Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods

Size: px
Start display at page:

Download "Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods"

Transcription

1 Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Hussein M. Zbib School of Mechanical and Materials Engineering Washington State University Pullman, WA summer school Generalized Continua and Dislocation Theory Theoretical Concepts, Computational Methods And Experimental Verification July 9-13, 007 International Centre for Mechanical Science Udine, Italy

2 Contents Lecture 1: The Theory of Straight Dislocations Zbib Lecture : The Theory of Curved Dislocations Zbib Lecture 3: Dislocation-Dislocation & Dislocation-Defect Interactions -Zbib Lecture 4: Dislocations in Crystal Structures - Zbib Lecture 5: Dislocation Dynamics - I: Equation of Motion, effective mass - Zbib Lecture 6: Dislocation Dynamics - II: Computational Methods - Zbib Lecture 7 : Dislocation Dynamics - Classes of Problems Zbib

3 Lecture 4: Dislocations in Crystal Structures Dislocation Dynamics Crystals is a solid Closed Packed Crystal structure Slip systems in F.C.C. Crystal Slip systems in B.C.C. Crystal Basic Geometry (bcc) Microscopic strain and its relation to dislocation motion Peierl s stress

4 Macroscopic experiment, Macroscopic Scale representative homogeneous element Continuum Plasticity Mesoscopic Scale Polycrystalline plasticity Microscopic Scale dislocations in single crystal

5 Dislocation Dynamics 1m Dislocation structure in a high purity copper single crystal deformed in tension (Hughes) DD from In-situ Exp.

6 Shock recovery experiments M. Schneider et al., Acta Mater. (003) TEM: 0.5 mm slices are cut from the recovered sample <134> Cu 05 J pulse P max (GPa) ~50-5 ~5-15 ~8- ~-0 Dislocation density increases with pressure

7 Shock in Cu, P H =50 GPa Dislocation dynamics.5 μm MD by E. M. Bringa (LLNL)

8 Crystals is a solid in which atoms are periodically arranged in a regular pattern. The periodicity can be described by a space lattice which is a regular, 3-dimensional arrangement of lattice points. The space lattice can be generated by a simple transformation of a unit cell. A unit cell is completely characterized by 3 lattice vectors a, b, c (or a, b, c, and three angles α, β,γ). When a unit cell contains only one atom within it, it is called a primitive cell. There are only 7 possible (geometrically) crystal system and 14 Bravais Lattice (space lattice ) to characterize the crystal structures, 1. Cubic: a=b=c, α=β=γ= 90 o P (primitive), I (Body centered), F (Face centered), 4-3-fold symmetry. Tetragonal: a=b#c, α=β=γ= 90 0 P, I. 1-4 fold symmetry 3. Orthorhombic: a#b#c, α=β=γ#90 0 P, I, F, B (Base centered), 3- fold symmetry 4. Rhombohedral: a=b=c, α=β=γ#90 0, P, 1-3 fold symmetry 5. Hexagonal: a=b#c, α=β γ= 10 0, P,1-6 fold symmetry 6. Monoclinic: a=b=c, α=γ= 90 0 #β, P. B, 1- Fold symmetry 7. Triclinic: a#b#c, α#β#γ, P, NONE α β γ b a c

9

10 Miller indices Represents the orientation of a plane or a direction in crystal in relation to the unit cell axes. i) Direction; [h, k, l] h, k, l are the smallest integers in x, y, z axes <h, k, l> - family of [h, k, l] ii) Plane; (h,, l) The intercept distance of plane with x, y, a, axes are a, b, c. Take the reciprocal of a, b, c, then make them the smallest integer numbers taking out a common factor (i.e vector normal to plane) x h z k z l [h, k, l] y 1 ( h, k, l) ( bc, ac, ab) abc a c b y x

11 Closed Packed Crystal structure 1) Closed-Packed plane has the largest possible number of atoms per area or the highest atomic density. There are only two ways to accomplish this. A B C A BC.. ; (F.C. C.) the closed-packed plane is {111} A B A B ; (H.C. P.) {0001} the closed packed plane is Since the Burger s vectors are restricted to a perfect lattice vector and the energy of a dislocation line is proportional to b, the slip planes are naturally defined as these close-packed plane.

12 Slip system in F.C.C. Crystal In F.C.C crystal, the shortest lattice vector in {111} is <011> Therefore b a 011 Hence the slip system of F.C.C crystal is given as {111} - <011> and there are twelve combinations

13 Designation of Slip Systems in FCC ( 111) Critical plane A ( 111) Primary plane B ( 111) conjugate plane C ( 111) Cross slip plane D I Six Slip Directions [011] [011 [101 [101 II ] III ] IV ] V [110] VI [110] Each slip plane contains three slip directions

14 Slip system in F.C.C. Crystal& Cross-slip planes

15 I. Basic Geometry (bcc) Simulation Cell (5-0 m ) [001] [100] Continuum crystal Initial Condition: *Random distribution (dislocation, Frank-Read Pinning points (particles) *Dislocation structures Discrete segments of mixed character [010] (101) Expected outcome! Mechanical properties (yield stress, hardening, etc..). Evolution of dislocation structures Strength, model parameters, etc.. b Slip plane

16 Microscopic strain and its relation to dislocation motion (Hull and Bacon 1984)

17 3D Discrete Dislocation Dynamics p W N l ivgi i1 V N p l iv V i1 ( ni bi bi ni gi ( n i b i b i n i ) ) Dislocation velocity? Dislocation length? Dislocation Burgers Vector? Equation of Motion F m* v i i Effective Mass m* 1 v dw dv v t

18 The macroscopic strain and its relation to dislocation motion Can also be derived from energy argument du Work done by externally applied shear stress W e Adu dx work by dislocation motion: W d ( b ) Ldx W e =W d Adu bv bldx du bldx h Ah d bdx bldx V bdx Dislocation density: ρ = l/v Dislocation length per unit volume

19 Peierl s stress The stress field was determiend by treating the material as an elastic continuum, yielding a stress singularity at the dislocation core. The Peirel s stress introduces the effect of Lattice periodicity. xy b d sin 4u x b b x u tan 1 d x (1 ν) The width of the dislocation d (1 ν)

20 The Peierls Stress field for edge dislocation: xy xx yy zz b (1 ) b (1 ) b (1 ) ( xx yy (3y ) x (y ζ) x ) x x (y ζ) y (y ζ) xy(y ζ) x (y ζ) y(y ζ) x (y ζ) x x y (y ζ) The Peierls Stress field for edge dislocation reduces to the Volterra dislocation for r (x The parameter δ removes the singularity at the origin r=0 that is present for the Volterra dislocation y ) 1/

21 Elastic Energy of Peierls dislocation Consists of two parts: 1) Elastic strain energy stored in two half crystal ) Misfit energy due to the distorted bonds Elastic strain energy stored in two half crystal μb ln 4π (1 ν) EEl R ζ Misfit energy due to the distorted bonds E M μb 4(1- )

22 Peierls energy During the dislocation glide, the misfit energy changes periodically, but the elastic energy (Volterrs s dislocation) does not change. However, the equation given in previous slide does not contain periodic form. This is because we assumed a continuous displacement field. It is shown that when one accounts for atomic periodicity one gets: E M μb exp (1- ) μb 4(1- ) 4 cos(4 ) b Then, the Peierls force Then, the Peierls stress Note: as In general p 10 4 p ~10 E M p max exp 1- b exp 1-4 b (very sensitive) 4 b

23 Dislocation dynamics in BCC system

3.22 Mechanical Behavior of materials PS8 Solution Due: April, 27, 2004 (Tuesday) before class (10:00am)

3.22 Mechanical Behavior of materials PS8 Solution Due: April, 27, 2004 (Tuesday) before class (10:00am) 3. Mechanical Behavior of materials PS8 Solution Due: April, 7, 004 (Tuesday before class (10:00am 8 1. Annealed copper have a dislocation density of approimately 10 cm. Calculate the total elastic strain

More information

Chapter One: The Structure of Metals

Chapter One: The Structure of Metals Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

3. Anisotropic blurring by dislocations

3. Anisotropic blurring by dislocations Dynamical Simulation of EBSD Patterns of Imperfect Crystals 1 G. Nolze 1, A. Winkelmann 2 1 Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 2 Max-Planck- Institute of Microstructure

More information

Problems to the lecture Physical Metallurgy ( Materialkunde ) Chapter 6: Mechanical Properties

Problems to the lecture Physical Metallurgy ( Materialkunde ) Chapter 6: Mechanical Properties Institut für Metallkunde und Metallphysik Direktor: Prof. Dr. rer. nat. Günter Gottstein RWTH Aachen, D-52056 Aachen Internet: http://www.imm.rwth-aachen.de E-mail: imm@imm.rwth-aachen.de Tel.: +49 241

More information

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

A Combined Discrete-dislocation/Scaledependent Crystal Plasticity Analysis of Deformation and Fracture in Nanomaterials. Presented by: Derek Columbus

A Combined Discrete-dislocation/Scaledependent Crystal Plasticity Analysis of Deformation and Fracture in Nanomaterials. Presented by: Derek Columbus MS Thesis Defense A Combined Discrete-dislocation/Scaledependent Crystal Plasticity Analysis of Deformation and Fracture in Nanomaterials Presented by: Derek Columbus Advisor: Dr. Mica Grujicic Department

More information

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal

More information

ASE324: Aerospace Materials Laboratory

ASE324: Aerospace Materials Laboratory ASE324: Aerospace Materials Laboratory Instructor: Rui Huang Dept of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin Fall 2003 Lecture 3 September 4, 2003 Iron and Steels

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

- Slip by dislocation movement - Deformation produced by motion of dislocations (Orowan s Eq.)

- Slip by dislocation movement - Deformation produced by motion of dislocations (Orowan s Eq.) Lecture #12 - Critical resolved shear stress Dr. Haydar Al-Ethari - Slip y dislocation movement - Deformation produced y motion of dislocations (Orowan s Eq.) References: 1- Derek Hull, David Bacon, (2001),

More information

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1 CHAPTER 3 Crystal Structures and Crystal Geometry 3-1 The Space Lattice and Unit Cells 3-2 Atoms, arranged in repetitive 3-Dimensional pattern, in long range order (LRO) give rise to crystal structure.

More information

Symmetry in crystalline solids.

Symmetry in crystalline solids. Symmetry in crystalline solids. Translation symmetry n 1,n 2,n 3 are integer numbers 1 Unitary or primitive cells 2D 3D Red, green and cyano depict all primitive (unitary) cells, whereas blue cell is not

More information

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa 1.!Mechanical Properties (20 points) Refer to the following stress-strain plot derived from a standard uniaxial tensile test of a high performance titanium alloy to answer the following questions. Show

More information

Lecture # 11. Line defects (1D) / Dislocations

Lecture # 11. Line defects (1D) / Dislocations Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC References: 1-

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior Physics

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

(a) Would you expect the element P to be a donor or an acceptor defect in Si?

(a) Would you expect the element P to be a donor or an acceptor defect in Si? MSE 200A Survey of Materials Science Fall, 2008 Problem Set No. 2 Problem 1: At high temperature Fe has the fcc structure (called austenite or γ-iron). Would you expect to find C atoms in the octahedral

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

Lecture # 11 References:

Lecture # 11 References: Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC Dr.Haydar Al-Ethari

More information

ECE236A Semiconductor Heterostructure Materials Defects in Semiconductor Crystals Lecture 6 Oct. 19, 2017

ECE236A Semiconductor Heterostructure Materials Defects in Semiconductor Crystals Lecture 6 Oct. 19, 2017 ECE236A Semiconductor Heterostructure Materials Defects in Semiconductor Crystals Lecture 6 Oct. 19, 2017 Stacking sequence in simple crystals. Stacking faults (intrinsic, extrinsic) Twin boundaries Dislocations

More information

CHAPTER 4 INTRODUCTION TO DISLOCATIONS. 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of

CHAPTER 4 INTRODUCTION TO DISLOCATIONS. 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of CHAPTER 4 INTRODUCTION TO DISLOCATIONS 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of copper is approximately. With this data, compute an approximate

More information

3, MSE 791 Mechanical Properties of Nanostructured Materials

3, MSE 791 Mechanical Properties of Nanostructured Materials 3, MSE 791 Mechanical Properties of Nanostructured Materials Module 3: Fundamental Physics and Materials Design Lecture 1 1. What is strain (work) hardening? What is the mechanism for strain hardening?

More information

MEMS 487. Class 04, Feb. 13, K.J. Hemker

MEMS 487. Class 04, Feb. 13, K.J. Hemker MEMS 487 Class 04, Feb. 13, 2003 Materials Come As:!Amorphous Glasses, polymers, some metal alloys Processing can result in amorphous structures! Crystalline Single crystals Textured crystals Polycrystalline

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,

More information

Chapter 7: Dislocations and strengthening mechanisms

Chapter 7: Dislocations and strengthening mechanisms Chapter 7: Dislocations and strengthening mechanisms Introduction Basic concepts Characteristics of dislocations Slip systems Slip in single crystals Plastic deformation of polycrystalline materials Plastically

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

arxiv: v2 [cond-mat.mtrl-sci] 18 Dec 2016

arxiv: v2 [cond-mat.mtrl-sci] 18 Dec 2016 Energy of low angle grain boundaries based on continuum dislocation structure Luchan Zhang a, Yejun Gu b, Yang Xiang a, arxiv:161.4318v2 [cond-mat.mtrl-sci] 18 Dec 216 a Department of Mathematics, The

More information

Mobility laws in dislocation dynamics simulations

Mobility laws in dislocation dynamics simulations Materials Science and Engineering A 387 389 (2004) 277 281 Mobility laws in dislocation dynamics simulations Wei Cai, Vasily V. Bulatov Lawrence Livermore National Laboratory, University of California,

More information

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space. CRYSTAL LATTICE How to form a crystal? 1. Define the structure of the lattice 2. Define the lattice constant 3. Define the basis Defining lattice: Mathematical construct; ideally infinite arrangement of

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111 Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Objectives Symmetry Operators & Matrix representation. Effect of crystal and sample symmetry

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture II. Stable Plastic Deformation S s y For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation III. Unstable

More information

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IMPERFECTIONSFOR BENEFIT Sub-topics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary

More information

3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM

3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM االنظمة البلورية CRYSTAL SYSTEMS 3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM There are only seven different shapes of unit cell which can be stacked together to completely fill all space (in 3

More information

Materials Science and Engineering

Materials Science and Engineering Introduction to Materials Science and Engineering Chap. 3. The Structures of Crystalline Solids How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s]. Example: Calculate the energy required to excite the hydrogen electron from level n = 1 to level n = 2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state

More information

MSE 170 Midterm review

MSE 170 Midterm review MSE 170 Midterm review Exam date: 11/2/2008 Mon, lecture time Place: Here! Close book, notes and no collaborations A sheet of letter-sized paper with double-sided notes is allowed Material on the exam

More information

Stress Fields Around Dislocations

Stress Fields Around Dislocations Stress Fields Around Dislocations The crystal lattice in the vicinity of a dislocation is distorted (or strained). The stresses that accompanied the strains can e calculated y elasticity theory eginning

More information

Recent development of modelling techniques in nano- and meso-scale simulations of dislocation dynamics

Recent development of modelling techniques in nano- and meso-scale simulations of dislocation dynamics Recent development of modelling techniques in nano- and meso-scale simulations of dislocation dynamics Department for Microstructure Physics and Alloy Design, Düsseldorf, Germany S.M. Hafez Haghighat,

More information

A discrete dislocation plasticity analysis of grain-size strengthening

A discrete dislocation plasticity analysis of grain-size strengthening Materials Science and Engineering A 400 401 (2005) 186 190 A discrete dislocation plasticity analysis of grain-size strengthening D.S. Balint a,, V.S. Deshpande a, A. Needleman b, E. Van der Giessen c

More information

Chapter1: Crystal Structure 1

Chapter1: Crystal Structure 1 Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.

More information

Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 3 Symmetry in Perfect Solids (Continued) (Refer Slide Time: 00:26) So, the last lecture,

More information

Point coordinates. x z

Point coordinates. x z Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,

More information

Atomistic Modeling of Thermally Activated Processes for Crystal Dislocations

Atomistic Modeling of Thermally Activated Processes for Crystal Dislocations IPAM Workshop ELWS 2 UCLA, Oct 16-20, 2017 Atomistic Modeling of Thermally Activated Processes for Crystal Dislocations Oct 16, 2017 Wei Cai, Xiaohan Zhang, William Kuykendall* Department of Mechanical

More information

Ex: NaCl. Ironically Bonded Solid

Ex: NaCl. Ironically Bonded Solid Ex: NaCl. Ironically Bonded Solid Lecture 2 THE STRUCTURE OF CRYSTALLINE SOLIDS 3.2 FUNDAMENTAL CONCEPTS SOLIDS AMORPHOUS CRYSTALLINE Atoms in an amorphous Atoms in a crystalline solid solid are arranged

More information

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions:

More information

Engineering materials

Engineering materials 1 Engineering materials Lecture 2 Imperfections and defects Response of materials to stress 2 Crystalline Imperfections (4.4) No crystal is perfect. Imperfections affect mechanical properties, chemical

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE 1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am

More information

Bio5325 Fall Crystal Vocabulary

Bio5325 Fall Crystal Vocabulary Crystals and Crystallization Bio5325 Fall 2007 Crystal Vocabulary Mosaicity (mosaic spread) Protein crystals are imperfect, consisting of a mosaic of domains that are slightly misaligned. As a result,

More information

DISLOCATIONS. Edge dislocation Screw dislocation Dislocations in crystals

DISLOCATIONS. Edge dislocation Screw dislocation Dislocations in crystals Edge dislocation Screw dislocation Dislocations in crystals Further reading DISLOCATIONS Part of Introduction to Dislocations D. Hull and D.J. Bacon Pergamon Press, Oxford (1984) Advanced reading (comprehensive)

More information

Mechanistic Models of Deformation Twinning and Martensitic Transformations. Bob Pond. Acknowledge: John Hirth

Mechanistic Models of Deformation Twinning and Martensitic Transformations. Bob Pond. Acknowledge: John Hirth Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth Classical Model (CM) Geometrical invariant plane Topological Model (TM) Mechanistic coherent

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

Chapter 8. Deformation and Strengthening Mechanisms

Chapter 8. Deformation and Strengthening Mechanisms Chapter 8 Deformation and Strengthening Mechanisms Chapter 8 Deformation Deformation and Strengthening Issues to Address... Why are dislocations observed primarily in metals and alloys? How are strength

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

The Dislocation Basis of Yield and Creep

The Dislocation Basis of Yield and Creep The Dislocation Basis of Yield and Creep David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 March 22, 2001 Introduction Phenomenological

More information

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K)

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Crystal Defects Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Real crystal - all crystals have some imperfections - defects, most atoms are

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

Molecular dynamics simulations of 1/2 a 1 11 screw dislocation in Ta

Molecular dynamics simulations of 1/2 a 1 11 screw dislocation in Ta Materials Science and Engineering A309 310 (2001) 133 137 Molecular dynamics simulations of 1/2 a 1 11 screw dislocation in Ta Guofeng Wang, Alejandro Strachan, Tahir Cagin, William A. Goddard III Materials

More information

Solid State Transformations

Solid State Transformations Solid State Transformations Symmetrical Tilt Boundary The misorientation θ between grains can be described in terms of dislocations (Fig. 1). Inserting an edge dislocation of Burgers vector b is like forcing

More information

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary 1 A simple view of fatigue 1. Will a crack nucleate? 2. Will it grow? 3. How fast will

More information

Dislocations in Materials. Dislocations in Materials

Dislocations in Materials. Dislocations in Materials Pose the following case scenario: Consider a block of crystalline material on which forces are applied. Top Force (111) parallel with top surface Bottom Force Sum Sum of of the the applied forces give

More information

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige Chapter 7 Dislocations and Strengthening Mechanisms Dr. Feras Fraige Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 3. Imperfections in Solids Learning objectives:

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

Chapter 1. Crystal Structure

Chapter 1. Crystal Structure Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined

More information

CME 300 Properties of Materials. ANSWERS Homework 2 September 28, 2011

CME 300 Properties of Materials. ANSWERS Homework 2 September 28, 2011 CME 300 Properties of Materials ANSWERS Homework 2 September 28, 2011 1) Explain why metals are ductile and ceramics are brittle. Why are FCC metals ductile, HCP metals brittle and BCC metals tough? Planes

More information

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe Primitive cells, Wigner-Seitz cells, and 2D lattices 4P70, Solid State Physics Chris Wiebe Choice of primitive cells! Which unit cell is a good choice?! A, B, and C are primitive unit cells. Why?! D, E,

More information

Single-crystal Modeling of Ni-based Superalloys for Gas Turbine Blades

Single-crystal Modeling of Ni-based Superalloys for Gas Turbine Blades Single-crystal Modeling of Ni-based Superalloys for Gas Turbine Blades Adnan Hasanovic Master thesis, MT 08.35 Supervisors: ir. Tiedo Tinga dr. ir Marcel Brekelmans prof. dr. ir. Marc Geers Mechanics of

More information

Topic 2-1: Lattice and Basis Kittel Pages: 2-9

Topic 2-1: Lattice and Basis Kittel Pages: 2-9 Topic 2-1: Lattice and Basis Kittel Pages: 2-9 Summary: We begin our introduction of crystal structure by defining a few terms. The first is translational symmetry which explains the periodicity of a crystal.

More information

Dislocations. Mostly from Introduction to Dislocations, 3 rd Edition by D. Hull and DJ Bacon

Dislocations. Mostly from Introduction to Dislocations, 3 rd Edition by D. Hull and DJ Bacon Dislocations Mostly from Introduction to Dislocations, 3 rd Edition by D. Hull and DJ Bacon Testing of Pure Mg single crystal with (0001) plane at 45º to the stress axis Theoretical Shear Strength Theoretical

More information

Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods

Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Hussein M. Zi School of Mechanical and Materials Engineering

More information

Single Crystal Deformation

Single Crystal Deformation Single Crystal Deformation To make the connection between dislocation behavior and yield strength as measured in tension, consider the deformation of a single crystal. Given an orientation for single slip,

More information

factured pillars, even though the strength is significantly higher than in the bulk. These yield stress values, y

factured pillars, even though the strength is significantly higher than in the bulk. These yield stress values, y Abstract The size effect in body-centered cubic (bcc) metals was comprehensively investigated through microcompression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium

More information

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES NATURAL SCIENCES TRIPOS Part IA Friday 4 June 1999 1.30 to 4.30 MATERIALS AND MINERAL SCIENCES Answer five questions; two from each of sections A and B and one from section C. Begin each answer at the

More information

Figure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1

Figure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1 [crystallographic symmetry] The crystallographic space groups. Supplementary to { 9.6:324} In the 3-D space there are 7 crystal systems that satisfy the point (e.g., rotation, reflection and inversion)

More information

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation Anastasia Tzoumaka Fall 2017 Intorduction: Single crystals, are monocrystalline

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

Multiscale Modeling of Metallic Materials Containing Embedded Particles

Multiscale Modeling of Metallic Materials Containing Embedded Particles Multiscale Modeling of Metallic Materials Containing Embedded Particles D. R. Phillips * NASA Langley Research Center, Hampton, VA, 23681-2199 E. Iesulauro Cornell University, Ithaca, NY, 14853 and E.

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

Atomic scale modelling of edge dislocation movement in the α-fe Cu system

Atomic scale modelling of edge dislocation movement in the α-fe Cu system Modelling Simul. Mater. Sci. Eng. 8 (2000) 181 191. Printed in the UK PII: S0965-0393(00)11562-1 Atomic scale modelling of edge dislocation movement in the α-fe Cu system S Nedelcu, P Kizler, S Schmauder

More information

Dynamics of Martensitic Interfaces

Dynamics of Martensitic Interfaces INTERFACE SCIENCE 6, 155 164 (1998) c 1998 Kluwer Academic Publishers. Manufactured in The Netherlands. Dynamics of Martensitic Interfaces M. GRUJICIC Department of Mechanical Engineering, Clemson University,

More information

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10. Code No: 09A1BS02 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. I Mid Examinations, November 2009 ENGINEERING PHYSICS Objective Exam Name: Hall Ticket No. A Answer All Questions.

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids classified according to atomic

More information

Two dimensional Bravais lattices

Two dimensional Bravais lattices Two dimensional Bravais lattices Two dimensional Bravais lattices Square lattice Symmetries: reflection about both x and y rotations by 90 o,180 o Two dimensional Bravais lattices Rectangular lattice Square

More information

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures M. Ortiz California Institute of Technology MULTIMAT closing meeting Bonn, Germany, September 12, 2008 Dislocation

More information