Geoengineering and Terrestrial Systems

Size: px
Start display at page:

Download "Geoengineering and Terrestrial Systems"

Transcription

1 Geoengineering and Terrestrial Systems Rob Jackson IGBP meeting 31 January, 2011 William H. Schlesinger Duke Biology

2 Solar Radiation Management (Shepherd et al. 2009): 1) Stratospheric injection of sulfates or other chemicals; regional or global scale 2) Albedo management through brightening of ecosystems or plants, most often proposed for deserts or crops 3) Space reflectors global scale reduction in solar radiations 4) Cloud brightening, primarily over the oceans (not considered further here.

3 Carbon Dioxide Removal (CDR) on land: 1) Land-use management to protect or enhance sinks. 2) Biomass for energy use and carbon capture and storage (CCS) 3) Enhanced natural weathering (e.g., distributing silicate minerals). Comparable in scale to current mining activities. Ecological effects include mining disturbance (land, streams, etc.) and likely increases in soil ph. Not examined further here. 4) Industrial CO 2 removal primary issues are chemical wastes and carbon sequestration/storage underground or in oceans (not examined further here)

4 For terrestrial ecosystems, you can rarely alter solar radiation without changing the carbon balance, and you can t normally manipulate the carbon balance without altering albedo and the energy balance. Jackson et al Env Res Letters; Jackson & Salzman 2010 IS&T

5 For sunlight management, some possible direct ecological effects of a high CO 2, low T world: 1) Enhanced growth of weedy species on land and reduced plant diversity (e.g., Smith et al. 2000; Mohan et al. 2006). 2) Modestly greater global NPP based on the balance of increased photosynthesis and reduced respiration, in some sense the analog of FACE experiments today. Experiments, modeling work, and data synthesis are needed here. 3) Ocean acidification is certain, with possible disruption of trophic structure, primary production, and reef-building organisms. Which freshwater ecosystems, such as the Great Lakes, are particularly vulnerable to acidification? 4) Changes in soil chemistry, ph, and possibly rates of weathering. Again, the high-co2 literature can help here, but more work needed.

6 Sunlight Management, Stratospheric Dust or Mirrors: Advantages: relatively inexpensive, likely feasible, fairly cheap 1) The Pinatubo analogy M tons of SO 2 into the stratosphere. The earth cooled by ~1 F for over a year. Pinatubo also caused a global drought and reduced river flows and soil moisture (Trenberth and Dai 2007). Precipitation is more sensitive to sunlight than T is. 2) Stratospheric chemistry. Offsetting a doubling of CO 2 could delay recovery of the Antarctic ozone hole by 30 to 70 years and increase Arctic ozone depletion throughout this century (Tilmes et al. 2007). Altered UV radiation affects ecosystems (e.g., Caldwell et al. 2003). 3) Possible global or regional effects on weather patterns. Relatively stronger effect of sunlight reduction in the tropics than at the poles. Potentially reduced amplitude of seasonal cycle, altered T gradients. Uncertain effects on monsoons and climate patterns; simulations by Lunt et al suggest a reduced intensity of El Niño events. Especially true if we geoengineer regionally, particularly the arctic alone.

7 Sunlight Management, Stratospheric Dust or Mirrors: (continued) 4) Balance of diffuse and direct-beam radiation. Reducing sunlight by a few percent will reduce primary production in some systems, but not everywhere. Unclear regional and global effects on NPP (e.g., Pinatubo). 5) The termination problem. Terrestrial ecosystems will be harmed more by abrupt climate change than by gradual change in most cases. 6) Acid Rain unlikely to be a major ecological issue because the quantities will be <10% and likely <1% of global deposition.

8 Solar Radiation Management through Crop Brightening Currently feasible. Lenton and Vaughan (2009 Atm Chem Phys Disc) estimate a possible benefit of -1 W m -2 if all cropland albedo increases by 0.08 and if savanna and grassland albedo increases by See other papers (e.g., Woodward et al Current Biology). Ecological Research Needs: 1) Photosynthesis. In which systems would this help, harm, or have no effect on yields (i.e., light-limited ecosystems)? 2) Water use. In which systems would this aid in drought tolerance, a major thrust of current breeding? 3) Energy-balance effects and climate feedbacks (e.g., convection; strongly scale-dependent).

9 SRM through Albedo or CDR through Afforestation in Deserts 1) Gaskill (2004) proposed covering all deserts with a reflective polyethylene-aluminum surface to double albedo to 0.8. Global benefit: W m-2. Cost U.S. $Trillions/yr. 2) Ornstein et al. (2009 Climatic Change) proposed turning the Sahara and Australian deserts into forests by irrigation with desalinated seawater. Cost U.S. $Trillions/yr; requires a land area the size of the U.S. to offset global fossil fuel emissions. Doomed to fail, and an ecologically terrible idea. In CA, opposition to single concentrated solar facilities has been strong.

10 1) CO 2 Removal : Land-use management to protect sinks Reducing Emissions from Deforestation and Degradation (REDD). Deforestation and forest degradation contributes ~1.2 Pg C to the atmosphere each year, approximately one-seventh of fossil fuel emissions (van der Werf et al Nature Geosciences) Co-benefits: In addition to C storage, benefits include biodiversity, water recycling, and, likely, additional biophysical cooling.

11 Uncertain terrestrial sink of ~200 ppm CO 2 by We must narrow this uncertainty. Friedlingstein et al. 2006; C4MIP comparison. Eleven coupled climatecarbon models varied by almost 200 ppm CO 2 purely on the effects of climate change. Most models varied by ppm in 2100.

12 Norby et al PNAS How long will the stimulation of NPP by CO2 persist? and how long must experiments be run to answer that question?

13 Land-use management to enhance sinks: Afforestation and forest management For U.S. mitigation, a carbon price of $50 per tco 2 e could lead to afforestation of 16M ha of cropland (Jackson and Baker 2010 BioScience), even with the Renewable Fuel Standard in place. You cannot alter C storage on land without altering water cycling and availability. Change in annual runoff (mm) (mm) Jackson et al Science Plantation age (years)

14 Land-use management to enhance sinks: Afforestation and forest management. Land-use change alters albedo and the energy balance along with carbon. We need research on full radiative accounting for land-based activities. Southeastern U.S. Albedo Month Jackson et al ERL

15 Difference in July shortwave albedo paired pixels Mean difference in summer albedo is fairly modest (0.03)

16 Difference in January shortwave albedo Mixed forests versus grasslands Mean difference in albedo is 0.16, but strongly bimodal (0.05, 0.25)

17 2) CO 2 Removal: Biomass Energy and C Capture & Storage One of only a few opportunities to go carbon negative on a large scale; Shepherd et al. (2009 Royal Soc.) estimate the potential as large, a cumulative ~100 ppm of atm. CO 2. Includes the need for safe and affordable CCS technologies. Ecological Research Needs: 1) Competition for land use (food, biofuels, etc.) 2) How much of the unharvested C would have gone to soil C pools? 3) Sustainability and biodiversity where will the biomass come from? 4) Some negatives land-area intensive; low-density energy source; transportation costs; loss of soil nutrients through time. While industrial CO 2 removal may be more benign and will require far less land, biological removal by plants will probably be cheaper and is available now.

18 Biomass Available Now: Waste to Energy with CCS Chandel et al., in prep; 60% of waste from 5 largest landfills per state

19 Other possible drivers of WTE-CCS besides a carbon price Chandel et al., in prep

20 What is the fate of forest biomass and native habitats?

21 Which biomass is most vulnerable to loss naturally? And can we preferentially use it? MOD14CMG product for Veron et al., submitted

22 Annual electricity demand and energy released in fires Between 2003 and 2006, global fires consumed ~8500 PJ y -1 of energy, equivalent to ~47% of global electricity consumption and >100% of national consumption in 55 countries. Fire energy release: Ag- Non-ag Current electricity demand

Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies

Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies Cheng-En Yang The University of Tennessee Oak Ridge National Laboratory Collaborators: Forrest Hoffman, Simone

More information

Section 10: Action. Outline Mitigation Adaptation

Section 10: Action. Outline Mitigation Adaptation Section 10: Action Outline 10.1 Mitigation 10.2 Adaptation 10.2.2 how to reduce and eliminate GHG emissions? 1. reduce emissions: o 1.a using current technologies: wedges Pathways to stabilizing CO2 emissions

More information

Chapter 3 Ecosystem Ecology. Monday, May 16, 16

Chapter 3 Ecosystem Ecology. Monday, May 16, 16 Chapter 3 Ecosystem Ecology Populations, Communities, and Ecosystems Ø Members of a species interact in groups called populations. Ø Populations of different species living and interacting in an area form

More information

12/6/16. Section 10: Action how to reduce and eliminate GHG emissions? 1. reduce emissions: o 1.a using current technologies: wedges

12/6/16. Section 10: Action how to reduce and eliminate GHG emissions? 1. reduce emissions: o 1.a using current technologies: wedges Section 10: Action Outline 10.1 Mitigation 10.2 Adaptation 10.2.2 how to reduce and eliminate GHG emissions? 1. reduce emissions: o 1.a using current technologies: wedges Pathways to stabilizing CO2 emissions

More information

The Carbon Cycle and Energy Security

The Carbon Cycle and Energy Security The Carbon Cycle and Energy Security EQ1: How does the carbon cycle operate to maintain planetary health? 6 & 8 markers = AO1. 12 & 20 markers = AO1 and AO2 larger weighting Carbon cycle Fluxes IPCC Anthropogenic

More information

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9.

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9. Next 3 weeks Tu 2/24: Terrestrial CO 2 uptake (LJ) Th 2/26: Paper discussion (Solomon et al., Irreversible climate change due to CO 2 emissions, 2009, PNAS) Tu 3/3: Geoengineering (JS+LJ) Th 3/5: Geoengineering

More information

Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks. Cheng-En Yang Forrest M. Hoffman Joshua S.

Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks. Cheng-En Yang Forrest M. Hoffman Joshua S. Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks Cheng-En Yang Forrest M. Hoffman Joshua S. Fu Geoengineering Strategies to mitigate the increasing radiative forcing

More information

Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters. Ben Kravitz

Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters. Ben Kravitz Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters Ben Kravitz bkravitz@carnegie.stanford.edu Colleagues Jason Blackstock Ken Caldeira Chris Fletcher David Keith Jane

More information

Geoengineering and the Future Ozone Layer

Geoengineering and the Future Ozone Layer Geoengineering and the Future Ozone Layer Simone Tilmes Jadwiga (Yaga) Richter, Mike Mills (NCAR) Ben Kravitz (PNNL) and Doug MacMartin (Caltech) National Center for Atmospheric Research (NCAR) Boulder,

More information

Tropical Forests, Climate Change and Perspectives of Geo-Engineering in Africa

Tropical Forests, Climate Change and Perspectives of Geo-Engineering in Africa 5th Climate Engineering Summer School Heidelberg, Germany Tropical Forests, Climate Change and Perspectives of Geo-Engineering in Africa Dr Cush Ngonzo Luwesi (Kenyatta University) Ms. Rose Adhiambo Akombo

More information

GEOENGINEERING FOR DECISION MAKERS. Bob Olson Senior Fellow Institute for Alternative Futures

GEOENGINEERING FOR DECISION MAKERS. Bob Olson Senior Fellow Institute for Alternative Futures GEOENGINEERING FOR DECISION MAKERS Bob Olson Senior Fellow Institute for Alternative Futures A Framework for Thinking About Geoengineering Geoengineering Technologies Solar Radiation Management (SRM) Stratospheric

More information

ATM S 211 Final Examination June 4, 2007

ATM S 211 Final Examination June 4, 2007 ATM S 211 Final Examination June 4, 2007 Name This examination consists of a total of 100 points. In each of the first two sections, you have a choice of which questions to answer. Please note that you

More information

PCC 587, Fundamentals of Climate Change

PCC 587, Fundamentals of Climate Change PCC 587, Fundamentals of Climate Change DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES LAST DAY OF LECTURES!: 12/4/2013 Climate engineering! AKA geoengineering The intentional, large-scale manipulation

More information

Section 6.1 & 6.2 A changing Landscape

Section 6.1 & 6.2 A changing Landscape Section 6.1 & 6.2 A changing Landscape Human Population and Natural Resource Use With increased human population, we are using more and more of the Earth s natural resources. Two types of Resources are:

More information

Global Environmental Issues

Global Environmental Issues Global Environmental Issues Purpose of this material The environment encompasses the whole of life on earth and the complex interactions that link the living world with the physical world. In a general

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface 4.4 CLIMATE CHANGE Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface Greenhouse Gases (GHG) Carbon dioxide and water vapour are the most significant greenhouse

More information

Geoengineering? Two main solutions

Geoengineering? Two main solutions Geoengineering? Definition = intentional large scale manipulation of the environment Can we buy time by cooling the planet artificially? Initially taboo idea for scientists but is getting more attention

More information

Geo-engineering Ein Weg um die globale Erwärmung zu dämpfen?

Geo-engineering Ein Weg um die globale Erwärmung zu dämpfen? Geo-engineering Ein Weg um die globale Erwärmung zu dämpfen? Rolf Müller 1 and Simone Tilmes 2 1 ICG-1, Forschungszentrum Jülich 2 ACD, NCAR, Boulder, CO, USA DACH, Bonn, 23 September 2009 Newsweek, 27

More information

RESEARCH PRIORITIES FOR 2016

RESEARCH PRIORITIES FOR 2016 National Environmental Science Programme RESEARCH PRIORITIES FOR 2016 Note that bolded dot points are considered high priority. CLEAN AIR AND URBAN LANDSCAPES: RESEARCH PRIORITIES Increasing our understanding

More information

The relationship between land use and climate change:

The relationship between land use and climate change: The relationship between land use and climate change: a historical overview By Rik Leemans Diatoms on the floating leaves of the waterlilly PhD Dynamics of boreal forests (seedlings & trees) IIASA Laxenburg

More information

CHAPTER 49 ECOSYSTEMS

CHAPTER 49 ECOSYSTEMS CHAPTER 49 ECOSYSTEMS I. INTRODUCTION A. An ecosystem 1. Whereas a community consists of all the organisms in a certain boundary that are close enough for some sort of interaction, an ecosystem: -is defined

More information

Ecosystems: What Are They and How Do They Work? Chapter 3

Ecosystems: What Are They and How Do They Work? Chapter 3 Ecosystems: What Are They and How Do They Work? Chapter 3 Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface Contain about 50% of the world s known plant

More information

Geoengineering. GAO s look into federal efforts related to geoengineering. For more information, contact Frank Rusco or

Geoengineering. GAO s look into federal efforts related to geoengineering. For more information, contact Frank Rusco or Geoengineering GAO s look into federal efforts related to geoengineering For more information, contact Frank Rusco 202-512-4597 or ruscof@gao.gov 1 GAO Work Related to Geoengineering December 2009: Began

More information

Introduction to Ecology p

Introduction to Ecology p Introduction to Ecology 19-1 p. 359-365 Essential Question 1. Identify three ways in which the expanding human population impacts the environment. 2. Describe the hierarchical levels of organization in

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle In a nutshell We are mining fossil CO 2 and titrating into the oceans, (buffered by acid-base chemistry) Much of the fossil CO 2 will remain in the atmosphere for thousands of years

More information

CCI+ Biomass First User Workshop. Climate Models Requirements for Biomass Observations. P. Ciais and D. Goll

CCI+ Biomass First User Workshop. Climate Models Requirements for Biomass Observations. P. Ciais and D. Goll CCI+ Biomass First User Workshop Climate Models Requirements for Biomass Observations P. Ciais and D. Goll Thanks to LSCE, U Leicester and U. Sheffield colleagues 1 Role of biomass in Earth System Models

More information

Chemistry in the Environment

Chemistry in the Environment Chemistry in the Environment Section 261 Earth s Atmosphere In your textbook, read about the terms used to describe the physical and chemical properties of Earth s atmosphere Complete each statement 1

More information

Dangerous Climate Change: Tipping Points and Radical Geoengineering. Peter Cox Professor of Climate System Dynamics University of Exeter

Dangerous Climate Change: Tipping Points and Radical Geoengineering. Peter Cox Professor of Climate System Dynamics University of Exeter Dangerous Climate Change: Tipping Points and Radical Geoengineering Peter Cox Professor of Climate System Dynamics University of Exeter United Nations Framework Convention on Climate Change (UNFCCC) The

More information

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. Chapter 7 Climate and Biodiversity

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. Chapter 7 Climate and Biodiversity MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17 TH Chapter 7 Climate and Biodiversity Core Case Study: Different Climates Support Different Life Forms Climate -- long-term temperature and precipitation patterns

More information

Climate and Biodiversity

Climate and Biodiversity LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 7 Climate and Biodiversity Core Case Study: A Temperate Deciduous Forest Why do forests grow in some areas and not others? Climate Tropical

More information

The Global Environmental Change: Carbon Sequestration

The Global Environmental Change: Carbon Sequestration The Global Environmental Change: Carbon Sequestration Sources of Anthropogenic Greenhouse Gas Emissions Carbon Sequestration The global C politics Summary Sources of Anthropogenic Greenhouse Gas Emissions

More information

Ecosystems and the Biosphere Outline

Ecosystems and the Biosphere Outline Ecosystems and the Biosphere Outline Ecosystems Processes in an ecosystem Production, respiration, decomposition How energy and nutrients move through an ecosystem Biosphere Biogeochemical Cycles Gaia

More information

The Water-Climate Nexus and Food Security in the Americas. Michael Clegg University of California, Irvine

The Water-Climate Nexus and Food Security in the Americas. Michael Clegg University of California, Irvine The Water-Climate Nexus and Food Security in the Americas Michael Clegg University of California, Irvine The Global Challenge Global population is projected to increase by about 30% between now and 2050

More information

Energy Tutorial: Geoengineering 101

Energy Tutorial: Geoengineering 101 GLOBAL CLIMATE AND ENERGY PROJECT STANFORD UNIVERSITY Energy Tutorial: Geoengineering 101 GCEP RESEARCH SYMPOSIUM 2012 STANFORD, CA Ken Caldeira Staff Scientist Carnegie Institution Professor (by courtesy)

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division Investigating Land Use Land Cover Change in CESM Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups for their many contributions)

More information

Geoengineering the climate: an overview and update

Geoengineering the climate: an overview and update 370, 4166 4175 doi:10.1098/rsta.2012.0186 REVIEW Geoengineering the climate: an overview and update B Y J. G. SHEPHERD* School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,

More information

Ecology Basics. AP Environmental Science Mr. Schuller

Ecology Basics. AP Environmental Science Mr. Schuller Ecology Basics AP Environmental Science Mr. Schuller 1. Ecology is the study of systems and their interactions among organisms and their interactions with their environment. Biotic (Organisms) What are

More information

Enhancing the science basis

Enhancing the science basis Enhancing the science basis Guy Midgley, Ghassem Asnar, Anantha Duraiappah, Andy Haines, Ada Ignaciuk, Anne Larigauderie, Rik Leemans, Corinne Le Quéré, Sybil Seitzinger and Charles Vorosmarty UNFCCC-SBSTA

More information

Climate Dynamics (PCC 587): Climate Forcings

Climate Dynamics (PCC 587): Climate Forcings Climate Dynamics (PCC 587): Climate Forcings DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 7: 10-16-13 Outline of This Topic Climate forcings Things that directly

More information

Carbon Sequestration Why and How?

Carbon Sequestration Why and How? 16 th March 2017 Carbon Sequestration Why and How? Christopher Johns Research Manager Northern Australia and Land Care Research Programme Key Points To achieve the global warming targets set by the Paris

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Environmental Science RESOURCES AND RESOURCE MANAGEMENT

Environmental Science RESOURCES AND RESOURCE MANAGEMENT HS-EVS1-1 Analyze and interpret data to identify the factors that affect sustainable development and natural resource management in Louisiana. RESOURCES AND RESOURCE MANAGEMENT LC-HS-EVS1-1a Identify factors

More information

Biological and Land-Based Strategies for Geoengineering Earth s Climate

Biological and Land-Based Strategies for Geoengineering Earth s Climate TESTIMONY OF ROBERT B. JACKSON DIRECTOR, CENTER ON GLOBAL CHANGE NICHOLAS PROFESSOR OF GLOBAL ENVIRONMENTAL CHANGE & BIOLOGY DUKE UNIVERSITY before the SCIENCE AND TECHNOLOGY COMMITTEE U.S. HOUSE OF REPRESENTATIVES

More information

Introduction to Climate Science

Introduction to Climate Science Introduction to Climate Science Vegetation and the Carbon Cycle Mike Unsworth Atmospheric Science Outline: Global carbon budget : role of vegetation How does weather and climate affect vegetation? How

More information

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains.

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Objectives Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Key Terms deforestation greenhouse effect global warming eutrophication acid rain pollution

More information

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface CHAPTER 3 Ecosystems: What Are They and How Do They Work? Contain

More information

Our Common Present 2016 Great expectations, projects and mistakes efforts to understand and control nature in the past and the present

Our Common Present 2016 Great expectations, projects and mistakes efforts to understand and control nature in the past and the present Our Common Present 2016 Great expectations, projects and mistakes efforts to understand and control nature in the past and the present Jana Dlouhá Miroslav Havránek 31.3.-1.4. 2016 Sustainable development

More information

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Global Carbon Trends Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Outline 1. Recent Trends 2. Perturbation Budget 3. Sink Efficiency 4. Attribution 5. Processes

More information

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Environmental Science

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Environmental Science SEV1. Students will investigate the flow of energy and cycling of matter within an ecosystem and relate these phenomena to human society. a. Interpret biogeochemical cycles including hydrologic, nitrogen,

More information

How is the atmosphere different from outer space? a mixture of gases that surrounds the Earth

How is the atmosphere different from outer space? a mixture of gases that surrounds the Earth Chapter 15 Atmosphere Section 1 Objectives Describe the composition of Earth's atmosphere. Explain why air pressure changes with altitude. Explain how air temperature changes with atmospheric composition.

More information

3/5/2012. Study Questions. Global Warming. Weather: daily temperature and moisture conditions Climate: long-term weather patterns

3/5/2012. Study Questions. Global Warming. Weather: daily temperature and moisture conditions Climate: long-term weather patterns Study Questions Global Warming 1. Explain what is meant by the term Greenhouse effect. 2. List 3 indications that global climate is currently increasing. 3. Describe 3 possible consequences of global warming.

More information

From the ozone scientific assessments to the IPCC

From the ozone scientific assessments to the IPCC From the ozone scientific assessments to the IPCC Valérie Masson-Delmotte Co-Chair, IPCC Working Group I valmasdel Change in atmospheric concentrations https://www.esrl.noaa.gov https://www.esrl.noaa.gov

More information

The role of the biosphere for the carbon cycle in a changing climate

The role of the biosphere for the carbon cycle in a changing climate GEOSCIENCE INFORMATION FOR TEACHERS (GIFT) WORKSHOP EGU General Assembly, Vienna, April 2008 The role of the biosphere for the carbon cycle in a changing climate (Principles Factors Models Uncertainties)

More information

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy 1 Ecocsystems: Energy Flow and Materials Cycling 2 EVPP 111 Lecture Dr. Largen Spring 2004 Energy Flow and Matter Cycling Energy flow s through ecosystems ecosystems global energy budget physical laws

More information

Questions 1 4 refer to the diagram of the earth s atmosphere shown above. 3. The section of the atmosphere responsible for our daily weather.

Questions 1 4 refer to the diagram of the earth s atmosphere shown above. 3. The section of the atmosphere responsible for our daily weather. Unit 6 Practice Test Questions 1 4 refer to the diagram of the earth s atmosphere shown above 1. The ozone layer is found at this location. 2. The atmosphere is at its warmest point at this location. 3.

More information

Atmosphere, the Water Cycle and Climate Change

Atmosphere, the Water Cycle and Climate Change Atmosphere, the Water Cycle and Climate Change OCN 623 Chemical Oceanography 16 April 2013 (Based on previous lectures by Barry Huebert) 2013 F.J. Sansone 1. The water cycle Outline 2. Climate and climate-change

More information

Human Impact on the Environment: Part I

Human Impact on the Environment: Part I Human Impact on the Environment: Part I The late Alan Gregg pointed out that human population growth within the ecosystem was closely analogous to the growth of malignant tumor cells, that man was acting

More information

Aerosol from biomass burning and mineral aerosols. 1. What are aerosols from biomass burning?

Aerosol from biomass burning and mineral aerosols. 1. What are aerosols from biomass burning? Lectures 40-41. Global change due to anthropogenic aerosols: Aerosol from biomass burning and mineral aerosols. Objectives: 1. What are aerosols from biomass burning? 2. What is mineral aerosol? 3. Direct

More information

Model Experiments. Integrated Science Assessment Model (ISAM) Derived concentrations for overshoot scenario Includes maximum decarbonization

Model Experiments. Integrated Science Assessment Model (ISAM) Derived concentrations for overshoot scenario Includes maximum decarbonization Climate outcome of combined mitigation and geoengineering scenarios between 2040 and 2200 Simone Tilmes, Ben Sanderson, Brian O Neill Scenario: Business as usual until 2040. What is required to stabilize

More information

Normal equatorial flow. Climate Variability. El Niño-Southern Oscillation Human-caused climate change Alternative Energy sources

Normal equatorial flow. Climate Variability. El Niño-Southern Oscillation Human-caused climate change Alternative Energy sources Normal equatorial flow Climate Variability El Niño-Southern Oscillation Human-caused climate change Alternative Energy sources Vertical normal flow ENSO disruption of flow Vertical ENSO flow Normal vs.

More information

APES Outline I. Earth Systems and Resources (10-15%) A. Earth Science Concepts (Chapter 4 &14)

APES Outline I. Earth Systems and Resources (10-15%) A. Earth Science Concepts (Chapter 4 &14) APES Outline I. Earth Systems and Resources (10-15%) A. Earth Science Concepts (Chapter 4 &14) 1. Geologic time scale 2. Geologic Processes a. Plate tectonics b. Earthquakes c. Volcanism d. Composition

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

HU-205: Geography. Geography 04: Biogeochemical Cycles & Biosphere. Biomes. Global patterns in the biosphere

HU-205: Geography. Geography 04: Biogeochemical Cycles & Biosphere. Biomes. Global patterns in the biosphere HU-205: Geography Geography 04: Biogeochemical Cycles & Biosphere Biomes Global patterns in the biosphere Plant and animal types Similar distributions Soil Vegetation Climate Human impacts Population growth

More information

Prof Brendan Mackey, PhD

Prof Brendan Mackey, PhD Role of forests in global carbon cycle and mitigation Presentation for Land use and Forests in the Paris Agreement, real world implications of negative emissions and Bioenergy CCS (BECCS) May 12 th & 13

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

Introducing alien ecosystem engineers to Round Island, Mauritius

Introducing alien ecosystem engineers to Round Island, Mauritius Introducing alien ecosystem engineers to Round Island, Mauritius Species lost 2 giant tortoises Role dispersal of herbivore adapted seeds Surrogate species Aldabra Giant Tortoise Madagascar radiated tortoise

More information

Lecture 27: Radiative Forcing of Climate Change

Lecture 27: Radiative Forcing of Climate Change Lecture 27: Radiative Forcing of Climate Change 1. Radiative Forcing In an unperturbed state, the net incoming solar radiation at the top of the atmosphere (Sn) must be balanced by the outgoing longwave

More information

Major Feedbacks originating from Northern Eurasia that are of global change concern

Major Feedbacks originating from Northern Eurasia that are of global change concern Major Feedbacks originating from Northern Eurasia that are of global change concern Guy P. Brasseur National Center for Atmospheric Research Boulder, CO Regions of Strong Influences on the Global Earth

More information

TOPIC # 16 GLOBAL WARMING & ANTHROPOGENIC FORCING

TOPIC # 16 GLOBAL WARMING & ANTHROPOGENIC FORCING TOPIC # 16 GLOBAL WARMING & ANTHROPOGENIC FORCING TODAY s 3 KEY CONCEPTS: Carbon / Forests / Deforestation Computer Model Evidence for Anthropogenic GW Forcing Tying it all together w/ RADIATIVE FORCING

More information

Global warming. Human (mainly industrial-era) activity changing the global climate now and over the next several centuries

Global warming. Human (mainly industrial-era) activity changing the global climate now and over the next several centuries Global warming Human (mainly industrial-era) activity changing the global climate now and over the next several centuries 1. Burning fossil fuels (primarily) 2. Land use changes (mostly local impacts)

More information

Climate Change. Greenhouse Effect & Global Warming

Climate Change. Greenhouse Effect & Global Warming Climate Change What is climate change Greenhouse Effect & Global Warming Global Warming = World wide increase in average Temp. Cause = greenhouse effect 1 Some would argue the Global Warming trend is natural

More information

Environmental Science Std.-9 Chp.7 Atmosphere and Climate

Environmental Science Std.-9 Chp.7 Atmosphere and Climate Environmental Science Std.-9 Chp.7 Atmosphere and Climate 2018-19 Q.1. Name the layers of the atmosphere. Troposphere Stratosphere Mesosphere Thermosphere Exosphere GREENHOUSE EARTH: Q.2. (a) What is the

More information

Overview of Carbon Dioxideand d Methane Cycle Research

Overview of Carbon Dioxideand d Methane Cycle Research Liukang Xu LI COR Biosciences, Lincoln Nebraska 68504 USA Overview of Carbon Dioxideand d Methane Cycle Research Apr 18, 2013 at 南京信息工程大学 Discussion Topics Climate change and global warming Causes of climate

More information

What Keeps Us and Other Organisms Alive?

What Keeps Us and Other Organisms Alive? Energy and Life What Keeps Us and Other Organisms Alive? Four major components of the earth s life-support system: atmosphere (air) hydrosphere (water) geosphere (rock, soil, sediment) biosphere (living

More information

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany martin.heimann@bgc-jena.mpg.de 1 Northern Eurasia: winter: enhanced warming in arctic, more precip summer: general warming in center,

More information

Global Climate Change. The sky is falling! The sky is falling!

Global Climate Change. The sky is falling! The sky is falling! Global Climate Change The sky is falling! The sky is falling! 1 Global Climate Change Radiative Equilibrium, Solar and Earth Radiation Atmospheric Greenhouse Effect Greenhouse Gases Global Climate Change

More information

Greenhouse Effect. How we stay warm

Greenhouse Effect. How we stay warm Greenhouse Effect How we stay warm The Sun s energy reaches Earth through Radiation (heat traveling through Space) How much solar radiation reaches Earth? The Earth s surface only absorbs 51% of incoming

More information

IB Environmental Systems & Societies

IB Environmental Systems & Societies IB Environmental Systems & Societies YEAR 1 Syllabus Content: Topics and Assessment Statements Mr. Rees Topic 7: Environmental Value Systems 7.1.1 State what it is meant by an environmental value system.

More information

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes!

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes! 1 2 3 Yes! 4 Yes! But Earth's climate is always changing! 5 Yes! But Earth's climate is always changing! 6 Throughout its 4.5 billion year history, Earth's climate has alternated between periods of warmth

More information

1. Global Climate. Latitude and Sunlight Intensity 12/4/2014. Chapter 52: Introduction to Ecology and the Biosphere. 1.

1. Global Climate. Latitude and Sunlight Intensity 12/4/2014. Chapter 52: Introduction to Ecology and the Biosphere. 1. Chapter 52: Introduction to Ecology and the Biosphere 1. Global Climate 2. Terrestrial Biomes 3. Aquatic Biomes 4. Factors Affecting Species Distribution 1. Global Climate Latitude and Sunlight Intensity

More information

Air & Water Lesson 2. Chapter 6 Conserving Our Resources

Air & Water Lesson 2. Chapter 6 Conserving Our Resources Air & Water Lesson 2 Chapter 6 Conserving Our Resources Objectives Summarize the importance of air. Describe the water cycle. Main Idea Living things use air and water to carry out their life processes.

More information

What does IPCC AR5 say? IPCC as a radical inside the closet

What does IPCC AR5 say? IPCC as a radical inside the closet What does IPCC AR5 say? IPCC as a radical inside the closet What does IPCC AR5 say? Plan: * What is IPCC? * The Fifth Assessment Report (AR5) - WR1: The physical basis - WR2: Impacts, adaptation and vulnerability

More information

High School Climate Science Curriculum Course learning goals. October 2011

High School Climate Science Curriculum Course learning goals. October 2011 1 High School Climate Science Curriculum Course learning goals October 2011 Current Climate 1. Earth climate is determined by a balance between absorbed sunlight and emitted infrared radiation. Because

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Global Insolation Budget. Solar Radiation. Greenhouse Gases. Air: Climate and Pollution. Weather, Climate, Winds, Rain

Global Insolation Budget. Solar Radiation. Greenhouse Gases. Air: Climate and Pollution. Weather, Climate, Winds, Rain Global Insolation Budget Air: Climate and Pollution Weather, Climate, Winds, Rain Changes in solar radiation are responsible for many important environmental factors, including El Niño. Review them Solar

More information

Section Objectives: Explain biodiversity and its importance. Relate various threats to the loss of biodiversity.

Section Objectives: Explain biodiversity and its importance. Relate various threats to the loss of biodiversity. Section Objectives: Explain biodiversity and its importance. Relate various threats to the loss of biodiversity. Biological Diversity Biodiversity refers to the variety of species in a specific area. The

More information

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards For ROSS Certifications at least nine of the 14 science standards are addressed during a 5-day program,

More information

Beyond REDD+ What management of land can and cannot do to help control atmospheric CO 2. R.A. Houghton Woods Hole Research Center

Beyond REDD+ What management of land can and cannot do to help control atmospheric CO 2. R.A. Houghton Woods Hole Research Center Beyond REDD+ What management of land can and cannot do to help control atmospheric CO 2 R.A. Houghton Woods Hole Research Center Outline Introduction: Climate Change The Global Carbon Cycle What can we

More information

Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region. Atul Jain. University of Illinois, Urbana-Champaign, IL USA

Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region. Atul Jain. University of Illinois, Urbana-Champaign, IL USA Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region Atul Jain University of Illinois, Urbana-Champaign, IL USA Email: jain1@uiuc.edu Terrestrial Ecosystems, Land Use

More information

Humans in the biosphere 6.1 A changing landscape

Humans in the biosphere 6.1 A changing landscape Humans in the biosphere 6.1 A changing landscape How do our daily activities affect the environment? Humans affect both regional and global environments Have major impacts on the quality of Earth s natural

More information

Climate Change and Ozone Loss

Climate Change and Ozone Loss Climate Change and Ozone Loss During the past 900,000 years, the earth has undergone a series of cold glacial periods followed by warmer interglacial periods. The past 10,000 years has been an interglacial

More information

Global Climatic Change. GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16

Global Climatic Change. GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16 Global Climatic Change GEOG/ENST 2331 Lecture 22 Ahrens: Chapter 16 Global Climatic Change! Review: Radiation balance! Enhanced greenhouse effect! human-induced change! Climate feedbacks Climatic change!

More information

Land Ecosystems and Climate a modeling perspective

Land Ecosystems and Climate a modeling perspective Land Ecosystems and Climate a modeling perspective Samuel Levis Community Land Model Science Liaison Terrestrial Sciences Section, CGD, ESSL, NCAR 12 August 2009 Why the Land? the land surface is a critical

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Chapter 55: Ecosystems You Must Know: How energy flows through the ecosystem (food chains and food webs) The difference between gross primary productivity and net primary productivity. The carbon and nitrogen

More information

Environmental Systems Format: Digital and Work Text

Environmental Systems Format: Digital and Work Text Environmental Systems Format: Digital and Work Text Course Objective This semester-length, high school elective introduces students to career opportunities and educational pathways in a wide array of environmental

More information

Into the Great Wide Open?: The Potential Promise and Perils of Climate Geoengineering

Into the Great Wide Open?: The Potential Promise and Perils of Climate Geoengineering Into the Great Wide Open?: The Potential Promise and Perils of Climate Geoengineering Dr. Wil Burns, Forum for Climate Engineering Assessment Dominican University September 14, 2015 Geoengineering [O]ptions

More information

Carbon Sequestration, Its Methods and Significance

Carbon Sequestration, Its Methods and Significance K. Dhanwantri 1, P. Sharma 2, S. Mehta 3, P. Prakash 4 1, 2, 3, 4 Amity School of Architecture and Planning, Amity University Haryana Manesar, Gurgaon, Haryana, India ABSTRACT Carbon sequestration is the

More information

What is Ecology? Abiotic (non-living) Biotic (living)

What is Ecology? Abiotic (non-living) Biotic (living) ECOLOGY What is Ecology? The scientific study of interactions among organisms and between organisms and their environment, or surroundings Factors involved in ecology Abiotic (non-living) Biotic (living)

More information