MANUAL FOR SPTS APS (DIELECTRICS ETCHER)

Size: px
Start display at page:

Download "MANUAL FOR SPTS APS (DIELECTRICS ETCHER)"

Transcription

1 MANUAL FOR SPTS APS (DIELECTRICS ETCHER) To be read first: SPTS APS is an etcher dedicated to dielectrics (SiO2, Si3N4, glass types...). Dielectrics etching in AMS200 is no more CMi standard. AMS200 is now dedicated to Si etching. Contents: I. Introduction II. Processes available III. Modus Oprandi IV. Photos gallery I. Introduction SPTS Advanced Plasma System (APS) module is an ICP-based high density plasma source. This system was optimized for etching dielectrics (e.g. SiO2, SixNy, SiC, Al2O3, glass types...) which are usually difficult to etch using conventional RIE or ICP sources. Main features of the system are: High density plasma source Wafer voltage biasing independent from the ICP Electrostatic clamping => no EBR required Powerful gas process pumping arrangement Loadlock/chamber transfers for single wafer processing Control software offering fully automated processes End-point detection system (optical spectroscopy) 1/10

2 II. Processes available Materials SH temp ( C) Process name Chemistry Si 3N 4 10 Si 3N 4 smooth CHF 3/SF 6 concening Si3N4 smooth process SiO 2, Si nitride 10 SiO 2 PR 1:1 He/CHF 3 PR SiO 2, Si nitride 10 SiO 2 PR 2:1 He/C 4F 8 PR SiO 2, Si nitride 10 SiO 2 PR 3:1 He/H 2/C 4F 8 PR SiO 2, Si nitride 10 SiO 2 PR 3:1 SOFT He/C 4F 8 PR SiO 2, Si nitride 10 SiO 2 PR 5:1 He/H 2/C 4F 8 PR Mask material Etch rate (nm/min) ZEP Si 3N 4: 160 to 220 PR Si: 280 WetOx: 170 PR: 80 Selectivity with PR Note1: SiN etch rate is load-dependent! Note2: Silicon isotropic etching! WetOx: 230 Si 3N 4: 220 SiN LS: 190 Si: 90 PR: 120 WetOx: 460 Si 3N 4: 115 SiN LS: 160 PR 190 WetOx: 370 Si 3N 4: 250 SiN LS: 215 Si: 30 PR: 105 WetOx: 350 SiN LS: 70 WetOx: 210 Si 3N 4: 300 SiN LS: 280 Si: 30 PR: 40 EPD 2 : 1 Yes 1.7 : 1 Yes 2.4 : 1 Yes 3.5 : 1 Yes 3.3 : 1 Yes 5.2 : 1 Yes Fused Silica 20 Fused Silica C 4F 8/O 2 Al : 1 No Pyrex 25 Pyrex C 4F 8/O 2 Al : 1 No Chamber clean 20 O2 Clean with wafer O Yes 2/10

3 On the SPTS etcher, a process is defined as a sequence of several steps: 1. Wafer is loaded in, clamped and helium back cooling is switched-on. 2. Wafer cooling condition is checked by a leak-up-rate (LUR): the chamber is isolated from the pumping system and increase of pressure inside the chamber is recorded. This pressure increase is due to helium leaking in between the chuck and the clamped wafer. To ensure correct cooling of the wafer during etching, LUR should not exceed 80mtorr/min. 3. Wafer is etched and the End-Point Detection (EPD) system starts automatically. EPD system is used in "monitoring only" mode and therefore it does not control the process chamber. If no action is done by the operator to manually stop the etching, the process will run until the set time has elapsed, even if an end point is detected by the EPD system. 4. Dechuck step: electrostatic clamping is switched-off and a low power argon plasma runs for few seconds to help removing accumulated charges that may remain. No chuck biasing is applied here to ensure no sample damage by argon ions. 5. The wafer is unloaded and, if necessary, an automatic cleaning of both the chamber and the chuck starts, stopping automatically unpon end-point detection. 6. Machine is ready for another run. Clearing the PR mask after Si3N4 and SiO2 etch requires both dry and wet treatments: 1. Start with an oxygen plasma using the Tepla GiGAbatch. 2. Then do a wet remover treatment using the Ultrafab wetbench. 3. If necessary, remove final residues with the Tepla GiGAbatch again. III. Modus Operandi 1. System is in idle mode by default: no wafer is loaded, CTC software is open (if not open it), loadlock is under vacuum. 2. First login in the CTC software: Select the account "other", and enter: 1 (for the account) 1 (for the password). 3. Select: a. Recipe, b. APS1 (hit the cross), c. Process Module (hit the cross), d. The process you are interested in (hit the cross), e. The etching step (SiO2_PR_2:1 in the example), f. Process parameters are visible, you can only modify the process time in General, g. Save the change (hit Apply on the right) 3/10

4 4. Select the "Automatic" mode, "Vent" the load lock, and load the wafer on the loading arm. 4/10

5 5. Select a batch recipe in the predefined batch recipes list. 6. Click on "Start" icon and check that the batch uses the correct recipe. Then click "Next" and finally "Start". This loads the wafer inside the process module and starts automatically the etching sequence detailed previously. 7. Select the "Manual" mode and click onto "Process (APS1)". Check the LUR test and writedown its value in the follow-up file of SPTS etcher available on the table. 5/10

6 8. If no action is done by the operator to manually stop the etching, the process will run until the set time has elapsed. If the etching has to be stopped before the set time, i.e. after end-point is detected, proceed as follows: Manual stopping upon EPD control Be sure "Manual" control and "Process (APS1)" are active: Activate the end-point tab and click "Endpoint": 6/10

7 Figure 1 The Oxide EPD recipe follows the intensity of the 440nm spectral line which corresponds to SiF (etching by-product). 7/10

8 9. Then, the system runs the dechuck step, unloads the wafer, vents the loadlock and runs the automatic cleaning of both chamber and chuck (if applicable). Figure 2: The Oxygen EPD cleaning recipe follows the intensity of the multi-region 685nm to 695nm spectral lines which correspond to COx (cleaning by-products). 10. Load the next wafer to be etched or if you are done pump the load lock. 8/10

9 IV. Photos gallery Picture 1: Si 3N 4 etch with Si 3N 4 smooth Picture 2: SiO 2 etch with SiO 2 PR 3:1. 9/10

10 Picture 3: 60 min etch of fused silica with aluminum mask. Picture 4: 60 min etch of pyrex with aluminum mask. 10/10

TRION METAL ETCHER SOP

TRION METAL ETCHER SOP TRION METAL ETCHER SOP June 2013 Introduction The Trion ICP Phantom Minilock III Metal Etcher is designed to use chlorine based chemistry to etch metals from 4 wafers and 5 photomasks. Other substrates

More information

Si DRIE APPLICATION In Corial 210IL

Si DRIE APPLICATION In Corial 210IL Si DRIE APPLICATION In Corial 210IL CORIAL 210IL ICP-RIE equipment for deep Si etching applications Enlarged functionality with capability to deep etch silicon, silicon carbide, glass, sapphire, and quartz

More information

Corial PS200 4-sided multi-module platform

Corial PS200 4-sided multi-module platform Corial PS200 4-sided multi-module platform Single wafer platform equipped with 200 mm modules Integration of ICP-CVD or PECVD process chambers Fully automated platform with cassette-to-cassette handler

More information

Standard Operating Procedure: PECVD

Standard Operating Procedure: PECVD Contents Hardware Description and Principle of Operation... 1 Procedure... 1 Emergency Stop... 3 Allowed Activities... 3 Disallowed Activities... 3 What to watch out for during operation... 4 Common Troubleshooting

More information

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon April 2009 A Deep Silicon RIE Primer 1.0) Etching: Silicon does not naturally etch anisotropically in fluorine based chemistries. Si

More information

PlasmaPro TM System100 & System133. Modular tools for wafer processing100

PlasmaPro TM System100 & System133. Modular tools for wafer processing100 TM System100 & System133 Modular tools for wafer processing100 System100 & System133 Plasma etch & deposition process modules Oxford Instruments System100 and System133 process modules are built on 200mm

More information

Denton 635 Sputter SOP

Denton 635 Sputter SOP Denton 635 SOP Page 1 of 8 Denton 635 Sputter SOP 1. Scope 1.1 This document provides operating procedures for the Denton 635 automated sputter system.. 2. Table of Contents 1. Scope... 1 2. Table of Contents...

More information

Micro/Nano Technology Center University of Louisville. Dry Etch Capabilities. NNCI Etch Workshop May 24-25, 2016

Micro/Nano Technology Center University of Louisville. Dry Etch Capabilities. NNCI Etch Workshop May 24-25, 2016 Micro/Nano Technology Center University of Louisville Dry Etch Capabilities NNCI Etch Workshop May 24-25, 2016 TRION METAL ETCHER MODEL: MINILOCK-PHANTOM III ICP/RIE Trion etcher uses 7 gasses for chemistry:

More information

Corial D500 No mechanical cleaning

Corial D500 No mechanical cleaning Corial D500 No mechanical cleaning Large capacity batch system for 24/7 production environment High-quality films for a wide range of materials, incl. SiO2, Si3N4, SiOCH, SiOF, SiC and asi-h films Film

More information

CORIAL D500. Large capacity batch system for 24/7 production environment

CORIAL D500. Large capacity batch system for 24/7 production environment CORIAL D500 Large capacity batch system for 24/7 production environment High-quality films for a wide range of materials, incl. SiO2, Si3N4, SiOCH, SiOF, SiC and asi-h films Film deposition from 120 C

More information

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin Dr. Frank Schmidt The Company Company Private company, founded 1990 80 employees ISO 9001 Location Science & Technology Park,

More information

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK Tel:

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK   Tel: Power Vision Ltd PV Research Power Vision Ltd Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK www.pvoptical.com Tel: +44 1270 253000 Flexible Whether it be fast AR coating onto temperature sensitive

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 22 DRY-ETCHING for ULSI APPLICATIONS 2004 by LATTICE PRESS CHAPTER 22 - CONTENTS Types of Dry-Etching Processes The Physics & Chemistry of Plasma-Etching Etching

More information

LAM4600 Plasma Etch Tool Recipes Dr. Lynn Fuller Webpage:

LAM4600 Plasma Etch Tool Recipes Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING LAM4600 Plasma Etch Tool Recipes Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email:

More information

LAM4600 Plasma Etch Tool Recipes Dr. Lynn Fuller

LAM4600 Plasma Etch Tool Recipes Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING LAM4600 Plasma Etch Tool Recipes Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel

More information

Four Inch Anodic Wafer Bonding SOP

Four Inch Anodic Wafer Bonding SOP Four Inch Anodic Wafer Bonding SOP Page 1 of 1 Four Inch Anodic Wafer Bonding SOP 1. Scope 1.1 This document provides operating procedures for four inch anodic wafer bonding with the EVG 520. 2. Table

More information

Deep SiO 2 etching with Al and AlN masks for MEMS devices

Deep SiO 2 etching with Al and AlN masks for MEMS devices TECHNICAL NOTE Deep SiO 2 etching with Al and AlN masks for MEMS devices Vladimir Bliznetsov 1, Hua Mao Lin 1, Yue Jia Zhang 1 and David Johnson 2 1 Institute of Microelectronics, A STAR (Agency for Science,

More information

Thermal Nanoimprinting Basics

Thermal Nanoimprinting Basics Thermal Nanoimprinting Basics Nanoimprinting is a way to replicate nanoscale features on one surface into another, like stamping copies are made by traditional fabrication techniques (optical/ebeam lith)

More information

Fiji Thermal and Plasma Atomic Layer Deposition System (ALD) By Ultratech (Cambridge)

Fiji Thermal and Plasma Atomic Layer Deposition System (ALD) By Ultratech (Cambridge) Fiji Thermal and Plasma Atomic Layer Deposition System (ALD) By Ultratech (Cambridge) PREPARED BY: You-Sheng (Wilson) Lin, Nanolab Staff 7-30-2013 Superusers: Steve Franz You-Sheng Lin Max Ho X68923 X68923

More information

Cornell NanoScale Facility Dry Etch Capabilities

Cornell NanoScale Facility Dry Etch Capabilities NNCI Etch Workshop Cornell University May 24, 2016 Cornell NanoScale Facility Dry Etch Capabilities Vince Genova CNF Research Staff CNF TCN, page 1 Dry Etch Systems High Density Plasma (ICP): PlasmaTherm

More information

Atomic Layer Deposition(ALD)

Atomic Layer Deposition(ALD) Atomic Layer Deposition(ALD) AlO x for diffusion barriers OLED displays http://en.wikipedia.org/wiki/atomic_layer_deposition#/media/file:ald_schematics.jpg Lam s market-leading ALTUS systems combine CVD

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Nitride Deposition SOP Page 1 of 14 Revision

Nitride Deposition SOP Page 1 of 14 Revision Nitride Deposition SOP Nitride Deposition SOP Page 1 of 14 1 Scope 1.1 This document provides the procedures and requirements to deposit silicon nitride films, using the Canary LPCVD furnace. 2 Table of

More information

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS Simple and cost-effective introduction of PERC technology into the mass production of solar cells Kerstin Strauch, Florian Schwarz, Sebastian Gatz 1 Introduction

More information

Extending Etch and Deposition Capabilities for Implementation of 3D Packaging of MEMS in Volume Production

Extending Etch and Deposition Capabilities for Implementation of 3D Packaging of MEMS in Volume Production Extending Etch and Deposition Capabilities for Implementation of 3D Packaging of MEMS in Volume Production David Butler, VP Product Management & Marketing SPTS Technologies Contents Industry Trends TSV

More information

University of Minnesota Nano Center Standard Operating Procedure

University of Minnesota Nano Center Standard Operating Procedure Equipment Name: University of Minnesota Nano Center PECVD Coral Name: pecvd Revision Number: 2.0 Model: Plasmatherm 340 Revisionist: Mark Fisher Location: Bay 3 Date: 20 Sept 2013 1 Description The Plasmatherm

More information

Drytech Quad Etch Recipes Dr. Lynn Fuller Mike Aquilino Microelectronic Engineering

Drytech Quad Etch Recipes Dr. Lynn Fuller Mike Aquilino Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Drytech Quad Etch Recipes Dr. Lynn Fuller Mike Aquilino 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor

Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Because of equipment availability, cost, and time, we will use aluminum as the top side conductor Top Side Conductor vacuum deposition Aluminum sputter deposit in Argon plasma CVC 601-sputter deposition

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

Examples of dry etching and plasma deposition at Glasgow University

Examples of dry etching and plasma deposition at Glasgow University Examples of dry etching and plasma deposition at Glasgow University Glasgow has pioneered and established many novel research activities involving the development of new dry etch processes and dry etch

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

User Fees for the 4D LABS Fabrication Facility

User Fees for the 4D LABS Fabrication Facility User Fees for the 4D LABS Fabrication Facility 1. Clean Room Fees Service Clean Room access: Includes use of all Clean Room tools except for those in the groups listed below Group I tools: Plasma reactors

More information

LAM 490 Etch Recipes. Dr. Lynn Fuller

LAM 490 Etch Recipes. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING LAM 490 Etch Recipes Dr. Lynn Fuller Professor, Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

SiC high voltage device development

SiC high voltage device development SiC high voltage device development 2006. 11. 30 KERI Power Semiconductor Group outline 1. Device design & simulation for power devices 2. SiC power diode process development Ion implantation & activation

More information

Via etching in BCB for HBT technology

Via etching in BCB for HBT technology Via etching in for HBT technology H.Stieglauer, T.Wiedenmann, H.Bretz, H.Mietz, D.Traulsen, D.Behammer United Monolithic Semiconductors GmbH, Wilhelm-Runge-Strasse 11, D-89081 Ulm, Germany Phone: +49-731-505-3075,

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

INTEGRATED-CIRCUIT TECHNOLOGY

INTEGRATED-CIRCUIT TECHNOLOGY INTEGRATED-CIRCUIT TECHNOLOGY 0. Silicon crystal growth and wafer preparation 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition 1.4. Etching 1.5. Diffusion 1.6 Backend: assembly,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Parameters Study to Improve Sidewall Roughness in Advanced Silicon Etch Process Hsiang-Chi Liu *, Yu-Hsin Lin **, Bruce C. S. Chou **, Yung-Yu Hsu **, Wensyang Hsu * * Department of Mechanical Engineering,

More information

: SAFETY OPERATOR MANUAL (HERE)

: SAFETY OPERATOR MANUAL (HERE) KOH WETBENCH MANUAL To be read first : SAFETY OPERATOR MANUAL (HERE) / PROCÉDURE DE SÉCURITÉ POUR OPÉRER SUR LES WETBENCH DU CMI A LIRE OBLIGATOIREMENT (ICI) RESIST IS TOTALLY FORBIDEN INTO THESE BATHES

More information

Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication

Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication 1 Motivation 2 Experimental setup 3 ICP textures as alternative technique 3.1 Surface morphology

More information

POLYIMIDE BAKE PROCESSING SYSTEM YES-550PB6/8/12-2P-CP

POLYIMIDE BAKE PROCESSING SYSTEM YES-550PB6/8/12-2P-CP POLYIMIDE BAKE PROCESSING SYSTEM YES-550PB6/8/12-2P-CP June 2013 The YES high temperature cure oven is designed to provide a controlled ramp curing process for temperatures up to 550 C in an oxygen-free

More information

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant substrate Creates latch up protection for CMOS Buried Epi

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign Outline Definition of surface micromachining Most common surface micromachining materials - polysilicon

More information

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant substrate Creates latch up protection for CMOS Buried Epi

More information

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Need strong selectivity from masking

More information

EV-140 P, New Emission Spectroscopic Product for Semiconductor Endpoint, Cleaning and Plasma Chambers Control.

EV-140 P, New Emission Spectroscopic Product for Semiconductor Endpoint, Cleaning and Plasma Chambers Control. F e a t u r e A r t i c l e Feature Article EV-140 P, New Emission Spectroscopic Product for Semiconductor Endpoint, Cleaning and Plasma Chambers Control. Eric BLUEM, Jean-Philippe VASSILAKIS, Mickael

More information

Atomic Layer Deposition. ALD process solutions using FlexAL and OpAL

Atomic Layer Deposition. ALD process solutions using FlexAL and OpAL Atomic Layer Deposition process solutions using FlexAL and OpAL Introduction to Self limiting digital growth Atomic Layer Deposition () offers precisely controlled ultra-thin films for advanced applications

More information

200mm Next Generation MEMS Technology update. Florent Ducrot

200mm Next Generation MEMS Technology update. Florent Ducrot 200mm Next Generation MEMS Technology update Florent Ducrot The Most Exciting Industries on Earth Semiconductor Display Solar 20,000,000x reduction in COST PER TRANSISTOR in 30 years 1 20x reduction in

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Lecture Outline EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720

More information

Plasma Quest Limited

Plasma Quest Limited Plasma Quest Limited A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr. Peter Hockley and Prof. Mike Thwaites,

More information

Photovoltaics. Thin film equipment from Oxford Instruments. The Business of Science

Photovoltaics. Thin film equipment from Oxford Instruments. The Business of Science Photovoltaics Thin film equipment from Oxford Instruments The Business of Science Photovoltaics Plasmalab System100Pro and Plasmalab System133Pro Flexible systems for front end PV research With over 20

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

CMOS Manufacturing process. Design rule set

CMOS Manufacturing process. Design rule set CMOS Manufacturing process Circuit design Set of optical masks Fabrication process Circuit designer Design rule set Process engineer All material: Chap. 2 of J. Rabaey, A. Chandrakasan, B. Nikolic, Digital

More information

Application Note. R*evolution III Remote Plasma Source: Low Particle Performance in O 2 / N 2. Photoresist Ashing PROBLEM. BACKGROUND R*evolution III

Application Note. R*evolution III Remote Plasma Source: Low Particle Performance in O 2 / N 2. Photoresist Ashing PROBLEM. BACKGROUND R*evolution III R*evolution III Remote Plasma Source: Low Particle Performance in / Photoresist Ashing PROBLEM It is critical that the remote plasma sources used in semiconductor device processing be operated in a manner

More information

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions

Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Deep Silicon Etching An Enabling Technology for Wireless Systems Segment By Carson Ogilvie and Joel Goodrich Commercial Product Solutions Abstract The recent installation of a new etch tool, the Surface

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Process Stability in Photo Mask Manufacturing

Process Stability in Photo Mask Manufacturing Process Stability in Photo Mask Manufacturing Authors: Martin Bäßler 1, Haiko Rolff 1, A. Lajn 1, Michael Klick 2, Ralf Rothe 2 Affiliation: 1) Advanced Mask Technology Center GmbH & Co. KG 2) Plasmetrex

More information

CS/ECE 5710/6710. N-type Transistor. N-type from the top. Diffusion Mask. Polysilicon Mask. CMOS Processing

CS/ECE 5710/6710. N-type Transistor. N-type from the top. Diffusion Mask. Polysilicon Mask. CMOS Processing CS/ECE 5710/6710 CMOS Processing Addison-Wesley N-type Transistor D G +Vgs + Vds S N-type from the top i electrons - Diffusion Mask Mask for just the diffused regions Top view shows patterns that make

More information

Silicon DRIE vs. Germanium DRIE A Comparison in the Plasmatherm VLN

Silicon DRIE vs. Germanium DRIE A Comparison in the Plasmatherm VLN The Cornell NanoScale Science & Technology Facility Silicon DRIE vs. Germanium DRIE A Comparison in the Plasmatherm VLN Vince Genova CNF Research Staff NNCI Etch Workshop Cornell University 5/24/2016 CNF

More information

Endpoint Detection of Low Open Area Contact Nitride Etches by Use of Optical Emission Spectroscopy in an APC Compatible Multi-Sensor Platform

Endpoint Detection of Low Open Area Contact Nitride Etches by Use of Optical Emission Spectroscopy in an APC Compatible Multi-Sensor Platform Endpoint Detection of Low Open Area Contact Nitride Etches by Use of Optical Emission Spectroscopy in an APC Compatible Multi-Sensor Platform AEC/APC Asia 2005 Bernard KAPLAN, Eric BLUEM (HORIBA Jobin

More information

Semiconductor Manufacturing Technology. Semiconductor Manufacturing Technology

Semiconductor Manufacturing Technology. Semiconductor Manufacturing Technology Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 2001 by Prentice Hall Chapter 10 Oxidation 2001 2000 by Prentice Hall Diffusion Area of Wafer Fabrication Wafer fabrication (front-end)

More information

4. Thermal Oxidation. a) Equipment Atmospheric Furnace

4. Thermal Oxidation. a) Equipment Atmospheric Furnace 4. Thermal Oxidation a) Equipment Atmospheric Furnace Oxidation requires precise control of: temperature, T ambient gas, G time spent at any given T & G, t Vito Logiudice 34 4. Thermal Oxidation b) Mechanism

More information

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance Ch. 5: p-n Junction Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance of functions such as rectification,

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

Plasma..TI'1eITI1 I.P.

Plasma..TI'1eITI1 I.P. Plasma..TI'1eITI1 I.P. RPPI..ICRTION NOTES PLASMA ETCHING OF SIUCON NITRIDE AND SIUCON DIOXIDE Silicon nitride and silicon dioxide thin films find e variety of uses in both semiconductor and nonsemiconductor

More information

Oxidation SMT Yau - 1

Oxidation SMT Yau - 1 Oxidation Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Describe an oxide film for semiconductor manufacturing, including its atomic structure, how it is used

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

ProTemp Furnace SOP Page 1 of 15 Revision Scope 1.1 This SOP provides instructions to operate the ProTemp Atmospheric Furnaces.

ProTemp Furnace SOP Page 1 of 15 Revision Scope 1.1 This SOP provides instructions to operate the ProTemp Atmospheric Furnaces. ProTemp urnace OP ProTemp urnace OP Page 1 of 15 1 cope 1.1 This OP provides instructions to operate the ProTemp Atmospheric urnaces. 2 Table of Contents 1 cope... 1 2 Table of Contents... 1 3 Reference

More information

TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIONS TECHNICAL SPECIFICATIONS FOR THE SUPPLY OF A PECVD by LIQUID SOURCE PRECURSOR FOR SCUOLA SUPERIORE SANT ANNA ALLEGATO A LOTTO 1 PROCEDURA APERTA IN LOTTI PER LA FORNITURA DI APPARECCHIATURE SCIENTIFICHE

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition ESS4810 Lecture Fall 2010 Introduction Chemical vapor deposition (CVD) forms thin films on the surface of a substrate by thermal decomposition and/or reaction of gas compounds

More information

MEMS Surface Fabrication

MEMS Surface Fabrication ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Surface Fabrication Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Self organization and properties of Black Silicon

Self organization and properties of Black Silicon TECHNISCHE UNIVERSITÄT ILMENAU 51st IWK Internationales Wissenschaftliches Kolloquium September 11-15, 2006 Self organization and properties of Black Silicon M. Fischer, M. Stubenrauch, Th. Kups, H. Romanus,

More information

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline:

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: Fabrication of p-n junctions Contact Potential Things you should know when you leave Key Questions What are the necessary steps to fabricate

More information

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond

Single-digit-resolution nanopatterning with. extreme ultraviolet light for the 2.5 nm. technology node and beyond Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 205 Supplementary Information for: Single-digit-resolution nanopatterning with extreme ultraviolet

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

Low temperature deposition of thin passivation layers by plasma ALD

Low temperature deposition of thin passivation layers by plasma ALD 1 Low temperature deposition of thin passivation layers by plasma ALD Bernd Gruska, SENTECH Instruments GmbH, Germany 1. SENTECH in brief 2. Low temperature deposition processes 3. SENTECH SI ALD LL System

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

Lecture 5: Micromachining

Lecture 5: Micromachining MEMS: Fabrication Lecture 5: Micromachining Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class E-beam lithography X-ray

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time IC Fabrication Technology Crystal Preparation

More information

How To Write A Flowchart

How To Write A Flowchart 1 Learning Objectives To learn how you transfer a device concept into a process flow to fabricate the device in the EKL labs You learn the different components that makes up a flowchart; process blocks,

More information

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES.

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. SESSION 14 MATERIALS AND PROCESSES FOR ADVANCED PACKAGING UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. Eric Schulte 1, Gilbert Lecarpentier 2 SETNA Corporation

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Magnetron Sputter Cathodes planar & rotatable. Linear ion sources. Reactive gas controller & endpoint detector

Magnetron Sputter Cathodes planar & rotatable. Linear ion sources. Reactive gas controller & endpoint detector GENCOA products cover 3 sputtering related areas Magnetron Sputter Cathodes planar & rotatable Reactive gas controller & endpoint detector Linear ion sources Other activities include on-site process implementation,

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins

Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins Revised: April 2008 Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins 1. INTRODUCTION The CYCLOTENE 3000 series Advanced Electronic Resins derived from B-staged bisbenzocyclobutene (BCB)

More information

Use of Spectrograph-based OES for SiN Etch Selectivity and Endpoint Optimization

Use of Spectrograph-based OES for SiN Etch Selectivity and Endpoint Optimization Use of Spectrograph-based OES for SiN Etch Selectivity and Endpoint Optimization F. G. Celii and C. Huffman Texas Instruments, Inc., Dallas, TX, USA J. Hosch* and K. Harvey Verity Instruments, Carrollton,

More information

Etching Mask Properties of Diamond-Like Carbon Films

Etching Mask Properties of Diamond-Like Carbon Films N. New Nawachi Diamond et al. and Frontier Carbon Technology 13 Vol. 15, No. 1 2005 MYU Tokyo NDFCT 470 Etching Mask Properties of Diamond-Like Carbon Films Norio Nawachi *, Akira Yamamoto, Takahiro Tsutsumoto

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

MEMS Fabrication. Beyond Integrated Circuits. MEMS Basic Concepts

MEMS Fabrication. Beyond Integrated Circuits. MEMS Basic Concepts MEMS Fabrication Beyond Integrated Circuits MEMS Basic Concepts Uses integrated circuit fabrication techniques to make mechanical as well as electrical components on a single chip. Small size 1µm 1mm Typically

More information

An Alternative Approach to Filled -- Via Processing. Sandia National Laboratories PO Box 5800 Albuquerque, N.M , MS Key Collaborators:

An Alternative Approach to Filled -- Via Processing. Sandia National Laboratories PO Box 5800 Albuquerque, N.M , MS Key Collaborators: An Alternative Approach to Filled -- Via Processing Sandia National Laboratories PO Box 5800 Albuquerque, N.M. 87185, MS 1084 Anthony J. Farino -- Member of Technical Staff Key Collaborators: Dale Heatherington

More information

Nanoelectronics Fabrication Facility

Nanoelectronics Fabrication Facility Nanoelectronics Fabrication Facility Contents Introduction 2 Mask Making Module 4 Photolithography Module 6 Wet Etching and CMP Module 8 Dry Etching and Sputtering Module 10 Thermal Process and Implantation

More information

Turn-key Production System for Solar Cells

Turn-key Production System for Solar Cells SOLARE Turn-key Production System for Solar Cells 02 Innovations for New Technologies provides technology solutions for both crystalline and thin-film highperformance solar cell platforms. Our production

More information

Bulk MEMS Fabrication Details Dr. Lynn Fuller, Casey Gonta, Patsy Cadareanu

Bulk MEMS Fabrication Details Dr. Lynn Fuller, Casey Gonta, Patsy Cadareanu ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Bulk MEMS Fabrication Details Dr. Lynn Fuller, Casey Gonta, Patsy Cadareanu Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

Queensland Microtechnology Facility processing and analysis equipment overview March 2014

Queensland Microtechnology Facility processing and analysis equipment overview March 2014 Queensland Microtechnology Facility processing and analysis equipment overview March 2014 Equipment /area Make and Model Equipment Description wafer size compatibility QMF use / purpose Typical Standard

More information

Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO 2 (glass) Major factor in making

Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO 2 (glass) Major factor in making Thermal Oxidation and Growth of Insulators (Chapter 3 - Jaeger 3) Key advantage of Si: Oxidation of Si into SiO (glass) Major factor in making Silicon the main semiconductor Grown at high temperature in

More information

#201 Migun-Techno-World, 533 Yongsan-Dong, Yuseong-Gu, Daejeon-City, KOREA Tel: , 1688 Fax:

#201 Migun-Techno-World, 533 Yongsan-Dong, Yuseong-Gu, Daejeon-City, KOREA Tel: , 1688 Fax: #201 Migun-Techno-World, 533 Yongsan-Dong, Yuseong-Gu, Daejeon-City, KOREA 305-500 Tel: 82-42-861-1687, 1688 Fax: 82-42-861-1689 http://www.coxem.com E-mail: infor@coxem.com Table of contents Before using

More information

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects EE 330 Lecture 8 IC Fabrication Technology Part II - Oxidation - Epitaxy - Polysilicon - Interconnects Review from Last Time MOS Transistor Bulk Source Gate Drain p-channel MOSFET Lightly-doped n-type

More information