Lecture 11: Metalloproteins - I

Size: px
Start display at page:

Download "Lecture 11: Metalloproteins - I"

Transcription

1 Lecture 11: Metalloproteins - I 1. Introduction A large number of biochemical reactions are known to be catalyzed by proteins. The reason behind their functions as catalysts is attributed to the side chains of amino acid up to some extent and majorly to their ability to incorporate various cofactors such as metal ion, clusters, and organic molecules into their active site. About half of available proteins require metal ions at their active site to function. Proteins possessing one or more metal ions execute ample number of functions and are known as metalloproteins or metalloenzymes. The functionality of enzymes varies with the metal centre at their active site. For instance oxidation and reduction process generally involve, Mn, Cu and Mo; Co plays important role in radical-based rearrangement and methyl-group transfer reaction; Zn,, Mg, Mn and Ni are important for hydrolysis process and DNA processing involves Zn. Apart from this metalloenzymes are also involved in various cell function such as storage and transport of proteins, enzymes and signal transduction proteins. 2. Metal-coordination sites The usual coordination around the metal center in metalloproteins involves nitrogen, oxygen or sulfur atoms belonging to various amino acid residues of the protein. The functional groups involved in coordination, often comes from the side chain of amino acid residues. Among those imidazole substituent in histidine residues, thiolate substituents in cysteinyl residues, and carboxylate groups provided by aspartate are the most important one. Apart from these the peptide backbone participate in coordination, generally via deprotonated amides and the carbonyl oxygen centres of amide bond. In addition to this, a large number of organic cofactors acts as ligands. The most popular are the tetradentate N4 macrocyclic ligands incorporated into the heme protein. Inorganic ligands such as sulfide and oxide are also common.

2 Functional classification of metalloprotein Function Protein Metal/Metal Complexes PDB Electron Transfer Cytochrome b5 Adrenodoxin Plastocyanin heme b 22 Cu 1CYO 1AYF 1AG6 Light harvesting Light harvesting complex LH-II BChl-a 1KZU Catalysis torage (uptake,binding and release) Nitrile hydratase DMO reductase Nitrogenase Mo protein Manganese superixide dismutase Nitrophorin Hemocyanin Metallothioneins Lactoferrin Bacterioferritin Moco Moco Mn Heme(coordinates NO) 2Cu 2+ (coordinates O2) Cd 2+, Hg 2+, Pb 2+, Tl + (in form of hydrated ferric phosphate) 2AHJ 1DMR 3MIN 1VEW 4NP1 1OXY 4MT2 1B1X 1BFR Translocation Copper transporting ATPase Cu + 2AWO Various Lignin peroxidase Zinc finger Endonuclease III Ca 2+ Zn B82 1AAY 2ABK 3. torage and transport metalloprotein 3.1 Oxygen carriers Hemoglobin and myoglobin The two of the earliest structurally characterized proteins hemoglobin (Hb) and myoglobin (Mb) contain iron protoporphyrin IX (heme) as a prosthetic centre. Both the proteins bind reversibly with O2 however their biological role is different. Hb transport oxygen in blood plasma whereas, Mb accumulates O2 in cellular tissue. Hb contains four sub-units in which the (II) ion is coordinated by the planar, macrocyclic ligand protoporphyrin IX and the imidazole nitrogen atom of a histidine residue. The sixth coordination site encloses a water molecule or a dioxygen moiety. On the other side myoglobin has only one such unit and the active site is located in a hydrophobic pocket. The four subunits of hemoglobin show cooperativity effect which allows it to transfer oxygen to myoglobin.

3 Hemoglobin (PDB ID:1GZX) Myoglobin The diamagnetic nature of both the protein is attributed to low-spin state of (II). Both Hb and Mb bind O2 in the reduced state. The iron atom is located in the plane of the porphyrin ring in oxyhemoglobin, whereas it lies above the plane of the ring in deoxyhemoglobin Hemerythrin and Hemocyanin Non heme proteins like hemerythrin and hemocyanin, found only in invertebrates, are another class of oxygen carrier protein. Hemerythrin is an iron containing protein in which O2 binds at binuclear iron center. The coordination environment around iron atoms involves carboxylate side Hemerythrin Hemocyanin chains of glutamate and aspartate and five histidine residues. Reduction of binuclear iron center occurs upon oxygen uptake by hemerythrin results in production of bound peroxide (OOH-). Hemocyanin is most efficient in oxygen transport after hemoglobin. It contains binuclear copper

4 (I) ion. Upon oxygenation O2 reduced to peroxide (O2 2- ) consequently the two copper (I) atoms at the active site are oxidized to copper(ii). 3.2 Electron transfer Cytochromes Cytochromes are membrane bound heme containing proteins and are mainly responsible for ATP generation via electron transport. Cytochromes use redox behavior of 2+ / 3+ which act as electron-transfer vectors. Cytochromes are thus, proficient in performing oxidation and reduction reactions. Moreover since the cytochromes are apprehended within membranes, the redox reactions are Cytochrome c carried out in the proper sequence for maximum efficiency. Most of the cytochromes contained iron atom in a heme group. They differ in their side chains. For example cytochrome a has a heme a prosthetic group and cytochrome b has a heme b prosthetic group. everal cytochromes are involved in the mitochondrial electron transport chain due to difference in 2+ / 3+ redox potentials arises from different prosthetic group. Insertion of oxygen atom into C H bond an oxidation reaction is catalyse by cytochrome P Rubredoxin It is an electron-carrier protein found in sulfur-metabolizing bacteria and archaea. It governs one electron transfer processes. The active site of rubrdoxin consists of iron ion which is coordinated by the sulphur atoms of four cysteine residues in a tetrahedron arrangement. The oxidation state of central iron atom switches amidst the +2 and +3 oxidation states. The metal ion remains in high spin state in both the oxidation state, which minimizes any structural changes.

5 Rubredoxin active site Plastocyanin Plastocyanin belongs to blue copper proteins family which participates in electron transfer reactions. The preferred ligand geometry around copper atom is described as a distorted trigonal pyramidal. Two nitrogen atoms of different histidines and a sulfur atom from cysteine forms the base of the pyramidal whereas methionine forms the apex by introducing an axial sulfur. The difference in bond length of two distinguished Cu- bond causes rise in the redox potential of the protein. An absorption band appears at 597 nm due to the Cu- bond, accounts for the blue color. In the reduced form of plastocyanin, His-87 will become protonated with a pka of 4.4. Protonation prevents it acting as a ligand and the copper site geometry becomes trigonal planar. Plastocyanin Plastocyanin (PDB ID: 3BQV)

A snapshot of bioinorganic chemistry

A snapshot of bioinorganic chemistry A snapshot of bioinorganic chemistry Biological periodic table Metallobiomolecules The diverse coordination chemistry of the d block elements allows metallobiomolecules to be tuned for a wide array of

More information

Globular proteins. Myoglobin and hemoglobin. Dr. Mamoun Ahram Summer semester,

Globular proteins. Myoglobin and hemoglobin. Dr. Mamoun Ahram Summer semester, Globular proteins Myoglobin and hemoglobin Dr. Mamoun Ahram Summer semester, 2017-2018 Functions of myoglobin and hemoglobin Myoglobin is storage of O 2 in muscles. During periods of oxygen deprivation,

More information

Globins. The Backbone structure of Myoglobin 2. The Heme complex in myoglobin. Lecture 10/01/2009. Role of the Globin.

Globins. The Backbone structure of Myoglobin 2. The Heme complex in myoglobin. Lecture 10/01/2009. Role of the Globin. Globins Lecture 10/01/009 The Backbone structure of Myoglobin Myoglobin: 44 x 44 x 5 Å single subunit 153 amino acid residues 11 residues are in an a helix. Helices are named A, B, C, F. The heme pocket

More information

Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life

Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life An Introduction and Guide Wolfgang Kaim Universität Stuttgart, Stuttgart, Germany and Brigitte Schwederski Universität Stuttgart, Stuttgart,

More information

Chapter 10. Oxygen Transporting Proteins

Chapter 10. Oxygen Transporting Proteins Chapter 10 Oxygen Transporting Proteins Oxygen-transport proteins Vertebrates Myoglobin (Muscle) Hemoglobin (Blood) Invertebrates Hemerythrin Hemocyanin Heme Cu Cu O 22 Cu O 2 -binding site of hemocyanin

More information

Specificity: Induced Fit

Specificity: Induced Fit Specificity: Induced Fit Conformational changes may occur upon ligand binding (Daniel Koshland in 1958) This adaptation is called the induced fit Induced fit allows for tighter binding of the ligand Induced

More information

Sheet #7 Dr. Mamoun Ahram 10/07/2014

Sheet #7 Dr. Mamoun Ahram 10/07/2014 1 Recap: Globular Proteins - There are two types of proteins according to their structure: a. Fibrous proteins. b. Globular proteins: are globe-like (spherical) with three-dimensional compact structures

More information

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze.

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze. CLEP Biology - Problem Drill 04: Enzymes and Cellular Metabolism No. 1 of 10 1. Which of the following statements about enzymes is correct? (A) Enzymes are consumed in a reaction. (B) Enzymes act by lowering

More information

Lec.1 Medical Physiology Blood Physiology Z.H.Kamil

Lec.1 Medical Physiology Blood Physiology Z.H.Kamil Hemoglobin The major function of red blood cells is to transport hemoglobin, which in turn carries oxygen from the lungs to the tissues. Hemoglobin, the protein that makes red blood cells red, binds easily

More information

College of pharmacy Third stage Dr.Rafeef Amer

College of pharmacy Third stage Dr.Rafeef Amer College of pharmacy Third stage Dr.Rafeef Amer Hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhvyyyyyyyt``` Enzyme Enzymes are very efficient catalysts for biochemical reactions. present in the cell in

More information

IRON METABOLISM. Harper s Illustrated Biochemistry chapter 50

IRON METABOLISM. Harper s Illustrated Biochemistry chapter 50 IRON METABOLISM Harper s Illustrated Biochemistry chapter 50 IRON 26th element in the periodic table Chemical Symbol: Fe MW = 55.85 Electron Configuration: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 Fourth most

More information

Protein Structure/Function

Protein Structure/Function Protein Structure/Function C483 Spring 2013 1. Proteins segments which fold first can promote the folding of other sections of the protein into the native conformation by a process known as A) renaturation.

More information

Conformational properties of enzymes

Conformational properties of enzymes Conformational properties of enzymes; Physics of enzyme substrate interactions; Electronic conformational interactions, cooperative properties of enzymes Mitesh Shrestha Conformational properties of enzymes

More information

Chem Lecture 5 Catalytic Strategies

Chem Lecture 5 Catalytic Strategies Chem 452 - Lecture 5 Catalytic Strategies 111026 Enzymes have evolved an array of different strategies or enhancing the power and specificity of the reactions they catalyze. For numerous enzymes the details

More information

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism Metabolism represents the sum total of ALL chemical reactions within the cell. These reactions can be regarded as either catabolic or anabolic

More information

A 1. How many nitrogen atoms are found in the backbone of each amino acid? A. 1 B. 2 C. 3 D. 4

A 1. How many nitrogen atoms are found in the backbone of each amino acid? A. 1 B. 2 C. 3 D. 4 Your Pre Build Model should have been impounded the morning of the competition. You may pick up your Pre Build model at the end of the competition after all models have been scored. Unclaimed models will

More information

Allosteric Effects & Cooperative Binding

Allosteric Effects & Cooperative Binding Allosteric Effects & Cooperative Binding The shape of the binding curve for oxygen to myoglobin is hyperbolic and follows the equation for non-cooperative binding: Y=[L]/(KD + [L]). The binding curve for

More information

Spectroscopic Studies of Methionine- and Histidine-Rich hctr1 Model Peptides

Spectroscopic Studies of Methionine- and Histidine-Rich hctr1 Model Peptides Spectroscopic Studies of Methionine- and Histidine-Rich hctr1 Model Peptides Kathryn L. Haas and Katherine J. Franz Department of Chemistry, Duke University Abstract Mechanisms of copper homeostasis are

More information

Molecular structure and dynamics though absorption, emission, and scattering of light. Heme iron complex (MW: ) in the protein (MW > 10,000).

Molecular structure and dynamics though absorption, emission, and scattering of light. Heme iron complex (MW: ) in the protein (MW > 10,000). What is spectroscopy? Molecular structure and dynamics though absorption, emission, and scattering of light. Molecular Window. Heme iron complex (MW: 600-700) in the protein (MW > 10,000). You can understand

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Drug DNA interaction. Modeling DNA ligand interaction of intercalating ligands

Drug DNA interaction. Modeling DNA ligand interaction of intercalating ligands Drug DNA interaction DNA as carrier of genetic information is a major target for drug interaction because of the ability to interfere with transcription (gene expression and protein synthesis) and DNA

More information

2013 W. H. Freeman and Company. 5 Function of Globular Proteins

2013 W. H. Freeman and Company. 5 Function of Globular Proteins 2013 W. H. Freeman and Company 5 Function of Globular Proteins CHAPTER 5: Function of Globular Proteins Key topics in protein function: Reversible binding of ligands is essential Specificity of ligands

More information

BIOLOGY NOTES. CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions

BIOLOGY NOTES. CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions BIOLOGY CHAPTER 5 : BIOCATALYSIS SUBTOPIC : 5.1 Properties of enzymes and mechanism of actions LEARNING OUTCOMES: a) State the properties of enzymes. b) State the six classes of enzyme according to IUB

More information

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 PHRM 836 Exam I - 1 Name: Instructions 1. Check your exam to make certain that it has 9 pages including this cover

More information

Chemistry 1050 Exam 4 Study Guide

Chemistry 1050 Exam 4 Study Guide Chapter 19 Chemistry 1050 Exam 4 Study Guide 19.1 and 19.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges

More information

Chemistry 1120 Exam 3 Study Guide

Chemistry 1120 Exam 3 Study Guide Chemistry 1120 Exam 3 Study Guide Chapter 9 9.1 and 9.2 Know there are 20 common amino acids that can polymerize into proteins. Know why amino acids are called alpha amino acids. Identify the charges of

More information

Chapter I.1: Hemocyanin (Hc)

Chapter I.1: Hemocyanin (Hc) Chapter I.1: Hemocyanin (Hc) 2 is essential for animals Low 2 solubility in aqueous solution (0.2 ml in 100 ml plasma) need some ways to carry 2 Exception otothenoids/family Channichthyidae Antarctic Icefish

More information

BIOLOGY 311C - Brand Spring 2008

BIOLOGY 311C - Brand Spring 2008 BIOLOGY 311C - Brand Spring 2008 NAME (printed very legibly) Key UT-EID EXAMINATION 3 Before beginning, check to be sure that this exam contains 7 pages (including front and back) numbered consecutively,

More information

Metabolism BIOL 3702: Chapter 10

Metabolism BIOL 3702: Chapter 10 Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION This supplementary information is an extension of the letter with the same title and includes further discussion on the comparison of our designed Fe B Mb (computer model and crystal structure) with the

More information

Unit 6: Biomolecules

Unit 6: Biomolecules Unit 6: Biomolecules Name: Period: Test 1 Table of Contents Title of Page Page Number Due Date Unit 6 Warm-Ups 3-4 Unit 6 KUDs 5-6 Biomolecules Cheat Sheet 7 Biomolecules Sorting Review 8-9 Unit 6 Vocabulary

More information

What is necessary for life?

What is necessary for life? Life What is necessary for life? Most life familiar to us: Eukaryotes FREE LIVING Or Parasites First appeared ~ 1.5-2 10 9 years ago Requirements: DNA, proteins, lipids, carbohydrates, complex structure,

More information

GREEN FACTORY KITE AS A NATURAL SUBSTITUTE TO HEME

GREEN FACTORY KITE AS A NATURAL SUBSTITUTE TO HEME GREEN FACTORY KITE AS A NATURAL SUBSTITUTE TO HEME GREEN FACTORY KITE: PORPHYRIN (TETRAPYRROLE) RING 1. HEME 2. CHLOROPHYLL 3. CHLOROPHYLLIN 4. PHEOPHYTIN GREEN FACTORY KITE : PORPHYRIN RING Porphyrins

More information

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction.

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction. 1 Enzyme = protein molecule that serves as a biological catalyst. allow life to go on. speed up and regulate metabolic reactions. Catalyst= a chemical that speeds up the rate of a reaction without itself

More information

What is necessary for life?

What is necessary for life? Life What is necessary for life? Most life familiar to us: Eukaryotes FREE LIVING Or Parasites First appeared ~ 1.5-2 10 9 years ago Requirements: DNA, proteins, lipids, carbohydrates, complex structure,

More information

2) Which functional group is least important in biochemistry? A) amine B) ester C) hydroxyl D) aromatic E) amide

2) Which functional group is least important in biochemistry? A) amine B) ester C) hydroxyl D) aromatic E) amide 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C) carbohydrates. D) nucleic acids. E) All of the above are biomolecules. 2) Which functional group is least important

More information

Crystal Structure of a Manganese Superoxide Dismutase: Deninoccus radiodurans

Crystal Structure of a Manganese Superoxide Dismutase: Deninoccus radiodurans Crystal Structure of a Manganese Superoxide Dismutase: Deninoccus radiodurans (a) Function Superoxide dismutase is one of the most important enzymes in the world. It comes in several forms in different

More information

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015

Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 Examination I PHRM 836 Biochemistry for Pharmaceutical Sciences II September 29, 2015 PHRM 836 Exam I - 1 Name: Instructions 1. Check your exam to make certain that it has 9 pages including this cover

More information

IB HL Biology Test: Topics 1 and 3

IB HL Biology Test: Topics 1 and 3 October 26, 2011 IB HL Biology Test: Topics 1 and 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What conditions must be met for the t-test to be applied?

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Hemoglobin and the Heme Group: Metal Complexes in the Blood for Oxygen Transport

Hemoglobin and the Heme Group: Metal Complexes in the Blood for Oxygen Transport Hemoglobin and the Heme Group: Metal Complexes in the Blood for Oxygen Transport Inorganic Synthesis Experiment Authors: Rachel Casiday and Regina Frey Department of Chemistry, Washington University St.

More information

Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity

Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity Michaelis Menten Kinetics -Enzyme Kinetics, Binding and Cooperativity Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1

More information

Hmwk # 8 : DNA-Binding Proteins : Part II

Hmwk # 8 : DNA-Binding Proteins : Part II The purpose of this exercise is : Hmwk # 8 : DNA-Binding Proteins : Part II 1). to examine the case of a tandem head-to-tail homodimer binding to DNA 2). to view a Zn finger motif 3). to consider the case

More information

AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA

AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA AP Biology Book Notes Chapter 3 v Nucleic acids Ø Polymers specialized for the storage transmission and use of genetic information Ø Two types DNA Encodes hereditary information Used to specify the amino

More information

CHMI 2227E Biochemistry I

CHMI 2227E Biochemistry I CHMI 2227E Biochemistry I Proteins: - Quaternary structure CHMI 2227 - E.R. Gauthier, Ph.D. 1 CHMI 2227 - E.R. Gauthier, Ph.D. 2 hydrophobic Quaternary structure involves several polypeptides: Oligomers

More information

Biochemistry study of the molecular basis of life

Biochemistry study of the molecular basis of life Biochemistry : An Introduction Biochemistry study of the molecular basis of life n Study of the chemistry of living organisms Studies organic molecules & organic reactions in living organisms n Living

More information

Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma

Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma Lecture of October 15, 2018 Chapter 4: Hemoglobin and Cooperativity; Proof of Grand Central Dogma Apichart Linhananta Department of Physics Lakehead University Section 4.1: Size Exclusion Chromatography;

More information

Proteins Higher Order Structures

Proteins Higher Order Structures Proteins Higher Order Structures Dr. Mohammad Alsenaidy Department of Pharmaceutics College of Pharmacy King Saud University Office: AA 101 msenaidy@ksu.edu.sa Previously on PHT 426!! Protein Structures

More information

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont.

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont. Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Proteins the primary biological macromolecules of living organisms

Proteins the primary biological macromolecules of living organisms Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt

More information

Size Exclusion Chromatography

Size Exclusion Chromatography Size Exclusion Chromatography Workshop Time Line Introduction Comparison of different types of column chromatography Separation of a mixture of biomolecules by size exclusion chromatography Chromatography

More information

Amino Acids & Proteins

Amino Acids & Proteins Chemistry 131 Lecture 13: Protein Function; Amino Acids and Properties, Chirality & Handedness in Amino Acids, Primary Protein Structure Sections 18.1 18.7 in McMurry, Ballantine, et. al. 7 th edition

More information

Protein Structure. Protein Structure Tertiary & Quaternary

Protein Structure. Protein Structure Tertiary & Quaternary Lecture 4 Protein Structure Protein Structure Tertiary & Quaternary Dr. Sameh Sarray Hlaoui Primary structure: The linear sequence of amino acids held together by peptide bonds. Secondary structure: The

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

PROTEINS & NUCLEIC ACIDS

PROTEINS & NUCLEIC ACIDS Chapter 3 Part 2 The Molecules of Cells PROTEINS & NUCLEIC ACIDS Lecture by Dr. Fernando Prince 3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life We have already learned that

More information

Chapter 8. Carriage of gases in the blood and acid/base balance

Chapter 8. Carriage of gases in the blood and acid/base balance Chapter 8 Carriage of gases in the blood and acid/base balance Liu Baoyi Respiratory Department of Qilu Hospital April, 2013 Oxygen and Carbon Dioxide Transport in Blood Basic Mechanism of the Gases Transportation

More information

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004

CSE : Computational Issues in Molecular Biology. Lecture 19. Spring 2004 CSE 397-497: Computational Issues in Molecular Biology Lecture 19 Spring 2004-1- Protein structure Primary structure of protein is determined by number and order of amino acids within polypeptide chain.

More information

Mode of O 2 Binding in Myoglobin

Mode of O 2 Binding in Myoglobin Mode of O 2 Binding in Myoglobin distal d x2-y2 d z2 Fe (II) Proximal d xy Fe (II) d xz, d yz Fe (II) (HS) ionic radius = 78 pm Fe (II) (LS) ionic radius = 61 pm Fe(II) + O 2 = Fe(II)-O 2 = Fe(III)-O 2

More information

ENZYMES. Unit 3 - Energy

ENZYMES. Unit 3 - Energy ENZYMES Unit 3 - Energy What is an enzyme? What do they do? What is an enzyme? What do they do? Key Things to remember: They are proteins They are catalysts They are reusable - not consumed in reaction

More information

BIO 311C Spring Lecture 16 Monday 1 March

BIO 311C Spring Lecture 16 Monday 1 March BIO 311C Spring 2010 Lecture 16 Monday 1 March Review Primary Structure of a portion of a polypeptide chain backbone of Polypeptide chain R-groups of amino acids Native conformation of a dimeric protein,

More information

Enzymes, ATP and Bioenergetics

Enzymes, ATP and Bioenergetics Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Enzymes, ATP and Bioenergetics Bioenergetics Bioenergetics can be defined as energy transfer mechanisms occurring within living organisms.

More information

All Rights Reserved. U.S. Patents 6,471,520B1; 5,498,190; 5,916, North Market Street, Suite CC130A, Milwaukee, WI 53202

All Rights Reserved. U.S. Patents 6,471,520B1; 5,498,190; 5,916, North Market Street, Suite CC130A, Milwaukee, WI 53202 Secondary Structure In the previous protein folding activity, you created a hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously folds

More information

Chem. 451 (Spring, 2005) Final Exam (100 pts)

Chem. 451 (Spring, 2005) Final Exam (100 pts) hem. 451 (Spring, 2005) Final Exam (100 pts) Name: --------------------------------------------------------, Student lid #: ----------------------, May 7, 2005 LAST, First ircle the alphabet segment of

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules

Enzyme. Proteins with catalytic properties. A small group of catalytic RNA molecules بسمه تعالی کارشناسی ارشد بیوشیمی و بیولوژي سلول آنزیم ابراهیم قاسمی Enzyme Proteins with catalytic properties A small group of catalytic RNA molecules Catalyze reactions (degrade, conserve and transform

More information

MOLEBIO LAB #3: Electrophoretic Separation of Proteins

MOLEBIO LAB #3: Electrophoretic Separation of Proteins MOLEBIO LAB #3: Electrophoretic Separation of Proteins Introduction: Proteins occupy a central position in the structure and function of all living organisms. Some proteins serve as structural components

More information

Nucleic Acids, Proteins, and Enzymes

Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

Dr. Muaz Osman Fagere

Dr. Muaz Osman Fagere Dr. Muaz Osman Fagere In biology, pigments are defined as substances occurring in living matter that absorb visible light. Pigments are differ in origin, chemical constitution, and biological significance.

More information

Which diagram represents a DNA nucleotide? A) B) C) D)

Which diagram represents a DNA nucleotide? A) B) C) D) 3594-1 - Page 1 Name: 1) What is a definition of the term "gene"? A) a transfer-rna nucleotide sequence specific for a particular amino acid B) three messenger-rna nucleotides coded for a specific amino

More information

What can you tell me about this picture?

What can you tell me about this picture? What can you tell me about this picture? ENZYMES A protein with catalytic properties due to its power of specific activation 1. Anabolic reactions: Define the following terms: Reactions that build up molecules

More information

A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing

A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing Bhimsen Rout *, Organic Chemistry Division, Institute of Chemical and Engineering

More information

1. How many nitrogen atoms are found in the backbone of each amino acid? A. 1 B. 2 C. 3 D. 4

1. How many nitrogen atoms are found in the backbone of each amino acid? A. 1 B. 2 C. 3 D. 4 Your Pre Build Model should have been impounded the morning of the competition. You may pick up your Pre Build model at the end of the competition after all models have been scored. Unclaimed models will

More information

TREE ESSENTIAL ELEMENT. COPPER (Cu)

TREE ESSENTIAL ELEMENT. COPPER (Cu) Pub. No. 19 April 016 TREE ESSENTIAL ELEMENT COPPER (Cu) by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Copper (Cu) is

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Marina A. Zenkova. Artificial Nucleases

Marina A. Zenkova. Artificial Nucleases Marina A. Zenkova Artificial Nucleases Introduction 1 DNA Hydrolysis : Mechanism and Reactivity 3 N.H. WILLIAMS 1 Introduction 3 2 The Importance of the Background Reaction 3 3 Mechanism 4 4 Spontaneous

More information

Protein Structure/Function Relationships

Protein Structure/Function Relationships Protein Structure/Function Relationships W. M. Grogan, Ph.D. OBJECTIVES 1. Describe and cite examples of fibrous and globular proteins. 2. Describe typical tertiary structural motifs found in proteins.

More information

6-Foot Mini Toober Activity

6-Foot Mini Toober Activity Big Idea The interaction between the substrate and enzyme is highly specific. Even a slight change in shape of either the substrate or the enzyme may alter the efficient and selective ability of the enzyme

More information

Chapter 2 Molecules to enzymes - Short answer [72 marks]

Chapter 2 Molecules to enzymes - Short answer [72 marks] Chapter 2 Molecules to enzymes - Short answer [72 marks] 1a. Outline primary and quaternary protein structures. Primary protein structure: Quaternary protein structure: a. (primary structure) is sequence

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

DNA Glycosylase Exercise

DNA Glycosylase Exercise Name StarBiochem DNA Glycosylase Exercise Background In this exercise, you will use StarBiochem, a protein 3-D viewer, to explore the structure of a DNA repair protein found in most species, including

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Protein Function. chapter

Protein Function. chapter chapter Protein Function 7 Knowing the three-dimensional structure of a protein is an important part of understanding how the protein functions. However, the structure shown in two dimensions on a page

More information

Chem. 451 (Spring, 2003) Final Exam (100 pts)

Chem. 451 (Spring, 2003) Final Exam (100 pts) Chem. 451 (Spring, 2003) Final Exam (100 pts) Name: --------------------------------------------------------, SSN: --------------------------------, May 15, 2003 LAST, First Circle the alphabet segment

More information

DNA Repair Protein Exercise

DNA Repair Protein Exercise Name StarBiochem DNA Repair Protein Exercise Background In this exercise, you will use StarBiochem, a protein 3-D viewer, to explore the structure of a DNA repair protein found in most species, including

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 4 Mar 11: Inorganic Chemistry of Energy

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 4 Mar 11: Inorganic Chemistry of Energy 5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 4 Mar 11: Inorganic Chemistry of Energy General The greatest challenge facing our global future is energy. Worldwide primary energy consumption

More information

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water Chapter 1 -- Life In the beginning... Molecular evolution Heirarchy and organization levels of organization Form follows function Language in science Cell and Molecular Biology -- Biology 20A Chapter Outlines

More information

Central Dogma. 1. Human genetic material is represented in the diagram below.

Central Dogma. 1. Human genetic material is represented in the diagram below. Central Dogma 1. Human genetic material is represented in the diagram below. 4. If 15% of a DNA sample is made up of thymine, T, what percentage of the sample is made up of cytosine, C? A) 15% B) 35% C)

More information

(Refer Slide Time: 00:15)

(Refer Slide Time: 00:15) (Refer Slide Time: 00:15) Proteins and Gel-Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 3 Let

More information

number Done by Corrected by Doctor Diala

number Done by Corrected by Doctor Diala number 34 Done by Abdulrahman Alhanbali Corrected by Mohammad Mahmoud Tarabeih Doctor Diala 1 P a g e Nucleotide metabolism In this lecture we will talk about nucleotides; their structures, the synthesis

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 34 Done by Abdulrahman Alhanbali Corrected by Mohammad Mahmoud Tarabeih Doctor Diala Nucleotide metabolism 1 P age In this lecture we will talk about nucleotides; their structures, the synthesis

More information

Protein Structure and Function! Lecture 4: ph, pka and pi!

Protein Structure and Function! Lecture 4: ph, pka and pi! Protein Structure and Function! Lecture 4: ph, pka and pi! Definition of ph and pk a! ph is a measure of the concentration of H +.! + ph = log 10[H ] For a weak acid,! HA #!!"! H + + A!, K a = [H + ][A!

More information

Concentration of Metals (Cd, Hg, Ag; mean +SD) in sediment samples collected from Pit Specific Sediment Chemistry Monitoring for CMP 1 in May 2014.

Concentration of Metals (Cd, Hg, Ag; mean +SD) in sediment samples collected from Pit Specific Sediment Chemistry Monitoring for CMP 1 in May 2014. Figure 1: Concentration of Metals (Cr, Cu, Ni, Pb, Zn, As; mean +SD) in sediment samples collected from Pit Specific Sediment Chemistry Monitoring for CMP 1 in May 2014. Figure 2: Concentration of Metals

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 5 SPECIFICITY OF ENZYME ACTION You may recall that earlier we have outlined

More information

Storage and Expression of Genetic Information

Storage and Expression of Genetic Information Storage and Expression of Genetic Information 29. DNA structure, Replication and Repair ->Ch 25. DNA metabolism 30. RNA Structure, Synthesis and Processing ->Ch 26. RNA metabolism 31. Protein Synthesis

More information

Iron Assay Kit. Catalog Number KA assays Version: 05. Intended for research use only.

Iron Assay Kit. Catalog Number KA assays Version: 05. Intended for research use only. Iron Assay Kit Catalog Number KA0814 100 assays Version: 05 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials Supplied...

More information

Unit 1. DNA and the Genome

Unit 1. DNA and the Genome Unit 1 DNA and the Genome Gene Expression Key Area 3 Vocabulary 1: Transcription Translation Phenotype RNA (mrna, trna, rrna) Codon Anticodon Ribosome RNA polymerase RNA splicing Introns Extrons Gene Expression

More information

Chapter 3 A TEST CASE: N42C/H117G AZURIN MUTANT

Chapter 3 A TEST CASE: N42C/H117G AZURIN MUTANT Chapter 3 Chapter 3 A TEST CASE: N42C/H117G AZURIN MUTANT 49 A test case: N42C/H117G azurin mutant Summary Because the stability of the yelow species of H117G/N42C azurin is limited, structure determination

More information