 81 100 200 5,000 800 30 101 120 50 4,000 1,000

More information

SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL

SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL SECTION XXXXX AGGREGATE PIERS PART 1 - GENERAL 1.1 RELATED DOCUMENTS: Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 00 and Division

More information

Lateral Loads on Micropiles. Thomas Richards Nicholson Construction Company

Lateral Loads on Micropiles. Thomas Richards Nicholson Construction Company Lateral Loads on Micropiles Thomas Richards Nicholson Construction Company Micropile Names Micropile ( DFI & FHWA) = Pin Pile SM ( Nicholson) = Minipile (previously used by Hayward Baker and used in UK)

More information

GEO TECHNICAL INVESTIGATION REPORT (1449-R2-NALANDA UNIVERSITY)

GEO TECHNICAL INVESTIGATION REPORT (1449-R2-NALANDA UNIVERSITY) GEO TECHNICAL INVESTIGATION REPORT (1449-R2-NALANDA UNIVERSITY) AT THE SITE FOR PROPOSED SITE FOR NEW CAMPUS OF NALANDA UNIVERSITY, RAJGIR, DISTT. NALANDA, FOR UNIVERSITY ENGINEER NALANDA UNIVERSITY, COUNCIL

More information

Downloaded from Downloaded from /1

Downloaded from  Downloaded from  /1 PURWANCHAL UNIVERSITY VI SEMESTER FINAL EXAMINATION-2003 LEVEL : B. E. (Civil) SUBJECT: BEG359CI, Foundation Engineering. Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Introduction to Foundations on Fill and Backfilling

Introduction to Foundations on Fill and Backfilling Introduction to Foundations on Fill and Backfilling Course No: G01-003 Credit: 1 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 9 Greyridge Farm Court

More information

TUNNEL LINER PLATE INTRODUCTION GENERAL APPLICATIONS CHAPTER 11

TUNNEL LINER PLATE INTRODUCTION GENERAL APPLICATIONS CHAPTER 11 CHAPTER 11 INTRODUCTION The open-trench method of placing underground conduits is commonly used on new construction of culverts, sewers and underpasses. Interference with traffic, as well as inconvenience

More information

Ground Improvement Piling Piled Retaining Walls Enlarged Head Piles Innovations.

Ground Improvement Piling Piled Retaining Walls Enlarged Head Piles Innovations. Ground Improvement Piling Piled Retaining Walls Enlarged Head Piles Innovations www.keller-foundations.co.uk 4 Ground Improvement Solutions Introduction Ground Improvement Solutions Keller Ground Engineering

More information

Challenges in Design and Construction of Deep Excavation With Case Studies - KVMRT in KL Limestone

Challenges in Design and Construction of Deep Excavation With Case Studies - KVMRT in KL Limestone Challenges in Design and Construction of Deep Excavation With Case Studies - KVMRT in KL Limestone Gue See Sew G&P Professionals Sdn Bhd www.gnpgroup.com.my 20 July 2016 CONTENTS INTRODUCTION SOIL PARAMETERS

More information

Prof. Dipl.-Ing. H. Quick Ingenieure und Geologen GmbH provides geotechnical engineering services e. g. for high-rise buildings in Germany and abroad.

Prof. Dipl.-Ing. H. Quick Ingenieure und Geologen GmbH provides geotechnical engineering services e. g. for high-rise buildings in Germany and abroad. Prof. Dipl.-Ing. Hubert Quick City Hall of Dubai, March, 7 th, 2005 o Prof. Dipl.-Ing. H. Quick Ingenieure und Geologen GmbH provides geotechnical engineering services e. g. for high-rise buildings in

More information

CE 6012 Ground Improvement Techniques Question Bank

CE 6012 Ground Improvement Techniques Question Bank CE 6012 Ground Improvement Techniques Question Bank Unit I INTRODUCTION Role of ground improvement in foundation engineering - methods of ground improvement Geotechnical problems in alluvial, laterite

More information

POTENTIAL OF BAMBOO PILE AS REINFORCEMENT OF PEAT SOIL UNDER EMBANKMENT

POTENTIAL OF BAMBOO PILE AS REINFORCEMENT OF PEAT SOIL UNDER EMBANKMENT VOL. 13, NO. 1, JANUARY 218 ISSN 1819-68 26-218 Asian Research Publishing Network (ARPN). All rights reserved. POTENTIAL OF BAMBOO PILE AS REINFORCEMENT OF PEAT SOIL UNDER EMBANKMENT Maulana, Azwar, Rika

More information

Performance assessment of ground improvement with rapid impact compaction

Performance assessment of ground improvement with rapid impact compaction Performance assessment of ground improvement with rapid impact compaction Mohammed M. Mohammed, Firas A. Salman & Roslan Hashim Department of Civil Engineering, Faculty of Engineering, University of Malaya,

More information

Steel screw settlement reduction piles for a raft foundation on soft soil

Steel screw settlement reduction piles for a raft foundation on soft soil Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Alexei Murashev Opus International Consultants Limited, Wellington, New Zealand. Keywords: piled raft, settlement

More information

SUBSOIL IMPROVEMENT WORKS AT DVIZ, HAIPHONG, VIETNAM

SUBSOIL IMPROVEMENT WORKS AT DVIZ, HAIPHONG, VIETNAM Subsoil Improvement Works at DVIZ, Haiphong, Vietnam 3 ALICE MONTULET, LUCIEN HALLEUX AND NGUYEN VAN NGOC SUBSOIL IMPROVEMENT WORKS AT DVIZ, HAIPHONG, VIETNAM ABSTRACT This article describes the subsoil

More information

techie-touch.blogspot.com www.vidyarthiplus.com CE2305 FOUNDATION ENGINEERING 2 MARKS QUESTIONS & ANSWERS 16 MARKS QUESTIONS UNIT -1 1. What are components of total foundation settlement? elastic settlement,

More information

Ground Improvement Techniques: Dynamic Compaction Martin Larisch & Tim Pervan

Ground Improvement Techniques: Dynamic Compaction Martin Larisch & Tim Pervan Ground Improvement Techniques: Dynamic Compaction Martin Larisch & Tim Pervan INSERT DATE HERE Ground Improvement - What is it? Ground Improvement = Black Box? Ground Improvement - Introduction Ground

More information

Development of correlation between dynamic cone resistance and relative density of sand

Development of correlation between dynamic cone resistance and relative density of sand Journal of Civil Engineering (IEB), 42 (1) (214) 63-76 Development of correlation between dynamic cone resistance and relative density of sand Md. Jahangir Alam, Mohammad Shahadat Hossain and Abul Kalam

More information

A STUDY ON GROUND IMPROVEMENT USING STONE COLUMN TECHNIQUE

A STUDY ON GROUND IMPROVEMENT USING STONE COLUMN TECHNIQUE A STUDY ON GROUND IMPROVEMENT USING STONE COLUMN TECHNIQUE Karun Mani 1, Nigee.K 2 U.G Student, Dept, of Civil Engineering, M.A.College of Engineering, Ernakulam, Kerala, India 1 P.G Student, Applied Mechanics

More information

BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY

BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY BEARING CAPACITY IMPROVEMENT USING MICROPILES A CASE STUDY G.L. Sivakumar Babu 1, B. R.Srinivasa Murthy 2, D.S. N. Murthy 3, M.S. Nataraj 4 ABSTRACT Micropiles have been used effectively in many applications

More information

Behavior of Reinforced Embankment on Soft Ground with and without Jet Grouted Soil-Cement Piles

Behavior of Reinforced Embankment on Soft Ground with and without Jet Grouted Soil-Cement Piles Behavior of Reinforced Embankment on Soft Ground with and without Jet Grouted Soil-Cement Piles by 1 Dennes T. Bergado and 2 Glen A. Lorenzo 1 Professor and 2 Doctoral Candidate, respectively Geotechnical

More information

NPTEL Course GROUND IMPROVEMENT USING MICROPILES

NPTEL Course GROUND IMPROVEMENT USING MICROPILES Lecture 22 NPTEL Course GROUND IMPROVEMENT USING MICROPILES Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in Contents

More information

Research Paper PERFORMANCE OF STRIP FOOTING ON SANDY SOIL DUE TO TUNNELING S.Hariswaran 1, K.Premalatha 2, K.Raja 3

Research Paper PERFORMANCE OF STRIP FOOTING ON SANDY SOIL DUE TO TUNNELING S.Hariswaran 1, K.Premalatha 2, K.Raja 3 Research Paper PERFORMANCE OF STRIP FOOTING ON SANDY SOIL DUE TO TUNNELING S.Hariswaran 1, K.Premalatha 2, K.Raja 3 Address for Correspondence 1 Assistant Professor, Department of Civil Engineering, Agni

More information

Characterizing Engineering Properties of Foundry Sands

Characterizing Engineering Properties of Foundry Sands Characterizing Engineering Properties of Foundry Sands Craig H. Benson, PhD, PE Recycled Materials Resource Center University of Washington chbenson@u.washington.edu www.recycledmaterials.org Recycled

More information

PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS

PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS PILE SETTLEMENT ZONES ABOVE AND AROUND TUNNELLING OPERATIONS H.G. Poulos Coffey Geosciences Pty Ltd. ABSTRACT This paper describes briefly the method of analysis of the response of a pile to tunnelling-induced

More information

Chapter 1. Introduction to Engineering Ground Modification. The Need for Engineered Ground Improvement

Chapter 1. Introduction to Engineering Ground Modification. The Need for Engineered Ground Improvement Chapter 1 Introduction to Engineering Ground Modification The Need for Engineered Ground Improvement As more and more land becomes subject to urban or industrial development, good construction sites and

More information

IMPROVEMENT OF LOAD CARRYING CAPACITY OF BC SOIL USING REINFORCED STONE COLUMN

IMPROVEMENT OF LOAD CARRYING CAPACITY OF BC SOIL USING REINFORCED STONE COLUMN IMPROVEMENT OF LOAD CARRYING CAPACITY OF BC SOIL USING REINFORCED STONE COLUMN Prof.HARISH C 1, VINOD B.R 2 MOHD SHAHID HUSSAIN 3 1 Assistant, professor, Department of Civil Engineering, EWIT, Bengaluru,

More information

GROUND IMPROVEMENT SITE INVESTIGATON

GROUND IMPROVEMENT SITE INVESTIGATON GROUND IMPROVEMENT SITE INVESTIGTON November 2009 Lankelma ltd old Harbour arn old Harbour Lane Iden, East Sussex TN31 7UT U.K. T: +44 (0)1797 280050 E: info@lankelma.com www.lankelma.com Gardline Lankelma

More information

Vibroflot Modular Product Range

Vibroflot Modular Product Range NTERNTONL CONSTRUCTON EQUPMENT Vibroflot Modular Product Range Deep Vibro Techniques NTERNTONL CONSTRUCTON EQUPMENT Deep Vibro techniques by CE nternational Construction Equipment CE nternational Construction

More information

Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil

Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil Introduction Example of the Unified Design procedure for use in the September 8, 2014, short course on in Brazil The Unified Design procedure involves two main steps. The first is verifying that the loads

More information

Suitability of Different Materials for Stone Column Construction

Suitability of Different Materials for Stone Column Construction Suitability of Different Materials for Stone Column Construction Dipty Sarin Isaac and Girish M. S. Department of Civil Engineering College of Engineering, Trivandrum, Kerala diptyisaac@yahoo.com, girishmadhavan@yahoo.com

More information

Ground improvement support using Confined aggregate piers in soft soil. Brian Metcalfe, P.E. Director of Engineering Geopier Foundation Company

Ground improvement support using Confined aggregate piers in soft soil. Brian Metcalfe, P.E. Director of Engineering Geopier Foundation Company Ground improvement support using Confined aggregate piers in soft soil Brian Metcalfe, P.E. Director of Engineering Geopier Foundation Company OUTLINE Ground improvement historical perspective Confined

More information

A Vacuum Consolidation Method Application Case for Improving Dredging Slurry

A Vacuum Consolidation Method Application Case for Improving Dredging Slurry A Vacuum Consolidation Method Application Case for Improving Dredging Slurry Liu Yu 1 Ph.D, Geoharbour Group, liuyu@geoharbour.com, CHINA Marcello Djunaidy 2 MT, Geotekindo PT, marcello@geotekindo.com,

More information

WEEK 9 ACTIVITY. Lecture (3 hours) Self Assessment. 34 slides

WEEK 9 ACTIVITY. Lecture (3 hours) Self Assessment. 34 slides WEEK 9 ACTIVITY Lecture (3 hours) 34 slides Self Assessment Site Investigation (ECG513) ARM - 2009 LEARNING OUTCOMES Week 9 : (3H) Coverage : Geophysical Methods, Permeability and Ground Stress measurement.

More information

STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN

STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN STATIC ALTERNATING CYCLIC HORIZONTAL LOAD TESTS ON DRIVEN STEEL PIPE PILES OF FOUNDATIONS FOR HIGHWAY BRIDGES Kouichi TOMISAWA, Civil Engineering Research Institute of Hokkaido, Japan Satoshi NISHIMOTO,

More information

Innovative Soil Reinforcement Method to Control Static and Seismic Settlements

Innovative Soil Reinforcement Method to Control Static and Seismic Settlements Innovative Soil Reinforcement Method to Control Static and Seismic Settlements Mike Majchrzak 1 GE, MASCE, Tom Farrell 2 GE, MASCE, Brian Metcalfe 3, PE MASCE 1 Geotechnical Principal Engineer, Kleinfelder,

More information

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design ctbuh.org/papers Title: Authors: Subject: Keyword: Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design Jinoh Won, Deputy General Manager, Samsung C&T Corporation

More information

CE 240 Soil Mechanics & Foundations Lecture 3.3. Soil Compaction (Das, Ch. 5)

CE 240 Soil Mechanics & Foundations Lecture 3.3. Soil Compaction (Das, Ch. 5) CE 240 Soil Mechanics & Foundations Lecture 3.3 Soil Compaction (Das, Ch. 5) Class Outlines Soil compaction introduction Standard Proctor Compaction Test Effect of Compaction Energy Modified Proctor Compaction

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular

More information

Redi Rock Specification and Installation Manual

Redi Rock Specification and Installation Manual Redi Rock Specification and Installation Manual 1.0 General Scope This Specification covers the Design, Materials and Installation of Redi Rock modular block Retaining and Freestanding Wall systems as

More information

Conventional Paper II (a) Draw a crank rocker mechanism and identify all instantaneous centers.

Conventional Paper II (a) Draw a crank rocker mechanism and identify all instantaneous centers. Conventional Paper II-2014 1. Answer of the following (Each part carries 4 marks): (a) Draw a crank rocker mechanism and identify all instantaneous centers. (b) A steel tube 2.5 cm external diameter and

More information

Construction Procedures

Construction Procedures Construction Procedures 2014 Rev. 1.6 1 Introduction This manual presents the methods and procedures necessary for the proper erection of a LOCK+LOAD retaining wall. problems later during the service life

More information

NUMERICAL STUDY OF OFFSHORE SKIRTED FOUNDATIONS SUBJECTED TO COMBINED LOADING

NUMERICAL STUDY OF OFFSHORE SKIRTED FOUNDATIONS SUBJECTED TO COMBINED LOADING NUMERICAL STUDY OF OFFSHORE SKIRTED FOUNDATIONS SUBJECTED TO COMBINED LOADING S.K. NAIK 1, S.M. DASAKA 2, and V.B. CHAUHAN 3 1 Former Post Graduate Student, Department of Civil Engineering, Indian Institute

More information

2.1 Backfill - General

2.1 Backfill - General 2.1 Backfill - General Excavations are made for the purpose of constructing bridge substructure elements, and consequently requiring competent backfill material. The backfill material must be adequately

More information

GROUND IMPROVEMENT USING DYNAMIC REPLACEMENT FOR NCIG CET3 COAL STOCKYARD

GROUND IMPROVEMENT USING DYNAMIC REPLACEMENT FOR NCIG CET3 COAL STOCKYARD FOR NCIG CET3 COAL STOCKYARD Charles CH Chua 1, Ming Lai 2, Graeme Hoffmann 2 and Brett Hawkins 1 1 Connell Hatch, Australia, 2 Keller Ground Engineering Pty Ltd ABSTRACT This paper presents an overview

More information

Converting slurry tailings facilities to filtered dry stacks a case history. John Lupo Newmont Mining Corporation Marcelo Mussé - Consultant

Converting slurry tailings facilities to filtered dry stacks a case history. John Lupo Newmont Mining Corporation Marcelo Mussé - Consultant Converting slurry tailings facilities to filtered dry stacks a case history John Lupo Newmont Mining Corporation Marcelo Mussé - Consultant Objectives General discussion on the geotechnical issues. Case

More information

Tasman Retaining Wall System

Tasman Retaining Wall System Tasman Retaining Wall System The Tasman Retaining Wall System incorporates purpose made corners and capping units to provide classical reconstructed stone retaining walls for any landscape situation. From

More information

SigmaJoint. The Ultimate Joint J. Armouring & Load Transfer Systems. Metallic Leave-In-Place Contraction & Day Joints for INDUSTRIAL CONCRETE FLOORS

SigmaJoint. The Ultimate Joint J. Armouring & Load Transfer Systems. Metallic Leave-In-Place Contraction & Day Joints for INDUSTRIAL CONCRETE FLOORS SigmaJoint Metallic Leave-In-Place Contraction & Day Joints for INDUSTRIAL CONCRETE FLOORS TYPE - D TYPE - O The Ultimate Joint J Armouring & Load Transfer Systems SigmaJoint Introduction Joints are unavoidable

More information

Module 4:Preloading and vertical drains Lecture 10:Introduction to preloading and vertical drains. The Lecture Contains:

Module 4:Preloading and vertical drains Lecture 10:Introduction to preloading and vertical drains. The Lecture Contains: The Lecture Contains: Preloading and vertical drains file:///d /Dr.patra/ground_improvement_techniques/lecture10/10_1.htm [10/11/2011 4:24:16 PM] Pre, loading and vertical drains Preloading Increases the

More information

COMPACTED CLAY LINERS

COMPACTED CLAY LINERS Technical Reference Document for Liquid Manure Storage Structures COMPACTED CLAY LINERS Table of Contents SECTION 1 - PURPOSE AND SCOPE 1.1. Purpose of the Technical Reference Document 1.2. Requirement

More information

Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators

Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators 7th European FWD Users Group 9 th International Conference on Bearing Capacity of Roads, Railways and Airfields Trondheim,

More information

Soil Improvement Using Vibro-Replacement

Soil Improvement Using Vibro-Replacement d GEOTECHNICAL ENGINEERING 1 Soil Improvement Using Vibro-Replacement Dustin S. Spears Abstract A major role of geotechnical engineering involves finding ways to stabilize soils under various conditions.

More information

RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS

RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS SUMMARY David Hein, P. Eng., Principal Engineer Applied Research Associates, Inc. 541 Eglinton

More information

Grouting Bilfinger Spezialtiefbau GmbH

Grouting Bilfinger Spezialtiefbau GmbH Grouting Bilfinger Spezialtiefbau GmbH Goldsteinstrasse 114 D-60528 Frankfurt Phone: +49 69 6688-345 Fax: +49 69 6688-277 Email: info.spezialtiefbau@bilfinger.com www.foundation-engineering.bilfinger.com

More information

3.1 Acceptable Acceptable to the authority administering this standard or to the parties concluding the purchase contract, as relevant.

3.1 Acceptable Acceptable to the authority administering this standard or to the parties concluding the purchase contract, as relevant. TEST PROCEDURE PROCEDURE FOR MANUFACTURING TEST SPECIMENS FROM BITUMEN STABILISED MATERIAL (BSM) USING VIBRATORY HAMMER COMPACTION (August 2016 Draft. Compiled by BSM Laboratories) 1 SCOPE This method

More information

NPTEL Course GROUND IMPROVEMENT

NPTEL Course GROUND IMPROVEMENT Lecture 8 NPTEL Course GROUND IMPROVEMENT Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in Vibro-compaction methods Compaction

More information

Structural Design Calculations for: Lot 35 DP: Reliance Crescent, Beachlands, Auckland

Structural Design Calculations for: Lot 35 DP: Reliance Crescent, Beachlands, Auckland Structural Design Calculations for: Lot 35 DP: 449888 23 Reliance Crescent, Beachlands, Auckland Job #: 34541 May 2013 EDGE BEAM RAFT DESIGN - EDGE BEAM : 34541 Date: 21/05/2013 : 23

More information

BEHAVIOR IMPROVEMENT OF FOOTINGS ON SOFT CLAY UTILIZING GEOFOAM

BEHAVIOR IMPROVEMENT OF FOOTINGS ON SOFT CLAY UTILIZING GEOFOAM BEHAVIOR IMPROVEMENT OF FOOTINGS ON SOFT CLAY UTILIZING GEOFOAM G. E. ABDELRAHMAN AND A. F. ELRAGI Department of Civil Engineering, Fayoum University Fayoum, Egypt ABSTRACT: EPS, expanded poly-styrene

More information

A Case History of Super-Large Scale Bridge Pile Foundation in Soft Soil

A Case History of Super-Large Scale Bridge Pile Foundation in Soft Soil Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in Geotechnical Engineering (213) - Seventh International Conference on Case Histories in Geotechnical

More information

The Steel Construction Institute

The Steel Construction Institute Version Date of Issue Purpose Author Technical Reviewer Approved 1 21 Apr 08 Issued to client LPN WIS BAB 2 3 The Steel Construction Institute REPORT TO CORUS CSD SLIMFLOR COMPENDIUM DOCUMENT RT1147 VERSION

More information

Subsurface Investigations PDCA Professor s Driven Pile Institute. Loren R. Anderson Utah State University June 25, 2015

Subsurface Investigations PDCA Professor s Driven Pile Institute. Loren R. Anderson Utah State University June 25, 2015 Subsurface Investigations PDCA Professor s Driven Pile Institute Loren R. Anderson Utah State University June 25, 2015 Ralph B. Peck (1962) Subsurface engineering is an art; soil mechanics is an engineering

More information

Geotech Services, X-18, MIDC, Hingna, Nagpur, Maharashtra. Discipline Mechanical Testing Issue Date

Geotech Services, X-18, MIDC, Hingna, Nagpur, Maharashtra. Discipline Mechanical Testing Issue Date Last Amended on 11.01.2014 Page 1 of 14 I. BUILDING MATERIALS 1. Soil / Rock Plate Load Test IS 1888 1982 (Reaffirmed-2007) Cyclic Plate Load Test IS 5249 1992 Clause 6 (Reaffirmed-2010) Load Test On In-Situ

More information

Evaluation of field compaction of a filtered residue from alumina production K.D. Nery UFMG, Brazil

Evaluation of field compaction of a filtered residue from alumina production K.D. Nery UFMG, Brazil Evaluation of field compaction of a filtered residue from alumina production K.D. Nery UFMG, Brazil L.F.S. Villar UFMG, Brazil R.A. Moreno Companhia Brasileira de Aluminio, Brazil J.P. Freire Neto Pimenta

More information

SECTION SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM

SECTION SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM SECTION 32 32 23 SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM PART 1: GENERAL 1.01 Scope Work includes furnishing all materials, labor, equipment, and supervision to install a Stonebridge segmental

More information

APPENDIX B ABC STRUCTURES DESIGN GUIDE

APPENDIX B ABC STRUCTURES DESIGN GUIDE APPENDIX B ABC STRUCTURES DESIGN GUIDE The Cohos Evamy Partners TABLE OF CONTENTS Page No. DISCLAIMER... I 1. STRUCTURAL DESIGN GUIDELINES... 1 2. GENERAL REQUIREMENTS (FIGURE B.2, STEP 1)... 1 3. GENERAL

More information

5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN

5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN 5-20 FOUNDATION REPORT/GEOTECHNICAL DESIGN REPORT CHECKLIST FOR EARTH RETAINING SYSTEMS Introduction This checklist was developed to assist the geotechnical project professionals in preparing the Foundation

More information

Effective improvement depth for ground treated with rapid impact compaction

Effective improvement depth for ground treated with rapid impact compaction Scientific Research and Essays Vol. 5(18), pp. 2686-2693, 18 September, 2010 Available online at http://www.academicjournals.org/sre ISSN 1992-2248 2010 Academic Journals Full Length Research Paper Effective

More information

Licensing International Engineers into the Profession (LIEP)

Licensing International Engineers into the Profession (LIEP) List and Description of Courses for approval of Equivalence in lieu of PEO s CEP Civil Engineering Course Descriptions (Revised Proposal) GROUP A 98-CIV -A1 Elementary Structural Analysis: Computation

More information

Colbonddrain. Colbonddrain. Next Generation. Installation SOIL CONSOLIDATION. Colbond. Proven Performance. Unique Core Design

Colbonddrain. Colbonddrain. Next Generation. Installation SOIL CONSOLIDATION. Colbond. Proven Performance.  Unique Core Design is a leading producer of high-quality synthetic nonwovens for flooring, automotive and construction applications and three-dimensional polymeric mats and composites for civil engineering, building and

More information

MULTI-PLATE PRODUCT GUIDE

MULTI-PLATE PRODUCT GUIDE ARMTEC.COM DRAINAGE SOLUTIONS AND WATER TREATMENT / MULTI-PLATE MULTI-PLATE PRODUCT GUIDE VERSATILE AND ECONOMICAL PIPE AND BRIDGE PRODUCT MADE OF CURVED, CORRUGATED GALVANIZED STEEL PLATES Variety of

More information

GEOGRID REINFORCED RAILWAYS EMBANKMENTS: DESIGN CONCEPTS AND EXPERIMENTAL TEST RESULTS

GEOGRID REINFORCED RAILWAYS EMBANKMENTS: DESIGN CONCEPTS AND EXPERIMENTAL TEST RESULTS GEOGRID REINFORCED RAILWAYS EMBANKMENTS: DESIGN CONCEPTS AND EXPERIMENTAL TEST RESULTS Filippo Montanelli Engineer Sales Director - Geosynthetics Division TENAX Spa, Viganò (Lecco) - Italy Filippo Montanelli,

More information

Characterisation of in situ soils based on the resilient soil modulus obtained using Light Weight Deflectometer (LWD)

Characterisation of in situ soils based on the resilient soil modulus obtained using Light Weight Deflectometer (LWD) Proc. 20 th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Characterisation of in situ soils based on the resilient soil modulus obtained using Light Weight Deflectometer N Barounis Cook

More information

FEATURES & BENEFITS OF ARMTEC TUNNEL LINER PLATE

FEATURES & BENEFITS OF ARMTEC TUNNEL LINER PLATE TUNNEL LINER PLATE FEATURES & BENEFITS OF ARMTEC TUNNEL LINER PLATE SAFE ECONOMICAL VERSATILE SIMPLE EASY TO HANDLE READILY AVAILABLE All underground work can be undertaken from within the assembled shell.

More information

CIV E Geotechnical Engineering I Consolidation

CIV E Geotechnical Engineering I Consolidation Purpose Determine the magnitude and time rate of settlement for a compressible cohesive soil. Required reading Das 2006 Sections 10.4 to 10.16 (pages 312 to 358). Theory Bringing soil samples into the

More information

Increased Lateral Abutment Resistance from Gravel Backfills of Limited Width

Increased Lateral Abutment Resistance from Gravel Backfills of Limited Width Increased Lateral Abutment Resistance from Gravel Backfills of Limited Width Interim Report on Load Tests Performed for Work Task 3 by Kyle M. Rollins, Ku Hyon Kwon and Travis M. Gerber Department of Civil

More information