Main presentation title

Size: px
Start display at page:

Download "Main presentation title"

Transcription

1 Main presentation title Presentation sub-title Developments in battery chemistries Dr. Marcel Meeus (Umicore):

2 Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies, opportunities and challenges 3. Further advances to increase performances and reduce cost 4. Pace of technology evolution 5. Glossary

3 Umicore is committed to all rechargeable battery systems ( and to Zn primary as well) Overpelt (Belgium) Hofors (Sweden) Battery recycling Pyrometallurgy Closed-loop Zn Powders for primary alkaline batteries Cheonan (Korea) Cathode material production Application Lab Research & Technology Powder Technology Olen (Belgium) Headquarters R&D Precursor production Resources efficient Total workforce: >500 people Jiangmen (China) JV (40%) Ni-hydroxide production Cost-efficient/high-volume 3 Shanghai (China) Zn Powders for primary alkaline batteries Jiangmen (China) JV (60%) Precursor production Cathode material production Fig. 1

4 Umicore today application know-how metals chemistry material material science solutions metallurgy material solutions recycling Fig. 2 4

5 Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies, opportunities and challenges 3. Further advances to increase performances and reduce cost 4. Pace of technology evolution 5. Glossary

6 Electrochemical cell basic components > > (separator) Fig. 3 The anode (Greek anodos, way up) is the electrode at which oxidation takes place and electrons are fed into the external circuit. The cathode (Greek cathodos, way down) is the electrode at which reduction takes place and into which electrons are fed from the external circuit. In a primary cell, the anode is also the negative electrode and the cathode, the positive electrode. In a secondary cell on charge, the negative electrode becomes the cathode and the positive electrode, the anode. The electrolyte serves as a medium for completing the electrical circuit via the transport of ions. The reactants comprising the electrodes may be gaseous, liquid or solid, massive or porous. The electrolyte may be liquid or solid. 6

7 Wide portfolio of battery chemistries (non-exhaustive list) Positive A snapshot out of > 50 primary and > 10 rechargeable systems O2 Pb02 Mn02 Negative H2 MH Zn Pb Cd Fe Li LiC6 Al Na Fuel cell KOH Zn/air KOH ZnCl2 H2S04 Pb/acid NiOOH KOH KOH KOH KOH KOH Organic Li/Air organic KOH HgO KOH AgO KOH KOH LiCoO2 LiNiO2 LiMn2O4 LiNiMnCoO2 LiFePO4 organic organic organic organic organic l,br,s aq. (CFx)n organic S Li/S High t Na/S Most important commercial cells 7

8 Trends NiMH (1.2V) Li-Ion (~3.6V) Advanced Li-Ion (3.6V and more) New Systems Fig. 4 Current Li-ion battery materials Fig. 5 Anode (= negative) graphite/carbon Separator Ion permeable inert membrane Cathode (= positive) Lithium cobaltite and new generation materials Electrolyte Liquid or gel Charge: Li-ions from cathode to anode Discharge: Li-ions from anode to cathode 8

9 Continuous improvement to Advanced Li-ion systems -> New cathode materials -> New anode materials LiCoO2 graphite (372 mah/g) 0.1V NMC (1/3Ni, 1/3Mn, 1/3 Co or high Mn formulations) or Li 4 Ti 5 O 12 Si,Sn/C composite materials NCA (Ni, Co, Al) commercial in development ( mah/g) ongoing or (1.5V) (0.1V) LMO (Mn spinel) or mixtures or 2008 LiFePO4 > 3000 mah 2800 mah -> 5V cathode materials in development -> In combination with new electrolytes (solid polymer or ionic liquids 5V) Gravimetric Energy Density (Wh/kg) Charging voltage: 4.10 to 4.20V 1994 ± 1200 mah Volumetric Energy Density (Wh/l) Fig. 6 9

10 Cathode material evolution Mixed compounds (eg NMC: Ni/Co/Mn) for example Cellcore MX introduced since 2005 NMC compounds reduce cobalt use; first enters low-mid end Other materials for future generations of Li-ion technology Some battery specifics ~ # cathodes (C anode) Cap. Cathode mah/g Cap. Batt. Safety Cyclability Cost LiCoO LiNiO LiNiMnCoO LiMn 2 O Fig. 7 LiFePO

11 New chemistries anodes and cathodes Various cathode and anode materials for LIB are studied to further improve capacities: Potential vs Li/Li + (V) V LiMn 2 O 4 LiCoO 2 LiNiO 2 MnO 2 Li 4 Ti 5 O 12 Other carbons Graphite Vanadium oxides (V 2 O 5, LiV 3 O 8 ) Intermetallics d = 4-8 Polyanionic compounds (Li 1-x VOPO 4, Li x FePO 4 ) Phosphides (d 8) 5.0V 4.9V 4.7V 4.2V 3D metal oxides Nitrides d = 2.1 LiCoPO 4 (160mAh/g) Doped LiMn 2 O 4 ( mah/g) LiMnPO 4 (170 mah/g) Si-C d = 2.3 Li metal Sn-C Sn Si Capacity (Ah/kg) Negative materials Positive materials Acc. To Prof. J. M. Tarascon (Amiens) cathodes anodes Fig. 8 11

12 New chemistries anodes and cathodes Cathodes -> more safety, higher potential, higher capacity NANOTECHNOLOGIES Anodes -> replacement of C by new materials with higher capacity (e.g. Sn and Si based intermetallics) Problem to be overcome is swelling of the new materials 12

13 New rechargeable energy storage systems in development: Focus >> 400 Wh/kg, >> 1000 Wh/l Zn-Air (1,6V, ± 500 Wh/kg, ± 1500 Wh/l practical values) Electrolyte Aqueous KOH Negative metal Zinc Positive reversible air electrode carbon with catalyst Power density is still uncertain. Carbon/carbon supercapacitors or a hybrid capacitor could be used for high pulse power. Electrical rechargeability still confronted with fundamental problems:shape change and dendrite formation. Solutions are still actively pursued 13 Ref. Powerair Corp. Fig. 9

14 New rechargeable energy storage systems in development: Focus >> 400 Wh/kg, >> 1000 Wh/l Li-Air (3,4V, ± 1300 Wh/kg) practical values Battery of the future?? Issues: Electrolyte choice/organic aqueous Reversibility, cyclability Safety Univ. St. Andrews (P. Bruce) Fig

15 Li-S (2.1V, 350 Wh/kg, 350 Wh/l) Liquid cathode, safety? Tolerant of overvoltages Important players: Sion Power Intelikraft Ltd. Poly Plus Battery Cy PolyPlus Battery Company Fig

16 Na-S (2V) Fig. 12 High temperature system more developed for electricity storage for grid support (NGK Insulators Japan) 16

17 Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies, opportunities and challenges 3. Further advances to increase performances and reduce cost 4. Pace of technology evolution 5. Glossary

18 Further advances to increase performance and reduce cost Fig

19 Focus Li-ion Present average cost at cell manufacture level in $/kwh: Consumer electronics : HEV : (pack price is ) Target HEV : 250 (e.g. USABC targets) How to achieve this? 1. Increase cell/module capacity: advanced Li-Ion, new systems (see previous chapter) 2. Reduce material cost: LiCoO 2 -> cheaper materials (see previous chapter) 3. Automation and mass production (HEV/EV) 19

20 Current cost structure in Li-ion battery industry Two different models: Japan/Korea (automated) vs China (more manual) For the Japan/Korea model: materials > 50% of the total battery cost The pressure will remain on finding new materials that reduce/eliminate cobalt use Fig. 14 Fig

21 Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies, opportunities and challenges 3. Further advances to increase performances and reduce cost 4. Pace of technology evolution 5. Glossary

22 Timeline for implementation of new technologies Now/done NiMH Li-Ion Advanced Li-Ion Ongoing fast substitution (fig. 16) ongoing for cathode materials (fig. 17) In roadmaps and announced for anode materials > 2020 New battery Systems Possible introduction depends on application: In HEV/EV not before 2020? In Consumer applications may be earlier especially for Zn Air (already exists in primary cells) and Li-Air RECYCLING (fig. 18) Fig 16, 17 & 18 see next pages 22

23 Rechargeable Battery Market value (in M$/yr) Fig

24 Potential evolution of share of cathode materials technology Fig

25 Critical step to Li-Ion and new battery systems further market development is to offer recycling capabilities Umicore patented and award-winning process VAL EAS Fig

26 Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies, opportunities and challenges 3. Further advances to increase performances and reduce cost 4. Pace of technology evolution 5. Glossary

27 Glossary Precursor Spinel Ionic Liquids LMO NCA Li-S Na-S HEV EV NiMH Feed material to produce the lithium metal oxide compound a crystallographic structure (AB204) a term generally used to refer to salts that form stable liquids Product designation for Li-ion battery cathode oxides containing Manganese (Lithium Manganese Oxide) Umicore product designation for Li-ion battery cathode oxides containing Nickel, Cobalt and Aluminium Lithium Sulphur rechargeable battery Sodium Sulphur rechargeable battery Hybrid Electrical Vehicles Electrical Vehicle Nickel Metal Hydride battery 27

Batteries for Vehicular Applications

Batteries for Vehicular Applications Batteries for Vehicular Applications Venkat Srinivasan * Staff Scientist Lawrence Berkeley National Laboratory March 2, 2008 *vsrinivasan@lbl.gov Range Specific c Energy (W Wh/kg) 1000 100 10 Relative

More information

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell Dry Cell (Flashlight Battery)! Primary batteries (not rechargeable)! Secondary batteries (rechargeable) Anode: Zn(s)! Research Needed to Improve Batteries:

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300139 15 December 2017 The below identified

More information

Li-ion battery materials and recycling

Li-ion battery materials and recycling Li-ion battery materials and recycling Li-ion Portable Rechargeable Batteries and (H)EV batteries MetalKokkola Thursday 14th November 2013 Dr. Jan Tytgat - Umicore Content Umicore company presentation

More information

Electrochemical performance of lithium-rich layered oxides for

Electrochemical performance of lithium-rich layered oxides for IBA 2013 Electrochemical performance of lithium-rich layered oxides for electric vehicle applications Jay Hyok Song, Andrei Kapylou, Chang Wook Kim, Yong Chan You, and Sun Ho Kang* SAMSUNG SDI Contents

More information

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Corrosion Definition Electrochemical attack of metals

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

Werkstoffforschung in der Batterietechnik

Werkstoffforschung in der Batterietechnik Werkstoffforschung in der Batterietechnik Philipp Adelhelm Institute for Technical Chemistry and Environmental Chemistry Center for Energy and Environmental Chemistry (CEEC Jena) Friedrich Schiller University

More information

Hydrometallurgical processing of Li-Ion battery scrap from electric vehicles

Hydrometallurgical processing of Li-Ion battery scrap from electric vehicles Hydrometallurgical processing of Li-Ion battery scrap from electric vehicles Hydrometallurgical processing of Li-Ion battery scrap from electric vehicles H. Wang, M. Vest, B. Friedrich RWTH Aachen University

More information

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Determine the half reactions for each cell and the cell voltage or minimum theoretical voltage. 1. Zn / Mg electrochemical

More information

APPLICATIONS OF ELECTROCHEMISTRY

APPLICATIONS OF ELECTROCHEMISTRY APPLICATIONS OF ELECTROCHEMISTRY SPONTANEOUS REDOX REACTIONS APPLICATIONS OF ELECTROCHEMICAL CELLS BATTERIES A galvanic cell, or series of combined galvanic cells, that can be used as a source of direct

More information

Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications

Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications Investigators Yi Cui, Associate Professor; Robert Huggins, Professor; Mauro Pasta, Postdoctoral

More information

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BY 2025, THE WORLD WILL MANUFACTURE 8 BILLION LI-ION CELLS Continued market growth requires rapid advances in higher energy density, higher performance

More information

Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS

Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS STATE OF THE ART The directive on recycling for A high environmental

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES NICKEL & COBALT FOR LITHIUM ION BATTERIES Cobalt and nickel are critical raw materials in the production of cathodes for the lithium-ion battery (LiB) market. These metals are used

More information

Factors Governing Life of High-Energy Lithium-Ion Cells

Factors Governing Life of High-Energy Lithium-Ion Cells Factors Governing Life of High-Energy Lithium-Ion Cells D.P. Abraham IBA 2013 March 11, 2013 Barcelona, Spain Research sponsors are both Government and Private Sector 2 Diagnostics Overview Use of characterization

More information

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Artem Abakumov Center for Electrochemical Energy Storage, Skoltech Li-ion batteries Li x C 6 graphite

More information

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Kosuke Nakamoto, Ayuko Kitajou*, Masato Ito* and Shigeto Okada* (IGSES, Kyushu University, *IMCE, Kyushu University) Oct 6.

More information

Energizer Silver Oxide (Zn/Ag ² O) Application Manual

Energizer Silver Oxide (Zn/Ag ² O) Application Manual Page 1 of 5 System Description: Energizer Silver Oxide (Zn/Ag ² O) Application Manual The silver oxide/zinc alkaline primary battery is the predominate system of the miniature battery product line. It

More information

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems First International Renewable Energy Storage Conference (IRES I) Gelsenkirchen, October, 30

More information

Li-ion batteries a family of chemistries with many possibilities

Li-ion batteries a family of chemistries with many possibilities Li-ion batteries a family of chemistries with many possibilities Kristina Edström * Department of Chemistry The Ångström Laboratory 1 Billion Cars in 2010 and and 1.3 Millions accidents on the roads! >

More information

There s also got to be a wire, but that s kind of taken for granted.

There s also got to be a wire, but that s kind of taken for granted. RedOx Pt 2 Electrochemical Cells (AKA simple batteries) An electrochemical cell has 3 major components: 1. The Cathode (and it s corresponding solution) 2. The Anode (and it s corresponding solution) 3.

More information

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Fundamental Chemistry of Sion Power Li/S Battery Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Outline Thermodynamics of Li-S Discharge-charge mechanism in the

More information

Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes

Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes George C Hawley President George C Hawley & Associates Supermin123@hotmail.ca Biography George C. Hawley & Associates

More information

Batteries and fuel cell research

Batteries and fuel cell research Batteries and fuel cell research Sri Narayan worked for 20 years at NASA s Jet Propulsion Laboratory (JPL) where he led the fuel cell research activities for over 15 years and also headed the Electrochemical

More information

AMERICAN MANGANESE CATHODE RECYCLING TECHNOLOGY

AMERICAN MANGANESE CATHODE RECYCLING TECHNOLOGY CONTRACT REEARCH & TESTING COMPANY CONTRACT RESEARCH & TECHNOLOGY COMMERICALIZATION New Technologies That May Change the Economics of Recycling Lithium-Ion Batteries AMERICAN MANGANESE CATHODE RECYCLING

More information

Challenge for recycling advanced EV batteries

Challenge for recycling advanced EV batteries Challenge for recycling advanced EV batteries EV Segment addressed very well CO2 emission and low energy consumption, But. What about resources??? resources aspect must be integrated to access to a sustainable

More information

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface 1 The reactivity series lists metals in order of reactivity. (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface tin(ii)

More information

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013 Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries Heribert Walter, Battery+Storage 2013 Agenda SGL Group at a Glance Anode Materials Overview Material Synthesis and Modification

More information

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Abstract: New technologies for creating efficient low cost lithium ion batteries

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY Unit 2 Metals Part 2 Metals differ in their reactivity with other chemicals and this influences their uses. Describe observable changes when metals react

More information

Energy Storage beyond Li-ion

Energy Storage beyond Li-ion September 2016 Energy Storage beyond Li-ion Tim Hughes, Siemens Corporate Technology. Agenda 1 Overall Landscape 2 Li-ion Roadmap 3 Advanced Flow Batteries 4 Power 2 Chemicals Page 2 The changing Energy

More information

Investigation of Alkaline Ion Rocking Chair Batteries. Reza Fathi

Investigation of Alkaline Ion Rocking Chair Batteries. Reza Fathi University of Milano-Bicocca Department of Material Science Investigation of Alkaline Ion Rocking Chair Batteries Doctoral dissertation in Materials Science (XVII cycle) of Reza Fathi Supervisor : Prof.

More information

Electricity and Chemistry

Electricity and Chemistry Electricity and Chemistry Electrochemistry: It is a branch of chemistry that deals with the reactions involving the conversion of chemical energy into electrical energy and vice-versa. Electrochemical

More information

TSX V: VONE Frankfurt: 9VR1

TSX V: VONE Frankfurt: 9VR1 TSX V: VONE Frankfurt: 9VR1 1 MANGANESE & VANADIUM Market Growth Not just about Electric Vehicles (EV) anymore New utility storage devices being launched Major commercial interest in back up and offgrid

More information

Development of Cathode Materials for Li-ion Battery and Megalo-Capacitance Capacitor

Development of Cathode Materials for Li-ion Battery and Megalo-Capacitance Capacitor Development of Cathode Materials for Li-ion Battery and Megalo-Capacitance Capacitor ( リチウムイオン電池と巨大容量キャパシタ用正極活物質の開発 ) September 2007 Division of Energy and Materials Science Graduate School of Science

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 60 2015 Issue 2 DOI: 10.1515/amm-2015-0086 S.M. SHIN, G.J. JUNG, WOO-JIN LEE, C.Y. KANG, J.P. WANG, RECOVERY OF ELECTRODIC POWDER

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Terrill B. Atwater 1,2 and Alvin J. Salkind 2,3 1 US Army RDECOM, CERDEC, Ft. Monmouth NJ 2 Rutgers University,

More information

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, 2016 Electrochemical energy storage and conversion Batteries and Electrochemical Capacitors Daniel A. Scherson and Attila Palencsár The Electrochemical

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

Advanced Lithium-ion Battery Manufacturing R&D

Advanced Lithium-ion Battery Manufacturing R&D EVS28 KINTEX, Korea, May 3-6, 2015 Advanced Lithium-ion Battery Manufacturing R&D James F. Miller Argonne National Laboratory, Argonne, Illinois, USA 60439 Introduction I. The cost of lithium-ion batteries

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials

Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials Chemistry Symposium, AABC Europe, 30 January 2 February, 2017, Mainz, GER Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials Florian Holtstiege

More information

Redox Flow Batteries

Redox Flow Batteries Redox Flow Batteries Dr. Nathaniel P. Dugos Ric Madison U. Cua Energy Storage Problem: Fossil Fuels depletes very fast and emits GHGs Solution: Solar Energy and Wind Energy Problem: Highly dependent on

More information

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2 1 Iron is extracted from the ore hematite in the Blast Furnace. waste gases firebrick lining raw materials: coke, C iron ore, Fe 2 O 3 limestone, CaCO 3 CO forms air slag molten iron CO 2 forms (a) The

More information

Rutile-TiO 2 based materials for lithium ion batteries

Rutile-TiO 2 based materials for lithium ion batteries Rutile-TiO 2 based materials for lithium ion batteries Thesis submitted for the Degree of Doctor of Philosophy Nouf Hezam Alotaibi DEPARTMENT OF MATERIAL SCIENCE AND ENGINEERING UNIVERSITY OF SHEFFIELD

More information

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Lower Cost Higher Performance Graphite for LIBs Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Outline Company overview Review of natural graphite resources

More information

Experimental and Modeling Study of Electrochemical and Thermal Behavior of Lithium-ion Batteries

Experimental and Modeling Study of Electrochemical and Thermal Behavior of Lithium-ion Batteries Experimental and Modeling Study of Electrochemical and Thermal Behavior of Lithium-ion Batteries By Soham Neupane B.Tech. Jawaharlal Nehru Technological University Kakinada, 2014 Submitted to the graduate

More information

A Course in the Materials for Battery Technology

A Course in the Materials for Battery Technology A Course in the Materials for Battery Technology Lindsay Corneal School of Engineering Grand Valley State University Grand Rapids, MI 49504 Email: corneall@gvsu.edu Abstract With the increase in hybrid

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY 1. What is matrix? The ore is generally associated with rock impurities like clay, sand etc. called gangue or matrix 2. What is mineral? The natural

More information

All solid-state Li-ion batteries based on intercalation electrodes and poly (ethylene oxide)-lix electrolytes

All solid-state Li-ion batteries based on intercalation electrodes and poly (ethylene oxide)-lix electrolytes Res.Rep.Fac.Eng.Mie.Univ.,Vol.3,pp. 1-12 (25) 1 Original Paper All solid-state Li-ion batteries based on intercalation electrodes and poly (ethylene oxide)-lix electrolytes Y. Liu a, Y.Ono b, T. Matsumura

More information

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A 1. Consider the following reaction: A + B C + D What are the signs of ΔH and ΔS for the reaction to always be spontaneous? ΔH ΔS A. + + B. C. + D. + 2. What is

More information

Recycling of spent rechargeable batteries: A review for the lithium-ion batteries

Recycling of spent rechargeable batteries: A review for the lithium-ion batteries Recycling of spent rechargeable batteries: A review for the lithium-ion batteries G.G. Papavasileiou, C.S. Psomopoulos *, G.Ch. Ioannidis, S.D. Kaminaris Department of Electrical Engineer, Piraeus University

More information

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode? Outline Corrosion - Introduction Corrosion of Metals - e.g. Rusting of iron in water Electrochemical Cell Electrode Potential in Electrochemical Cell Standard Electromotive Force Example Relative Corrosion

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Recycling of spent batteries

Recycling of spent batteries Recycling of spent batteries Christian Ekberg and Martina Petranikova Waste is what is left when imagination fails Commercial One of the challenges of battery recycling is that batteries are both so similar

More information

EFFECTS OF CALCINATION TEMPERATURES ON SYNTHESIS OF LiMn 2 O 4 BY POLYMER MATRIX-BASED ALKALINE DEPOSITION METHOD

EFFECTS OF CALCINATION TEMPERATURES ON SYNTHESIS OF LiMn 2 O 4 BY POLYMER MATRIX-BASED ALKALINE DEPOSITION METHOD Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2014, Yogyakarta State University, 18-20 May 2014 C- EFFECTS OF CALCINATION TEMPERATURES ON

More information

Entitled Paper-Based Lithium-Ion Batteries using Carbon Nanotube-Coated Wood Microfiber Current Collectors. Approved by Major Professor(s):

Entitled Paper-Based Lithium-Ion Batteries using Carbon Nanotube-Coated Wood Microfiber Current Collectors. Approved by Major Professor(s): Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Nojan Aliahmad Entitled Paper-Based

More information

New Materials For and Challenges in Lithium Ion Battery Research

New Materials For and Challenges in Lithium Ion Battery Research New Materials For and Challenges in Lithium Ion Battery Research Clare P. Grey SUNY Stony Brook Basic Research Needs: Electrical Energy Storage Grand challenges? 1. Identify the most efficient mechanism(s)

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

METALS AND THEIR COMPOUNDS

METALS AND THEIR COMPOUNDS METALS AND THEIR COMPOUNDS Metals are elements whose atoms ionize by electron loss, while non-metals are elements whose atoms ionize by electron gain. Metals are in groups 1, 2 and 3 of the periodic table.

More information

TRADING UPDATE Q1 2015

TRADING UPDATE Q1 2015 Press release Regulated information 28 April 2015-07:30 CET TRADING UPDATE Q1 2015 Highlights Revenues were well up (+11%) compared to the same period last year with positive demand developments across

More information

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S.

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. 1 2 3 4 5 6 7 Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. glauca after absorption of tin salt. (b) Photographs

More information

LITHIUM BATTERIES: RESEARCH, TECHNOLOGY

LITHIUM BATTERIES: RESEARCH, TECHNOLOGY ELECTRICAL ENGINEERING DEVELOPMENTS LITHIUM BATTERIES: RESEARCH, TECHNOLOGY AND APPLICATIONS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supporting Information Copyright Royal Society of Chemistry, London,

More information

Hydrochemical Routes to Recycle NiMH Batteries and Fluorescent Lamps

Hydrochemical Routes to Recycle NiMH Batteries and Fluorescent Lamps Hydrochemical Routes to Recycle NiMH Batteries and Fluorescent Lamps Christian Ekberg, Martina Petranikova, Irena Herdzik Koniecko, Teodora Retegan, Cristian Tunsu Nuclear Chemistry and Industrial Materials

More information

Higher, Stronger, Better A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries

Higher, Stronger, Better A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries Higher, Stronger, Better A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries www.materialsviews.com Alexander Kraytsberg and Yair Ein-Eli * The ever-increasing demand for high-performing,

More information

Umicore Precious Metals Refining. Excellence in recycling

Umicore Precious Metals Refining. Excellence in recycling Umicore Precious Metals Refining Excellence in recycling October 2008 Umicore A Materials Technology company A focus on clean technologies A platform for a sustainable future Dealing with natural resources

More information

Indicative Energy Technology Assessment of Advanced Rechargeable Batteries

Indicative Energy Technology Assessment of Advanced Rechargeable Batteries Indicative Energy Technology Assessment of Advanced Rechargeable Batteries Geoffrey P. Hammond a,b,* and Tom Hazeldine a University of Bath, Bath. BA2 7AY. United Kingdom. a Department of Mechanical Engineering

More information

UN/SCETDG/50/INF.31/Add.1(E)

UN/SCETDG/50/INF.31/Add.1(E) UN/SCETDG/50/INF.31/Add.1(E) Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals 29 November 2016 Sub-Committee of

More information

SANTOKU CORPORATION <COMPANY PROFILE> <BUSINESS> <TECHNOLOGY>

SANTOKU CORPORATION <COMPANY PROFILE> <BUSINESS> <TECHNOLOGY> SANTOKU CORPORATION Head office 4-14-34 Fukae-kitamachi, Higashinada-ku, Kobe, Hyogo, Japan 658-0013 Phone +81-78-431-0531 (main number) Fax +81-78-431-6522 Website http://www.santoku-corp.co.jp/english/

More information

Energy storage in intelligent energy networks

Energy storage in intelligent energy networks Energy storage in intelligent energy networks Kari Mäki VTT New developments in battery technology Oulu, January 2017 Contents Towards intelligent energy systems Storage status overview Needs for storage

More information

Chapter: The d and f Block Elements

Chapter: The d and f Block Elements Chapter: The d and f Block Elements Introduction to d block elements Question 1 In Tc ( Z = 43) and Tb( Z = 65) which one is inner transition metal and which one is transition metal and why? The outer

More information

Meeting the Demands of Renewable Energy:

Meeting the Demands of Renewable Energy: Capture & Storage Advanced Batteries Meeting the Dems of Renewable Energy: Lithium Cathodes: CXFE030 SID4220.5 CXLI083 Cathode Fabrication O r ganosil i c o n Solid Polymer, Gel Electrolyte Systems, Li-SPE

More information

Review Thermal Runaway Reactions mechanisms Issue date : January 2011

Review Thermal Runaway Reactions mechanisms Issue date : January 2011 Project HELIOS - High Energy Lithium-Ion Storage Solutions (www.helios-eu.org) Project number: FP7 2333765 (A 3 year project, supported by the European Commission, to study and test the comparative performances

More information

Nanoscale Materials: Exploring the Energy Frontier

Nanoscale Materials: Exploring the Energy Frontier Nanoscale Materials: Exploring the Energy Frontier Prashant N. Kumta Department of Materials Science and Engineering, Biomedical Engineering Carnegie Mellon University, Pittsburgh, PA 15213 Need for Energy

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED LiMPO 4 (M= Mn, Co & Ni) NANOPARTICLES CHAPTER VI 181 CHAPTER - VI FABRICATION AND ELECTROCHEMICAL

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

APPLICATION OF CERAMIC TECHNOLOGIES IN ALL SOLID STATE BATTERIES

APPLICATION OF CERAMIC TECHNOLOGIES IN ALL SOLID STATE BATTERIES APPLICATION OF CERAMIC TECHNOLOGIES IN ALL SOLID STATE BATTERIES Mareike Wolter, Kristian Nikolowski, Katja Wätzig, Jochen Schilm, Uwe Partsch Expertise in ceramics Energy and Environmental Technologies

More information

Engineering Nanostructured Electrode Composites as High Performance Anode Materials - for Lithium Ion Batteries

Engineering Nanostructured Electrode Composites as High Performance Anode Materials - for Lithium Ion Batteries University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2016 Engineering Nanostructured Electrode Composites as High Performance

More information

A.M. MONDAY, 18 January minutes

A.M. MONDAY, 18 January minutes Candidate Name Centre Number Candidate Number 0 GCSE 240/01 ADDITIONAL SCIENCE FOUNDATION TIER CHEMISTRY 2 A.M. MONDAY, 18 January 2010 45 minutes ADDITIONAL MATERIALS In addition to this paper you may

More information

Energy & Environmental Science PERSPECTIVE. Who will drive electric vehicles, olivine or spinel?

Energy & Environmental Science PERSPECTIVE. Who will drive electric vehicles, olivine or spinel? Energy & Environmental Science Cite this: Energy Environ. Sci., 2011, 4, 1621 www.rsc.org/ees Who will drive electric vehicles, olivine or spinel? View Online Dynamic Article Links C < PERSPECTIVE Ok Kyung

More information

Master Energy Energy Technology Options for a Carbon Free Future. Master 2

Master Energy Energy Technology Options for a Carbon Free Future. Master 2 Master Energy Energy Technology Options for a Carbon Free Future Master 2 Programme Content Core module Introduction to energy Energy systems thermodynamic modeling Life cycle of energy systems Energy

More information

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound.

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound. Compounds & Reactions Week 1 Name Writing Formulas & Balancing Equations Write the chemical formula for each ionic compound. 1. Lithium fluoride 2. Copper (II) chloride 3. Manganese (II) oxide 4. Potassium

More information

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

Chem 241. Lecture 27. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 27. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 27 UMass Amherst Biochemistry... Teaching Initiative Recap Fuel Cells Reactions Types of Compounds... 2 Metallic Hydrides Metallic Hydrides: non-stoichiometric, electrically conducting

More information

Development of a CaO-CaF 2 -slag system for high rare earth contents

Development of a CaO-CaF 2 -slag system for high rare earth contents Development of a CaO-CaF 2 -slag system for high rare earth contents T. Müller; B. Friedrich IME Process Metallurgy and Metal Aachen University, Germany Prof. Dr.-Ing. Bernd Friedrich Source for Rare Earth:

More information

Nomenclature. A systematic method of writing chemical formulas and naming compounds

Nomenclature. A systematic method of writing chemical formulas and naming compounds Nomenclature A systematic method of writing chemical formulas and naming compounds Chemical symbols Symbols are used to represent elements Either one capital letter, or a capital letter with a lower case

More information

CERTIFIED REFERENCE MATERIALS (CRM)

CERTIFIED REFERENCE MATERIALS (CRM) CERTIFIED REFERENCE MATERIALS (CRM) Sufficiently Homogenized Indian Reference Materials certified by Round robin analysis for the use of validation of methods and calibration. CSIR-National Metallurgical

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White Experiences of PLD Technology for LIB Separators PICODEON Oy Neal White 1 Outline Introduction to Picodeon Ceramic coating rationale Separator overview Why PLD for LIB separators Current status of Picodeon

More information

ABSTRACT. Since carbon dioxide from petroleum-derived fuels has become an environmental

ABSTRACT. Since carbon dioxide from petroleum-derived fuels has become an environmental ABSTRACT KIM, SANGWOOK. Stresses at Electrode-Electrolyte Interface in Lithium-ion Batteries via Multiphysics Modeling (Under the direction of Dr. Hsiao-Ying Shadow Huang.) Since carbon dioxide from petroleum-derived

More information

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Supporting Information Oxidation State of Cross-over Manganese Species

More information

Supporting Information

Supporting Information Supporting Information A Lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism Yonggang Wang Haoshen Zhou* Energy Technology Research Institute, National Institute

More information