Energy and Packing. Materials and Packing

Size: px
Start display at page:

Download "Energy and Packing. Materials and Packing"

Transcription

1 Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular-packed structures tend to have lower energy. 24 Materials and Packing Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some polymers Noncrystalline materials... atoms have no periodic packing occurs for: -complex structures -rapid cooling Si crystalline SiO2 Oxygen "Amorphous" = Noncrystalline noncrystalline SiO2 25

2 Crystal Systems Crystal System Axial Relationships Interaxial Angles Cubic a = b = c α = β = γ = 90 Hexagonal a = b c α = β = 90, γ = 120 Tetragonal a = b c α = β = γ = 90 Rhombohedral a = b = c α = β = γ 90 Orthorhombic a b c α = β = γ = 90 a, b, c, α, β, γ = lattice parameters representing a unit cell Monoclinic Triclinic a b c a b c α = γ = 90 β α β γ asic types of unit cells: Simple (Primitive) ody-centered Face-centered ase-centered ravais Lattices 27

3 Characteristics of Crystal Structure Coordination Number (CN): number of nearestneighbor or touching atoms Atomic Packing Factor (APF): fraction of solid atoms volume in a unit cell APF = volume of atoms in a unit cell * total unit cell volume * assume hard sphere 28 Simple Cubic Structure (SC) Rare due to poor packing (only Po has this structure) Close-packed directions are cube edges. Coordination # = 6 (# nearest neighbors) 29

4 Atomic Packing Factor: SC APF for a simple cubic structure = 0.52 a close-packed directions contains 8 x 1/8 = 1 atom/unit cell R=0.5a atoms unit cell APF = 1 volume 4 atom 3 π (0.5a)3 a 3 volume unit cell 30 ody Centered Cubic (CC) Close packed directions are cube diagonals. --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing. Coordination # = 8 31

5 Atomic Packing Factor: CC APF for a body-centered cubic structure = 0.68 R a atoms unit cell APF = π ( 3a/4)3 a 3 volume unit cell volume atom Close - packed direction : length = 4R = 3 a Unit cell contains: ⅛ = 2 atoms/unit cell 32 Face Centered Cubic (FCC) Close packed directions are face diagonals. --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing. Coordination # = 12 33

6 Atomic Packing Factor: FCC APF for a face-centered cubic structure = 0.74 a atoms unit cell APF = π ( 2a/4)3 a 3 volume unit cell volume atom Close - packed direction : length = 4R = 2 a Unit cell contains: 6 ½ + 8 ⅛ = 4 atoms/unit cell 34 FCC Stacking Sequence ACAC... Stacking Sequence A sites sites C sites A A C C C FCC Unit Cell A C 35

7 Hexagonal Close-Packed (HCP) AA... Stacking Sequence A sites sites A sites 3D Projection Top layer Middle layer ottom layer 2D Projection Coordination # = 12 APF = Example: Copper Theoretical Density, ρ # atoms/unit cell Atomic weight (g/mol) Volume/unit cell (cm 3 /unit cell) ρ= n A V c N A Avogadro's number (6.023 x atoms/mol) crystal structure = FCC: 4 atoms/unit cell atomic weight = g/mol atomic radius R = nm V C = a 3 ; for FCC, a = 4R/ 2 V C = 4.75 x cm 3 Result: theoretical, ρ Cu = 8.89 g/cm 3 compare to actual, ρ Cu = 8.94 g/cm 3 37

8 Densities of Material Classes ρ Metals > ρ Ceramics > ρ Polymers Metals have... close-packing (metallic bonding) large atomic mass Ceramics have... less dense packing (covalent bonding) often lighter elements Polymers have... poor packing (often amorphous) lighter elements (C,H,O) Composites have... intermediate values ρ (g/cm 3 ) Metals/ Alloys Platinum Gold, W Tantalum Silver, Mo Cu,Ni Steels Tin, Zinc Titanium Aluminum Magnesium Graphite/ Ceramics/ Semicond Polymers Composites/ fibers ased on data in Table 1, Callister *GFRE, CFRE, & AFRE are Glass, Carbon, & Aramid Fiber-Reinforced Epoxy composites (values based on 60% volume fraction of aligned fibers in an epoxy matrix). Zirconia Al oxide Diamond Si nitride Glass -soda Concrete Silicon Graphite PTFE Silicone PVC PET PC HDPE, PS PP, LDPE Glass fibers GFRE* Carbon fibers CFRE * Aramid fibers AFRE * Wood 38 Point Coordinates 39

9 Crystallographic Directions Directions are vectors. 1. Pass through the origin of the coordinate system. 2. Measure length in term of a, b, and c. 3. Reduce to the smallest integer values. 4. Enclosed in square brackets: [uvw] 40 Example: Direction (-1, + 1, -1/6) [66 1] 41

10 Crystallographic Planes Miller indices: 1. Measure length of planar intercept for each axis. 2. Reciprocate numbers. 3. Reduce to the smallest integer values. 4. Enclosed in parentheses: (hkl) 42 Example: Plane Intercepts: x=-1/2, y=-3/4, z=1/2 Reciprocals: x=-2, y=-4/3, z=2 Reductions: x=-6, y=-4, z=6 Miller indices : (6 4 6) 43

11 Example: Crystallography Direction1: [012] _ Direction2 : [112] Plane1: (020) _ Plane2 :(221) 44 Polycrystals Most engineering materials are polycrystals. 1 mm Nb-Hf-W plate with an electron beam weld Each "grain" is a single crystal. If crystals are randomly oriented, overall component properties are not directional. 45

12 Single vs. Polycrystals Single Crystals Properties vary with direction: anisotropic. Ex. : the modulus of elasticity (E) in CC iron: E [111] E (diagonal) = 213 GPa = 273 GPa Polycrystals Properties may/may not vary with direction. If grains are randomly oriented: isotropic. (E poly iron = 210 GPa) If grains are textured, anisotropic. E (edge) = 125 GPa [100] = 125 GPa 46 SUMMARY Atoms may assemble into crystalline or amorphous structures. We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, CC, HCP). Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but properties are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains. 47

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10 ME 274 Dr Yehia M. Youssef 1 The Structure of Crystalline Solids Solid materials may be classified according to the regularity with which atoms or ions are arranged with respect to one another. A crystalline

More information

Materials Science and Engineering

Materials Science and Engineering Introduction to Materials Science and Engineering Chap. 3. The Structures of Crystalline Solids How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

MME 2001 MATERIALS SCIENCE

MME 2001 MATERIALS SCIENCE MME 2001 MATERIALS SCIENCE 1 20.10.2015 crystal structures X tal structure Coord. # Atoms/ unit cell a=f(r) APF % SC 6 1 2R 52 BCC 8 2 4R/ 3 68 FCC 12 4 2R 2 74 HCP 12 6 2R 74 Theoretical Density, knowing

More information

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES ISSUES TO ADDRESS... How do atoms assemble into solid structures? (for now, focus on metals) How does the density of a material depend on its structure? When

More information

CHAPTER 2. Structural Issues of Semiconductors

CHAPTER 2. Structural Issues of Semiconductors CHAPTER 2 Structural Issues of Semiconductors OUTLINE 1.0 Energy & Packing 2.0 Materials & Packing 3.0 Crystal Structures 4.0 Theoretical Density, r 5.0.Polymorphism and Allotropy 6.0 Close - Packed Crystal

More information

How do atoms assemble into solid structures? How does the density of a material depend on its structure?

How do atoms assemble into solid structures? How does the density of a material depend on its structure? 제 3 장 : 결정질고체의구조 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material properties vary with the sample (i.e., part)

More information

Chapter 3 Structure of Crystalline Solids

Chapter 3 Structure of Crystalline Solids Chapter 3 Structure of Crystalline Solids Crystal Structures Points, Directions, and Planes Linear and Planar Densities X-ray Diffraction How do atoms assemble into solid structures? (for now, focus on

More information

CHAPTER. The Structure of Crystalline Solids

CHAPTER. The Structure of Crystalline Solids CHAPTER 4 The Structure of Crystalline Solids 1 Chapter 4: The Structure of Crystalline Solids ISSUES TO ADDRESS... What are common crystal structures for metals and ceramics? What features of a metal

More information

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures.

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures. METALLIC CRYSTALS tend to be densely packed. have several reasons for dense packing: -Typically, only one element is present, so all atomic radii are the same. -Metallic bonding is not directional. -Nearest

More information

ENERGY AND PACKING. Chapter 3 CRYSTAL STRUCTURE & PROPERTIES MATERIALS AND PACKING METALLIC CRYSTALS ISSUES TO ADDRESS...

ENERGY AND PACKING. Chapter 3 CRYSTAL STRUCTURE & PROPERTIES MATERIALS AND PACKING METALLIC CRYSTALS ISSUES TO ADDRESS... Chapter 3 CRYSTAL STRUCTURE & PROPERTIES ISSUES TO ADDRESS... 1. How do s assemble into solid structures? (For now, focus on metals) ENERGY AND PACKING non dense, random packing bond energy Energy bond

More information

ENGINEERING MATERIALS LECTURE #4

ENGINEERING MATERIALS LECTURE #4 ENGINEERING MATERIALS LECTURE #4 Chapter 3: The Structure of Crystalline Solids Topics to Cover What is the difference in atomic arrangement between crystalline and noncrystalline solids? What features

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

Chapter 3: Structures of Metals & Ceramics

Chapter 3: Structures of Metals & Ceramics Chapter 3: Structures of Metals & Ceramics School of Mechanical Engineering Professor Choi, Hae-Jin Chapter 3-1 Chapter 3: Structures of Metals & Ceramics ISSUES TO ADDRESS... How do atoms assemble into

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

Ex: NaCl. Ironically Bonded Solid

Ex: NaCl. Ironically Bonded Solid Ex: NaCl. Ironically Bonded Solid Lecture 2 THE STRUCTURE OF CRYSTALLINE SOLIDS 3.2 FUNDAMENTAL CONCEPTS SOLIDS AMORPHOUS CRYSTALLINE Atoms in an amorphous Atoms in a crystalline solid solid are arranged

More information

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1 CHAPTER 3 Crystal Structures and Crystal Geometry 3-1 The Space Lattice and Unit Cells 3-2 Atoms, arranged in repetitive 3-Dimensional pattern, in long range order (LRO) give rise to crystal structure.

More information

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli Chapter-3 MSE-201-R Prof. Dr. Altan Türkeli The Structure of Crystalline Solids FUNDAMENTAL CONCEPTS Solid materials may be classified according to the regularity with which atoms or ions are arranged

More information

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids Dr. Coates Learning Objectives I 1. Describe difference in atomic/molecular structure between crystalline/noncrystalline

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved. Chapter 3: Atomic and Ionic Arrangements 3-1 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Short-range order versus long-range order Amorphous materials Lattice, basis, unit cells, and crystal structures

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

MSE420/514: Session 1. Crystallography & Crystal Structure. (Review) Amaneh Tasooji

MSE420/514: Session 1. Crystallography & Crystal Structure. (Review) Amaneh Tasooji MSE420/514: Session 1 Crystallography & Crystal Structure (Review) Crystal Classes & Lattice Types 4 Lattice Types 7 Crystal Classes SIMPLE CUBIC STRUCTURE (SC) Rare due to poor packing (only Po has this

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111 Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants

More information

Chapter1: Crystal Structure 1

Chapter1: Crystal Structure 1 Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE 1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering Chapter 3 The Structure t of Crystalline Solids The difference between crystalline and non-crystalline materials is in the extent of ordering Both materials have the same composition but one is ordered

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Point coordinates. x z

Point coordinates. x z Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

ASE324: Aerospace Materials Laboratory

ASE324: Aerospace Materials Laboratory ASE324: Aerospace Materials Laboratory Instructor: Rui Huang Dept of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin Fall 2003 Lecture 3 September 4, 2003 Iron and Steels

More information

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Atomic Densities Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Planar Density Number of atoms per unit area that are centered

More information

Chapter 16: Composite Materials

Chapter 16: Composite Materials Chapter 16: Composite Materials What are the classes and types of composites? Why are composites used instead of metals, ceramics, or polymers? How do we estimate composite stiffness & strength? What are

More information

ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled?

ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? CHAPTER 4: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material properties? Are

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

More information

Atomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density

Atomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density Atomic Densities Outline: Atomic Densities - Linear Density - Planar Density Single- vs poly- crystalline materials X-ray Diffraction Example Polymorphism and Allotropy Linear Density Number of atoms per

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

Chapter One: The Structure of Metals

Chapter One: The Structure of Metals Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

CHAPTER 6: Mechanical properties

CHAPTER 6: Mechanical properties CHAPTER 6: Mechanical properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 3 Atomic and Ionic Arrangements 1 Objectives of Chapter 3 To learn classification of materials based on atomic/ionic

More information

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers Study: 15.1-15.14 Read: 15.15-15.24 What are the tensile properties of polymers and how are they affected by basic microstructural features?

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

Materials Science. Why?

Materials Science. Why? Materials Science and Engineering, 2012 Compiled by Greg Heness & Mike Cortie Chapter 3 Crystalline Structure - Perfection, pp. 40-101 Materials Science A knowledge of this material is needed for diverse

More information

Chapter 1. Crystal Structure

Chapter 1. Crystal Structure Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Structure of Metals 1

Structure of Metals 1 1 Structure of Metals Metals Basic Structure (Review) Property High stiffness, better toughness, good electrical conductivity, good thermal conductivity Why metals have these nice properties - structures

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids classified according to atomic

More information

Solid State-1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised

More information

Chapter 3: The Structure of Crystalline Solids

Chapter 3: The Structure of Crystalline Solids Chpter 3: The Structure of Crystlline Solids ISSUES TO ADDRESS... How do toms ssemble into solid structures? Exmples of dependence of mteril property on its crystl structure Chpter 3-1 Crystlline mterils...

More information

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they?

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they? Making Solid Stuff Primary Bonds Summary What are they? Results from atomic bonding So the atoms bond together! Order in materials No long range order to atoms Gases little or no interaction between components

More information

Chapter 8: Molecules and Materials

Chapter 8: Molecules and Materials Chapter 8: Molecules and Materials Condensed Phases - Solids Bonding in Solids Metals Insulators Semiconductors Intermolecular Forces Condensed Phases - Liquids Carbon There are three forms of the element

More information

Student Name: ID Number:

Student Name: ID Number: Student Name: ID Number: DEPARTMENT OF MECHANICAL ENGINEERING CONCORDIA UNIVERSITY MATERIALS SCIENCE - MECH 1/ - Sections T & X MIDTERM 003 Instructors: Dr. M.Pugh & Dr. M.Medraj Time Allowed: one (1)

More information

MEMS 487. Class 04, Feb. 13, K.J. Hemker

MEMS 487. Class 04, Feb. 13, K.J. Hemker MEMS 487 Class 04, Feb. 13, 2003 Materials Come As:!Amorphous Glasses, polymers, some metal alloys Processing can result in amorphous structures! Crystalline Single crystals Textured crystals Polycrystalline

More information

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model. { Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some

More information

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH This lab will be divided into two parts. In the first part, you will be growing crystals from a seed crystal in a very visual demonstration of heterogeneous

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. The circles represent atoms: (a) To what crystal system does the unit cell belong? (b) What would

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

MSE 170 Midterm review

MSE 170 Midterm review MSE 170 Midterm review Exam date: 11/2/2008 Mon, lecture time Place: Here! Close book, notes and no collaborations A sheet of letter-sized paper with double-sided notes is allowed Material on the exam

More information

Chrystal Structures Lab Experiment 1. Professor Greene Mech Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa

Chrystal Structures Lab Experiment 1. Professor Greene Mech Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa Chrystal Structures Lab Experiment 1 Professor Greene Mech 496-02 Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa Abstract: The study of materials science requires an understanding

More information

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES Dr. Mert Yücel YARDIMCI Istanbul Okan University Deparment of Civil Engineering Chapter Outline Terminology for Mechanical Properties The Tensile Test:

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Interatomic bonding Bonding Forces and Energies Equilibrium

More information

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior Physics

More information

Review of Metallic Structure

Review of Metallic Structure Phase Diagrams Understanding the Basics F.C. Campbell, editor Copyright 2012 ASM International All rights reserved www.asminternational.org Appendix A Review of Metallic Structure The word metal, derived

More information

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres.

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres. HW#3 Louisiana Tech University, Chemistry 481. POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Metals and Alloys. Why? Metals What is the structure of a metallic solid? What is

More information

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3.

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3. The Avogadro's number = 6.02 10 23 1 lb = 4.45 N 1 nm = 10 Å = 10-9 m SE104 Structural Materials Sample Midterm Exam Multiple choice problems (2.5 points each) For each problem, choose one and only one

More information

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures Chapter 1 The Structure of Metals Body Centered Cubic (BCC) Structures Figure 1. The body-centered cubic (bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

atoms = 1.66 x g/amu

atoms = 1.66 x g/amu CHAPTER 2 Q1- How many grams are there in a one amu of a material? A1- In order to determine the number of grams in one amu of material, appropriate manipulation of the amu/atom, g/mol, and atom/mol relationships

More information

Chapter 7: Mechanical Properties

Chapter 7: Mechanical Properties Chapter 7: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 7. Mechanical Properties

Chapter 7. Mechanical Properties Chapter 7 Mechanical Properties Chapter 7 Plastic Deformation, Ductility and Toughness Issues to address Stress and strain: What are they and why are they used instead of load and deformation? Elastic

More information

Chapter 6:Mechanical Properties

Chapter 6:Mechanical Properties Chapter 6:Mechanical Properties Why mechanical properties? Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles, pedestrians materials

More information