Table 1,1. Induction heating applications and typical products. Preheating prior to metalworking Heat treating Welding Melting

Size: px
Start display at page:

Download "Table 1,1. Induction heating applications and typical products. Preheating prior to metalworking Heat treating Welding Melting"

Transcription

1 Elements of Induction Heating Stanley Zinn, Lee Semiatin, p 1-8 DOI: /eoih1988p001 Copyright 1988 ASM International All rights reserved. Chapter 1 Introduction Electromagnetic induction, or simply "induction," is a method of heating electrically conductive materials such as metals. It is commonly used in process heating prior to metalworking, and in heat treating, welding, and melting (Table 1.1). This technique also lends itself to various other applications involving packaging and curing. The number of industrial and consumer items which undergo induction heating during some stage of their production is very large and rapidly expanding. As its name implies, induction heating relies on electrical currents that are induced internally in the material to be heated-i.e., the workpiece. These Table 1,1. Induction heating applications and typical products Preheating prior to metalworking Heat treating Welding Melting Forging Surface Hardening, Seam Welding Air Melting of Steels Gears Tempering Oil-country Ingots Shafts Gears tubular Billets Hand tools Shafts products Castings Ordnance Valves Refrigeration Vacuum Induction Machine tools tubing Melting Extrusion Hand tools Line pipe Structural Ingots members Through Hardening, Billets Shafts Tempering Castings Heading Structural members "Clean" steels Nickel-base Bolts Spring steel superalloys Other fasteners Chain links Titanium alloys Rolling Slab Annealing Aluminum strip Sheet (can, appliance, and Steel strip automotive industries)

2 2 Elements of Induction Heating: Design, Control, and Applications so-called eddy currents dissipate energy and bring about heating. The basic components of an induction heating system are an induction coil, an alternating-current (ac) power supply, and the workpiece itself. The coil, which may take different shapes depending on the required heating pattern, is connected to the power supply. The flow of ac current through the coil generates an alternating magnetic field which cuts through the workpiece. It is this alternating magnetic field which induces the eddy currents that heat the workpiece. Because the magnitude of the eddy currents decreases with distance from the workpiece surface, induction can be used for surface heating and heat treating. In contrast, if sufficient time is allowed for heat conduction, relatively uniform heating patterns can be obtained for purposes of through heat treating, heating prior to metalworking, and so forth. Careful attention to coil design and selection of power-supply frequency and rating ensures close control of the heating rate and pattern. A common analogy used to explain the phenomenon of electromagnetic induction makes use of the transformer effect. A transformer consists of two coils placed in close proximity to each other. When a voltage is impressed across one of the coils, known as the primary winding or simply the "primary," an ac voltage is induced across the other coil, known as the "secondary." In induction heating, the induction coil, which is energized by the ac power supply, serves as the primary, and the workpiece is analogous to the secondary. The mathematical analysis of induction heating processes can be quite complex for all but the simplest of workpiece geometries. This is because of the coupled effects of nonuniform heat generation through the workpiece, heat transfer, and the fact that the electrical, thermal, and metallurgical properties of most materials exhibit a strong dependence on temperature. For this reason, quantitative solutions exist for the most part only for the heating of round bars or tubes and rectangular slabs and sheets. Nevertheless, such treatments do provide useful insights into the effects of coil design and equipment characteristics on heating patterns in irregularly shaped parts. This information, coupled with knowledge generated through years of experimentation in both laboratory and production environments, serves as the basis for the practical design of induction heating processes. This book focuses on the practical aspects of process design and control, an understanding of which is required for the implementation of actual induction heating operations. The treatment here is by and large of the "hands-on" type as opposed to an extended theoretical discussion of induction heating or equipment design. Chapters 2 and 3 deal with the basics of induction heating and circuit theory only to the degree that is required in design work. With this as a background, subsequent chapters address the questions of equipment selection (Chapter 4), auxiliary equipment (Chapter 5), process design for common applications (Chapter 6), control systems (Chapter 7), and coil design and fabrication (Chapter 8). The concluding chapters address the ques-

3 Introduction 3 tions of special design features (Chapter 9), materials-handling systems (Chapter 10), process design for special applications (Chapter 11), and economic considerations (Chapter 12). To introduce the subject, a brief review of the history, applications, and advantages of induction heating is given next. HISTORY The birth of electromagnetic induction technology dates back to In November of that year, Michael Faraday wound two coils of wire onto an iron ring and noted that when an alternating current was passed through one of the coils, a voltage was induced in the other. Recognizing the potential applications of transformers based on this effect, researchers working over the next several decades concentrated on the development of equipment for generating high-frequency alternating current. It was not until the latter part of the 19th century that the practical application of induction to heating of electrical conductors was realized. The first major application was melting of metals. Initially, this was done using metal or electrically conducting crucibles. Later, Ferranti, Colby, and Kjellin developed induction melting furnaces which made use of nonconducting crucibles. In these designs, electric currents were induced directly into the charge, usually at simple line frequency, or 60 Hz. It should be noted that these early induction melting furnaces all utilized hearths that held the melt in the form of a ring. This fundamental practice had inherent difficulties brought about by the mechanical forces set up in the molten charge due to the interaction between the eddy currents in the charge and the currents flowing in the primary, or induction coil. In extreme cases, a "pinch" effect caused the melt to separate and thus break the complete electrical path required for induction, and induction heating, to occur. Problems of this type were most severe in melting of nonferrous metals. Ring melting furnaces were all but superseded in the early 1900's by the work of Northrup, who designed and built equipment consisting of a cylindrical crucible and a high-frequency spark-gap power supply. This equipment was first used by Baker and Company to melt platinum and by American Brass Company to melt other nonferrous alloys. However, extensive application of such "coreless" induction furnaces was limited by the power attainable from spark-gap generators. This limitation was alleviated to a certain extent in 1922 by the development of motor-generator sets which could supply power levels of several hundred kilowatts at frequencies up to 960 Hz. It was not until the late 1960's that motor-generators were replaced by solid-state converters for frequencies now considered to be in the "medium-frequency" rather than the high-frequency range.* *Modern induction power supplies are classified as low frequency (less than approximately 1 khz), medium frequency (1 to 50 khz), or high or radio frequency (greater than 50 khz).

4 4 Elements of Induction Heating: Design, Control, and Applications Following the acceptance of induction heating for metal melting, other applications of this promising technology were vigorously sought and developed. These included induction surface hardening of steels, introduced by Midvale Steel (1927) and the Ohio Crankshaft Company (mid-1930's). The former company used a motor-generator for surface heating and hardening of rolling-mill rolls, a practice still followed almost universally today to enhance the wear and fatigue resistance of such parts. The Ohio Crankshaft Company, one of the largest manufacturers of diesel-engine crankshafts, also took advantage of the surface-heating effect of high ac frequencies and used motor-generators at 1920 and 3000 Hz in surface hardening of crankshaft bearings. This was the first high-production application of induction heating for surface heat treating of metals. The wider application to a multiplicity of other parts was an obvious step. For example, the Budd Wheel Company became interested in induction surface hardening of the internal bores of tubular sections and applied this technique to automotive axle hubs and later to cylinder liners. World War II provided a great impetus to the use of induction heating technology, particularly in heat treating of ordnance components such as armorpiercing projectiles and shot. The ability to use induction for local as well as surface hardening was also called upon to salvage over a million projectiles which had been improperly heat treated, yielding local soft spots. In addition, it was found that tank-track components, pins, links, and sprockets could be hardened in large quantities most effectively by high-frequency induction. In a different area, induction heating was applied to preheating of steel blanks prior to hot forging of parts such as gun barrels. In recent years, the application of induction heating and melting has increased to the point where most engineers in the metalworking industries are familiar with existing applications and have some ideas for potential uses. In addition, various nonmetals industries are now beginning to develop a familiarity with induction heating principles as they find and develop uses in making their products. Many of the recent developments have been promoted by the development of high-efficiency solid-state power supplies, introduced in Over the last several decades, the efficiency of these units has increased to almost 95% in terms of the percentage of line-frequency energy converted to the higher output frequency (Fig. 1.1). In terms of equipment cost per kilowatt available for heating, this has actually resulted in a decrease in cost after adjustment for inflation (Fig. 1.2). APPLICATIONS OF INDUCTION HEATING As can be surmised from the above discussion, induction heating finds its greatest application in the metals-processing industries (Table 1.1). Primary

5 Introduction Q r,.- O3 'T o~ OJ O3 l,q. 'T., (O O3 85% Cd I ~. I~- T- O) r~ r,- 94% CO O3 O~ 90% 83% 84% 85% r,3 t-- m 75% (3 I.Ll 60 O (O O3 v_ 40 / Sparkgap generators / \, / Motor- 540 Hz Early solid state 180 Hz generator sets I Variabletuned solid state Fig Conversion efficiency of induction heating power supplies (from R. W. Sundeen, Proceedings, 39th Electric Furnace Conference, Houston, TX, AIME, New York, 1982, p. 8) Motorgenerator Motorgenerator Integral motorgenerator "10 C co O (3 (/) O 540 Hz Early solid state Solid state Variabletuned solid state Present solid state Year 1981 Fig Change in cost of induction heating power supplies since 1948 (from R. W. Sundeen, Proceedings, 3gth Electric Furnace Conference, Houston, TX, AIME, New York, 1982, p. 8)

6 6 Elements of Induction Heating: Design, Control, and Applications uses fall into the major categories of heating prior to metalworking, heat treating, welding, and metal melting. While these are the most common uses, a variety of other operations, such as paint curing, adhesive bonding, and zone refining of semiconductors, are also amenable to induction heating methods. Each of these applications is briefly discussed below. Preheating Prior to Metalworking. Induction heating prior to metalworking is well accepted in the forging and extrusion industries. It is readily adapted to through preheating of steels, aluminum alloys, and specialty metals such as titanium and nickel-base alloys. Frequently, the workpieces in these types of applications consist of round, square, or round-cornered square bar stock. For steels, the high heating rates of induction processes minimize scale and hence material losses. The rapid heating boosts production rates. Induction heating is also useful for selectively preheating bar stock for forming operations such as heading. Heat Treating. Induction heating is used in surface and through hardening, tempering, and annealing of steels. A primary advantage is the ability to control the area that is heat treated. Induction hardening, the most common induction heat treating operation, improves the strength, wear, and fatigue properties of steels. Steel tubular products, for example, lend themselves quite readily to hardening by induction in continuous-line operations. Tempering of steel by induction, although not as common as induction hardening of steels, restores ductility and improves fracture resistance. Also less commonly applied is induction annealing, which restores softness and ductility-important properties for forming of steels, aluminum alloys, and other metals. Melting. Induction processes are frequently used to melt high-quality steels and nonferrous alloys (e.g., aluminum and copper alloys). Advantages specific to induction melting as compared with other melting processes include a natural stirring action (giving a more uniform melt) and long crucible life. Welding, Brazing, and Soldering. High-frequency induction welding offers substantial energy savings because heat is localized at the weld joint. The most common application of induction welding is welded tube or pipe products that lend themselves to high-speed, high-production automated processing. Induction brazing and soldering also rely on the local heating and control capabilities inherent in the induction heating process. Curing of Organic Coatings. Induction is used to cure organic coatings such as paints on metallic substrates by generating heat within the substrate. By this means, curing occurs from within, minimizing the tendency for formation of coating defects. A typical application is the drying of paint on sheet metal.

7 Introduction 7 Adhesive Bonding. Certain automobile parts, such as clutch plates and brake shoes, make use of thermosetting adhesives. As in paint curing, induction heating of the metal parts to curing temperatures can be an excellent means of achieving rapid bonding. Metal-to-nonmetal seals, widely used in vacuum devices, also rely heavily on induction heating. Semiconductor Fabrication. The growing of single crystals of germanium and silicon often relies on induction heating. Zone refining, zone leveling, doping, and epitaxial deposition of semiconductor materials also make use of the induction process. Tin Reflow. Electrolytically deposited tin coatings on steel sheet have a dull, matte, nonuniform finish. Heating of the sheet to 230 C (450 F) by induction causes reflow of the tin coating and results in a bright appearance and uniform coverage. Sintering. Induction heating is widely used in sintering of carbide preforms because it can provide the necessary high temperature (2550 C, or 4620 F) in a graphite retort or susceptor with atmosphere control. Other preforms of ferrous and nonferrous metals can be sintered in a similar manner with or without atmosphere protection. ADVANTAGES OF INDUCTION HEATING Prior to the development of induction heating, gas- and oil-fired furnaces provided the prime means of heating metals and nonmetals. Induction heating offers a number of advantages over furnace techniques, such as: Quick heating. Development of heat within the workpiece by induction provides much higher heating rates than the convection and radiation processes that occur in furnaces (Fig. 1.3). Less scale loss. Rapid heating significantly reduces material loss due to scaling (e.g., for steels) relative to slow gas-fired furnace processes. Fast start-up. Furnaces contain large amounts of refractory materials that must be heated during start-up, resulting in large thermal inertia. The internal heating of the induction process eliminates this problem and allows much quicker start-up. Energy savings. When not in use, the induction power supply can be turned off because restarting is so quick. With furnaces, energy must be supplied continuously to maintain temperature during delays in processing and to avoid long start-ups. High production rates. Because heating times are short, induction heating often allows increased production and reduced labor costs.

8 8 Elements of Induction Heating: Design, Control, and Applications Bar section, in. v I I I I I o Q It) C%1 (J o O~ : al Q) t- z:" d E 1-- Induction Bar section, cm Fig Comparison of times for through heating by induction and gas-fired furnace techniques as a function of bar diameter (from R. Daugherty and A. A. Huchok, Proceedings, 11th Biennial Conference on Electric Process Heating in Industry, IEEE, New York, 1973) In addition to those listed above, other advantages that induction heating systems offer include: Ease of automation and control Reduced floor-space requirements Quiet, safe, and clean working conditions Low maintenance requirements.

Table 1,1. Induction heating applications and typical products. Preheating prior to metalworking Heat treating Welding Melting

Table 1,1. Induction heating applications and typical products. Preheating prior to metalworking Heat treating Welding Melting Elements of Induction Heating Stanley Zinn, Lee Semiatin, p 1-8 DOI: 10.1361/eoih1988p001 Copyright 1988 ASM International All rights reserved. www.asminternational.org Chapter 1 Introduction Electromagnetic

More information

Innovative heat treatment technologies. Field proven reliability and cutting-edge technology for every application

Innovative heat treatment technologies. Field proven reliability and cutting-edge technology for every application Innovative heat treatment technologies Field proven reliability and cutting-edge technology for every application Leading-edge heat treatment furnaces meeting international safety and quality standards

More information

EPRl Center Materials for Fabrication Vol. 2, No. 1 Revised Published the by ..-. '... -!:'

EPRl Center Materials for Fabrication Vol. 2, No. 1 Revised Published the by ..-. '... -!:' Published the by EPRl Center Materials for Fabrication Vol. 2, No. 1 Revised 1993 A Cost-Effective And Energy-Efficient Method For Process Heating Induction heating is a relatively recent process heating

More information

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5 Induction Heating Jean Callebaut, Laborelec 1 Introduction... 2 2 Physical principles... 2 2.1 Electromagnetic induction... 2 2.2 The Joule-effect... 3 2.3 Penetration depth... 3 3 Induction Installations...

More information

HIGH FREQUENCY WELDING - THE PROCESS AND APPLICATIONS By Robert K. Nichols, PE Thermatool Corp. April 5, 1999

HIGH FREQUENCY WELDING - THE PROCESS AND APPLICATIONS By Robert K. Nichols, PE Thermatool Corp. April 5, 1999 HIGH FREQUENCY WELDING - THE PROCESS AND APPLICATIONS By Robert K. Nichols, PE Thermatool Corp. April 5, 1999 The High Frequency ing Process is usually associated with welded tubular products. While this

More information

2. OVERVIEW OF INDUSTRIAL APPLICATIONS OF INDUCTION HEATING 11

2. OVERVIEW OF INDUSTRIAL APPLICATIONS OF INDUCTION HEATING 11 1. INTRODUCTION 1 2. OVERVIEW OF INDUSTRIAL APPLICATIONS OF INDUCTION HEATING 11 2.1. Heat treatment by induction 2.1.1. The basics of metallurgy and principles of heat treatment 2.1.1.1. Crystalline structure

More information

Bulk Deformation Processes

Bulk Deformation Processes Bulk Deformation Processes Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What is Bulk Deformation? Classification of Bulk Deformation Processes Types

More information

Vacuum furnaces. SECO/WARWICK vacuum furnace assembly facility. Vacuum carburizing Fine Carb. Aircraft and energy industry

Vacuum furnaces. SECO/WARWICK vacuum furnace assembly facility. Vacuum carburizing Fine Carb. Aircraft and energy industry 4 Vacuum furnaces SECO/WARWICK offers a wide variety of Vacuum furnaces and process technology for heat treatment including: Bright hardening, High-pressure gas hardening, Vacuum carburizing FineCarb,

More information

History of Metallurgy and Induction Heating

History of Metallurgy and Induction Heating Practical Induction Heat Treating, Second Edition Copyright 2015 ASM International R.E. Haimbaugh All rights reserved www.asminternational.org Chapter 1 History of Metallurgy and Induction Heating THIS

More information

Technical Note: Transverse Flux Induction Heat Treating

Technical Note: Transverse Flux Induction Heat Treating J. Heat Treat. (1988) 6:47-52 9 1988 Springer-Verlag New York Inc. Technical Note: Transverse Flux Induction Heat Treating G.F. Bobart Abstract. Transverse flux is an efficient method of induction heating

More information

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1 CHAPTER 14 Forging of Metals 2001 Prentice-Hall Page 14-1 Forging (a) (b) Figure 14.1 (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association.

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53

Steel Forgings: Design, Production, Selection, Testing, and Application. Edward G. Nisbett. ASTM Stock No. MNL53 Steel Forgings: Design, Production, Selection, Testing, and Application Edward G. Nisbett ASTM Stock No. MNL53 INTERNATIONAL Standards Worldwide ASTM International 100 Barr Harbor Drive PO Box C700 West

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 8: Forming Processes (Rolling, Extrusion, Forging, Drawing) DR. SOTIRIS L. OMIROU Forming Processes - Definition & Types - Forming processes are those in which

More information

Cast steel: Group of ASTM standards for steel castings and forgings

Cast steel: Group of ASTM standards for steel castings and forgings Cast steel: Group of ASTM standards for steel castings and forgings Abstract: This group of ASTM specifications covers standard properties of steel and iron castings and forgings for valves, flanges, fittings,

More information

Leadership in Soft Magnetic Alloys

Leadership in Soft Magnetic Alloys Leadership in Soft Magnetic Alloys Carpenter Technology Corporation offers a wide selection of soft magnetic alloys to meet your material specifications. Choose from high permeability alloys, shielding

More information

Total Quality Management. Quick and Accurate Response to Inquiries. As-Promised Deliveries. Fair and Competitive Prices

Total Quality Management. Quick and Accurate Response to Inquiries. As-Promised Deliveries. Fair and Competitive Prices FORGED SHAPES 1 2 MISSION STATEMENT The Anderson Shumaker team is dedicated to earning your loyalty and gaining your trust through: Total Quality Management Quick and Accurate Response to Inquiries As-Promised

More information

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS 1 R.Raja, 2 M.Rajkumar 1 Assistant Lecturer, St. Joseph College

More information

Engineering Materials

Engineering Materials Engineering Materials Learning Outcome When you complete this module you will be able to: Describe the mechanical properties of ferrous and non-ferrous engineering materials, plus the effects and purposes

More information

INDUCTION FOR CARS OVERVIEW OF APPLIED AUTOMOTIVE APPLICATIONS AXLE SHAFTS GEAR BOX ELEMENTS WHEEL BOLTS BRAKE FLUID CONVEYANCE PIPES

INDUCTION FOR CARS OVERVIEW OF APPLIED AUTOMOTIVE APPLICATIONS AXLE SHAFTS GEAR BOX ELEMENTS WHEEL BOLTS BRAKE FLUID CONVEYANCE PIPES INDUCTION FOR CARS OVERVIEW OF APPLIED AUTOMOTIVE APPLICATIONS MOTOR DRIVE BRAKES EXHAUST SYSTEM FEED SYSTEM ACCESSORIES BODY HYDRAULIC SERVO CONTROLS SUSPENSIONS Giorgio Mazzola Massimo Mosca VALVES CRANKSHAFT

More information

INNOVATIVE INDUCTION HEAT TREATING TECHNOLOGIES

INNOVATIVE INDUCTION HEAT TREATING TECHNOLOGIES INNOVATIVE INDUCTION HEAT TREATING TECHNOLOGIES Abstract. Presentation focuses on: 1. Novel approaches to induction heat treating of critical automotive components, including but not limiting to induction

More information

Powder-Metal Processing and Equipment

Powder-Metal Processing and Equipment Powder-Metal Processing and Equipment Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 17 Powder Metallurgy Metal powders are compacted into desired and

More information

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

Dissimilar Metals DISSIMILAR METALS. Weld Tech News VOL 1. NO. 14

Dissimilar Metals DISSIMILAR METALS. Weld Tech News VOL 1. NO. 14 Dissimilar Metals Weld Tech News VOL 1. NO. 14 WELD TECH NEWS is a newsletter for welders working primarily in maintenance and repair. Each issue contains useful information on materials (cast irons, steels,

More information

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009 Powder Metallurgy Powder-Metal Processing and Equipment Metal powders are compacted into desired and often complex shapes and sintered* to form a solid piece * Sinter: To heat without melting Text Reference:

More information

MuShield s High Permeability Magnetic Shielding per ASTM A753 Alloy Type 4

MuShield s High Permeability Magnetic Shielding per ASTM A753 Alloy Type 4 MuShield s High Permeability Magnetic Shielding per ASTM A753 Alloy Type 4 Available in coil, sheet, rod, billet, wire, and bar form, MuShield s High Permeability Magnetic Shielding is a soft magnetic

More information

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University.

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University. Introduction to Manufacturing Processes College of Engineering Arkansas State University 1 Bulk Deformation 2 1 Rolling 3 What is Rolling? A process of reducing the thickness (or changing the cross-section

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

WELDING Topic and Contents Hours Marks

WELDING Topic and Contents Hours Marks Topic and Contents Hours Marks 3.1 Introduction 04 Marks Classification and selection of welding process. Working principle of Gas welding and types of flames. 3.2 Arc welding process 08 Marks Metal arc,

More information

NONFERROUS METALS AND ALLOYS

NONFERROUS METALS AND ALLOYS NONFERROUS METALS AND ALLOYS Chapter 7 7.1 Introduction Usage of nonferrous metals and alloys has increased due to technology Possess certain properties that ferrous materials do not have Resistance to

More information

We manufactures copper & copper based alloys mainly brass / bronzes extrusion & drawn quality rods / bars

We manufactures copper & copper based alloys mainly brass / bronzes extrusion & drawn quality rods / bars EXTRUDED RODS INTRODUCTION` We manufactures copper & copper based alloys mainly brass / bronzes extrusion & drawn quality rods / bars in different shapes like round, hex, square, rectangular & flat. We

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Identification. Type Analysis

Identification. Type Analysis Page 1 of 16 Unit Display: Metric Print Now Custom 465 Stainless E-Mail Datasheet Add to My Materials Request More Information U.S. Patent Number Identification 5,681,528 5,855,844 UNS Number S46500 Type

More information

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important

INTRODUCTION AND OVERVIEW OF MANUFACTURING. Manufacturing is Important. Manufacturing - Technologically Important INTRODUCTION AND OVERVIEW OF MANUFACTURING 1. What is Manufacturing? 2. Materials in Manufacturing 3. Manufacturing Processes 4. Production Systems 5. Organization of the Book Manufacturing is Important

More information

Roll Bonding or Roll Welding

Roll Bonding or Roll Welding 1 2 3 4 Roll Bonding or Roll Welding The pressure required for welding is applied through a pair of rolls Can be performed hot (Hot Roll Bonding) Surface preparation is important for interfacial bonding

More information

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS Requirements for cutting tools There are several characteristics that are essential to the good performance of a cutting tool. Powder Metal High Speed Steels

More information

LOW HEAT INPUT WELDING ALLOYS

LOW HEAT INPUT WELDING ALLOYS ASTRALOY 662 CHARACTERISTICS: An all position AC/DC electrode for high strength, crack free joining of low/medium carbon, and medium tensile steels of various compositions. Low alloy medium carbon steels,

More information

Aluminum Filler Metals

Aluminum Filler Metals Aluminum Filler Metals Aluminum brazing and soldering filler metals are used to join materials within the aluminum family of alloys. These materials are available in wire, strip, powder, paste (both corrosive

More information

Pollution Prevention in Machining and Metal Fabrication

Pollution Prevention in Machining and Metal Fabrication ... Pollution Prevention in Machining and Metal Fabrication A Manual for Technical Assistance Providers Excerpts March 2001... CHAPTER 5 Innovative Pollution Prevention Technologies Industry vendors have

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

COPPER PRODUCTS. 145 COPPER PRODUCTS Half Hard Tellurium Rounds

COPPER PRODUCTS. 145 COPPER PRODUCTS Half Hard Tellurium Rounds COPPER PRODUCTS 110 COPPER PRODUCTS Rounds... 12-2 Squares... 12-2 Flats - Square Edge...12-3 thru12-4 Flats - Full Round Edge (FRE)... 12-5 Cold Rolled Sheet... 12-6 110 Quarter Hard Copper Sheet... 12-6

More information

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Recap Eutectic phase diagram Eutectic phase diagram Eutectic isotherm Invariant point Eutectic Reaction Compositions of components

More information

ELECTRIC INDUCTION FURNACE

ELECTRIC INDUCTION FURNACE ELECTRIC INDUCTION FURNACE The electric induction furnace is a type of melting furnace that uses electric currents to melt metal. Induction furnaces are ideal for melting and alloying a wide variety of

More information

Small and Lightweight Reactor for Boost Converter

Small and Lightweight Reactor for Boost Converter FEATURED TOPIC Small and Lightweight Reactor for Boost Converter Shinichiro YAMAMOTO*, Kazushi KUSAWAKE, Junji IDO, Hajime KAWAGUCHI, Atsushi ITO and Masayuki KATO The number of motorized vehicles, such

More information

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 15 Fundamentals of Metal Forming Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters

More information

Material and Process. Specification

Material and Process. Specification s 146-67- 1 of 7 Document By: Title Name 1. Purpose 1.1 This document defines approved revision levels of Material and Process specifications used by Onboard Systems. This list is for supplier reference

More information

For the F/A 18CDEF Programs. 74A J Serialization and Traceability for F/A-18 FC Parts

For the F/A 18CDEF Programs. 74A J Serialization and Traceability for F/A-18 FC Parts = Performed by GKN 74A900003 J Serialization and Traceability for F/A-18 FC Parts 74A900004 M Control of Fracture & Maintenance Crit. Parts for F/A-18 74A900053 J Serialization and Traceability Requirements

More information

Joining. 10. Tool Design for Joining. Joining. Joining. Physical Joining. Physical Joining

Joining. 10. Tool Design for Joining. Joining. Joining. Physical Joining. Physical Joining Joining 10. Tool Design for Joining Nageswara Rao Posinasetti The joining processes are generally divided into two classes: mechanical and physical. Mechanical joining does not ordinarily involve changes

More information

J.I.C. HYDRAULIC TUBING Seamless & Welded Hydraulic Fluid Line 23 Seamless Burst Pressures & Working Pressures 24 Welded Burst Pressures 25

J.I.C. HYDRAULIC TUBING Seamless & Welded Hydraulic Fluid Line 23 Seamless Burst Pressures & Working Pressures 24 Welded Burst Pressures 25 TABLE OF CONTENTS STEEL & ALLOY ROUND MECHANICAL TUBING Drawn Over Mandrel (DOM) 3-15 Cold Drawn Seamless (CDS) 3-15 Hot Rolled Seamless (HRS) 3-15 Electric Resistance Welded (ERW) 3-15 Seamless 4130/4140

More information

United Induction Heating Machine Limited of China. Product Catalog

United Induction Heating Machine Limited of China. Product Catalog United Induction Heating Machine Limited of China Product Catalog Address: No.68, CT Industrial Park, Baiyun Area, Guangzhou City, 510420, Guangdong Province, China Tel: +86-20-29010055 Email: service@uihm.com

More information

Manufacturing Technologies University of Rome Tor Vergata

Manufacturing Technologies University of Rome Tor Vergata Manufacturing Tech (6 cr) + Metallurgy (3 cr) Initial introduction (1 week) Timetable 6 credits (54-60 h) End of the course: 28 giugno Type of examination Written test Oral test (mandatory) Average of

More information

Lecture 9 - Manufacturing in Engineering

Lecture 9 - Manufacturing in Engineering Introduction Dr. Carolyn Skurla Speaking Slide 2 Process Selection Choice depends on: The material from which the component is to be made. The size, shape, and dimension tolerances for the component. The

More information

Special Bar Quality Steel:

Special Bar Quality Steel: Special Bar Quality Steel: Helping Customers Push the Bounds of What s Possible TimkenSteel is a leading special bar quality (SBQ) steel maker of small, intermediate and large bars up to 16" (406 mm) in

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

Chapter 32 Resistance Welding and Solid State Welding. Materials Processing. Classification of Processes. MET Manufacturing Processes

Chapter 32 Resistance Welding and Solid State Welding. Materials Processing. Classification of Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 32 Resistance Welding and Solid State Welding Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

2

2 1 2 3 4 5 6 7 Direct -Straightforward steady forward force by hydraulic ram Indirect -Has the advantage that there is no friction between billet and chamber (no movement) -Note dummy block at face of ram

More information

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO): Copyright 1999 Society of Manufacturing Engineers --- 1 --- FUNDAMENTAL MANUFACTURING PROCESSES Welding SCENE 1. CG: Fusion Welding Processes white text centered on black SCENE 2. tape 528, 14:18:33-14:18:52

More information

The Leader in Oilfield Coating Technology ISO 9001:2008.

The Leader in Oilfield Coating Technology ISO 9001:2008. The Leader in Oilfield Coating Technology ISO 9001:2008 www.ssplating.com Who We Are S&S Plating/Coating Dynamics is the leading provider of electro plated coatings to the oilfield, power generation and

More information

Williams Metals. Providing Welding & Metals Solutions for Over 50 Years. Non-Ferrous Metals. Setting the Standard for Excellence.

Williams Metals. Providing Welding & Metals Solutions for Over 50 Years. Non-Ferrous Metals. Setting the Standard for Excellence. Williams Metals and Welding Alloys, Inc. Providing Welding & Metals Solutions for Over 0 Years Non-Ferrous Metals Setting the Standard for Excellence. Williams Metals and Welding Alloys is a multi-location

More information

Types of Metal Alloys

Types of Metal Alloys Types of Metal Alloys Metal alloys Ferrous Nonferrous Steels Cast iron 257 Uses low carbon

More information

COLD FORGING OF STEEL. H. D. Feldmann, Technical Director, Cold Forging Ltd. Hutchinson Scientific & Technical, London, 1959.

COLD FORGING OF STEEL. H. D. Feldmann, Technical Director, Cold Forging Ltd. Hutchinson Scientific & Technical, London, 1959. COLD FORGING OF STEEL H. D. Feldmann, Technical Director, Cold Forging Ltd. Hutchinson Scientific & Technical, London, 1959 Contents Preface 7 I Introduction 15 A Terminology 15 B Purpose of this book

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Processing of Metal Powders

Processing of Metal Powders Chapter 17 Processing of Metal Powders QUALITATIVE PROBLEMS 17.15 Why is there density variation in the compacting of powders? How is it reduced? The main reason for density variation in compacting of

More information

ASTM and the Metals Industry Long-Term Partners for Success

ASTM and the Metals Industry Long-Term Partners for Success ASTM INTERNATIONAL Helping our world work better ASTM and the Metals Industry Long-Term Partners for Success www.astm.org ASTM International has been the standards development partner of the metals producing

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

The growth in pre-hardened alloy steel bars in recent

The growth in pre-hardened alloy steel bars in recent FORMING PROCESSES Production of stress-free quench and temper bars in high volume continuous furnaces Historically, the greatest challenge in producing pre-hardened quench and temper bars has been the

More information

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS CHEMICAL ELEMENTS FOUND IN NATURE IN SOLID STATE AT ROOM

More information

Plasma Heat and Surface Treatment

Plasma Heat and Surface Treatment Plasma Heat and Surface Treatment Plasmait is a supplier of heat and surface treatment solutions based on plasma technology. We design, build, deploy and support production machinery for continuous and

More information

The following tubing can be supplied from stock, on futures or on a periodic release program which we can design to fit your needs.

The following tubing can be supplied from stock, on futures or on a periodic release program which we can design to fit your needs. The following tubing can be supplied from stock, on futures or on a periodic release program which we can design to fit your needs. I. Seamless Copper and Brass Tubing - as per ASTM and military standards,

More information

Resource Guide. Section 3: Ductile Iron

Resource Guide. Section 3: Ductile Iron Resource Guide Section 3: Ductile Iron Section 3 Ductile Iron Description of Grades... 3-3 65-45-12 Ferritic... 3-4 80-55-06 Partially Pearlitic... 3-6 100-70-02 Pearlitic... 3-8 4512 HRDS Heat Resistant...

More information

Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING

Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING Buderus Edelstahl Buderus Edelstahl CONTENTS Buderus Edelstahl 2 Products 4 Production 5

More information

These elements are in carbon steels in minimal amounts, usually less than 1%.

These elements are in carbon steels in minimal amounts, usually less than 1%. Alloy Steels Weld Tech News VOL 1. NO. 11 WELD TECH NEWS is a newsletter for welders working primarily in maintenance and repair. Each issue contains useful information on materials (cast irons, steels,

More information

ANALYSIS OF INDUCTION IN THE PROCESS OF COMPONENTS OF ALUMINUM

ANALYSIS OF INDUCTION IN THE PROCESS OF COMPONENTS OF ALUMINUM ANALYSIS OF INDUCTION IN THE PROCESS OF COMPONENTS OF ALUMINUM Sandro Pereira da Silva sandro.silva@trw.com TRW Automotive Ltda. of Lavras, Rua Durval da Costa Alves Ribeiro, 432 Distrito Industrial. Rodrigo

More information

Chapter 14 Forging of Metals

Chapter 14 Forging of Metals Introduction Chapter 14 Forging of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and Schmid What is

More information

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras Introduction Online course on Analysis and Modelling of Welding G. Phanikumar Dept. of MME, IIT Madras Classification of Manufacturing Processes Manufacturing Processes Ingot Casting Shape Casting Power

More information

Standard Specification for Low-Carbon Magnetic Iron 1

Standard Specification for Low-Carbon Magnetic Iron 1 Designation: A 848 01 Standard Specification for Low-Carbon Magnetic Iron 1 This standard is issued under the fixed designation A 848; the number immediately following the designation indicates the year

More information

special hot work tool steel CR7V-L

special hot work tool steel CR7V-L special hot work tool steel CR7V-L T h e p r e m i u m s t e e l w i t h m a x i m u m h i g h t e m p e r at u r e w e a r r e s i s ta n c e 2 From the casting of steel to finished die... LONG-STANDING

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

CaseMaster. multipurpose Sealed Quench chamber furnaces

CaseMaster. multipurpose Sealed Quench chamber furnaces CaseMaster multipurpose Sealed Quench chamber furnaces Technological applications Gas carburizing Austenitic carbonitriding Bright hardening Annealing in protective atmospheres Carbon recovery Typical

More information

The heat treatment necessary to produce ADI is essentially a two-stage operation:

The heat treatment necessary to produce ADI is essentially a two-stage operation: The remarkable properties of ADI are developed by a closely controlled heat treatment operation (austempering) which develops a unique matrix structure of bainitic ferrite (6%) and retained (high carbon)

More information

Outline CASTING PROCESS - 2. The Mold in Casting. Sand Casting Mold Terms. Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia

Outline CASTING PROCESS - 2. The Mold in Casting. Sand Casting Mold Terms. Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia Outline CASTING PROCESS - 2 Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia Casting Molds Gating system pouring basin, sprue, runner, gate Riser Core Heating and melting Melting furnaces Pouring

More information

EUROPEAN STEEL SCRAP SPECIFICATION. General Conditions applicable to all grades

EUROPEAN STEEL SCRAP SPECIFICATION. General Conditions applicable to all grades Bundesvereinigung Deutscher Stahlrecycling- und Entsorgungsunternehmen e.v. EUROPEAN STEEL SCRAP SPECIFICATION Version: June 1 st 1995 General Conditions applicable to all grades As is pratically achievable

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Hot Rolled. AK Steel produces Hot Rolled Steels to meet the strictest chemistry and dimensional requirements, in a wide variety of grades.

Hot Rolled. AK Steel produces Hot Rolled Steels to meet the strictest chemistry and dimensional requirements, in a wide variety of grades. Hot Rolled STEELs P r o d u c t D ata B u l l e t i n AK Steel produces Hot Rolled Steels to meet the strictest chemistry and dimensional requirements, in a wide variety of grades. Consistency from coil

More information

Resistance Welding. Resistance Welding (RW)

Resistance Welding. Resistance Welding (RW) Resistance Welding (RW) Resistance Welding 1 Resistance Welding is a welding process, in which work pieces are welded due to a combination of a pressure applied to them and a localized heat generated by

More information

RA17-4 stainless. Introduction

RA17-4 stainless. Introduction RA17-4 stainless Introduction RA17-4 is an age-hardening martensitic alloy combining high strength with the corrosion resistance of stainless steel. Hardening is achieved by a short-time, simple lowtemperature

More information

1. Always looking to the future. 2. Commitment to quality and excelence in service. 3. Experience and development. 4. The value of our team: the

1. Always looking to the future. 2. Commitment to quality and excelence in service. 3. Experience and development. 4. The value of our team: the 1. Always looking to the future. 2. Commitment to quality and excelence in service. 3. Experience and development. 4. The value of our team: the people. 5. Technological vanguard for the industry. 6. Measurement

More information

GES GRAPHITE. A Family of Carbon and Graphite Companies. Specialty Graphite

GES GRAPHITE. A Family of Carbon and Graphite Companies. Specialty Graphite GES GRAPHITE A Family of Carbon and Graphite Companies Specialty Graphite GES GRAPHITE Quality, Service, and Consistency GES GRAPHITE has more than 50 years experience and is the leading distributor of

More information

The Convenience Stores For Metal

The Convenience Stores For Metal TOOL STEEL SELECTOR GUIDE Application Suggested Grades Arbors... O1, A2, A6 Battering Tools... S5, S1, S7 Blacksmith Tools... S5, S1 Boiler-Shop Tools... S5, S1, S7 Bolt Clippers... S5, S1 Boring Tools...

More information

Schmidthammer. 06 High current carbon brushes. Elektrokohle GmbH. Transmission systems with linear adjustable telescope holders p.

Schmidthammer. 06 High current carbon brushes. Elektrokohle GmbH. Transmission systems with linear adjustable telescope holders p. Schmidthammer Elektrokohle GmbH 06 High current carbon brushes 2012 Transmission systems with linear adjustable telescope holders p. 05 Transmission systems with Kombi holders p. 09 Further transmission

More information

Manufacture of Iron & Steel. Prepared By: John Cawley

Manufacture of Iron & Steel. Prepared By: John Cawley Manufacture of Iron & Steel Prepared By: John Cawley Presentation Objectives Identify the basic steps in the production of steel. Identify the properties and uses of iron ore and pig iron. Differentiate

More information

ArcelorMittal Dofasco Scrap Specifications and Requirements

ArcelorMittal Dofasco Scrap Specifications and Requirements ArcelorMittal Dofasco Scrap Specifications and Requirements Revision date: January 2017 Table of Contents Type of Scrap: Auto Cast (Brake Rotors and Drums)... 2 Type of Scrap: Bushelling... 4 Type of Scrap:

More information

1. Plastic products that are formed into a permanent shape by heat and pressure and may not be altered after curing are produced by which process?

1. Plastic products that are formed into a permanent shape by heat and pressure and may not be altered after curing are produced by which process? Student Name: Teacher: Date: District: Rowan Assessment: 9_12 T and I IV22 - Drafting - Engnrng II Test 1 Description: Unit C - Manufacturing 1 Form: 501 1. Plastic products that are formed into a permanent

More information

HOW TO BUY FORGINGS. The Design Conference

HOW TO BUY FORGINGS. The Design Conference HOW TO BUY FORGINGS Close cooperation between buyers and producers of forgings has always been a vital part of achieving the best possible product at the lowest possible cost. With major advances in forging

More information

1 Cutting Tool Materials of common use

1 Cutting Tool Materials of common use 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development of cutting tool materials.

More information