Introduction to genome biology

Size: px
Start display at page:

Download "Introduction to genome biology"

Transcription

1 Introduction to genome biology Lisa Stubbs We ve found most genes; but what about the rest of the genome? Genome size* 12 Mb 95 Mb 170 Mb 1500 Mb 2700 Mb 3200 Mb #coding genes ~7000 ~20000 ~14000 ~26000 ~23000 ~21000 # transcripts ~7000 ~50000 ~29000 ~53000 ~93000 ~ Kb/gene 1714 bp 4750 bp bp 57,692 bp bp bp *data taken from ENSEMBL genome browser Most notably: Coding gene number is relatively constant in metazoans, BUT Number of alternative transcripts per gene and Gene density are not Each gene gives rise to many more isoforms: protein sequence diversity Much more non-coding DNA, including gene regulatory DNA

2 Most traditional studies have focused on promoters and nearby (proximal) enhancers Promoter regions are most likely to be involved in recruiting RNA polymerase and related proteins TATA binding proteins (TAFs) General transcription factors (GTFs) Mediator complexes Some transcription factors (TF) are also more likely to be found at promoter sites SP1, E2F family are classical examples BUT, most other metazoan TFs are found preferentially at distant sites Introns, intergenic regions Some may be 100s or 1000s of bp from the target promoter, or even embedded within neighboring genes Transcription factors and their binding sites Most known TFs have short, and variable binding sites, e.g. YY1 SP1 Mzf1 BUT The probability of finding a string such as the Yy1 core (even as a simple string, rather than a matrix) is (1/4) 4 = 1/256 bp! Most TFBS are not much more specific than this! So, how to raise the probability that the site you find is functional? 1. Interspecies conservation: sites that are found in similar locations in diverse species are more likely to be functional 2. Site clustering: most TFBS form homo- or heterodimers that significantly stabilize binding and influence function 3. Location within regions that are known to be in an open state in the cell type and conditions of interest

3 How to find the regulatory needles in the haystack? Vertebrate genomes are mostly non-coding ~2% coding; ~5% noncoding and evolutionarily conserved (at the DNA sequence alignment level) Websites to view pre-aligned sequence conservation levels abound; e.g. the ECR browser zpicture and Mulan provide do it yourself tools for pairwise or multisequence alignments of up to 1Mb; All three tools allow detection of conserved TFBS from Transfac, Jaspar, and other databases Conserved motifs are more likely to be functional As long as the biology you are interested in is also conserved Important to consider the appropriate species for comparisons

4 ECR details: Step 2 Summary of conserved TFBS

5 SpaWal display Of conserved TFBS Focusing on accessible chromatin Even well conserved motifs cannot be accessed in closed regions of chromatin Not accessible e.g. H3K9Me3, H3K27Me3 accessible e.g. H3K27Ac

6 How to find active elements? Chromatin immunoprecipitation with TF and histone-modification antibodies Chromatin and attendant proteins are chemically crosslinked (lightly) using formaldehyde Crosslinking will also attach proteins to each other, so that detection of secondary chromatin interactions is inevitable Cross-linked chromatin is randomly sheared by sonication (average fragment size bp) + Sonicated fragments in solution are exposed to a protein-specific antibody Antibody is retrieved with DNA still attached DNA is released with salt and heat (reverses the crosslinks) Library is created for sequencing : ligation of tags and light PCR amplification ATGGCCTTAACGA.. Sequenced directly e.g. illumina sequencing Sequence-based ChIP approaches Harness ChIP, DNAse sensitivity, and other assays, to Illumina sequencing ChIP enriched DNA is ligated to Illumina linkers and sequenced directly If you experiment works, you ve enriched a very small fraction of the genome: Requires a lot of input chromatin! Traditional methods need ~10^7 cells per experiment!! Critical step is an efficient, selective antibody (and very few exist)

7 ChIP computational issues Sequence is read from randomly position ends of multiple, overlapping randomly sheared fragments Reads will be scattered around a distance ~2X shear fragment length; ChIP seq reads surround but may not contain the DNA binding site Computational tools (like MACS) need to join adjacent sets of read peaks and define a shift distance between read peaks to determine a summit Seq reads ChIP fragments Binding site Analytical considerations Genomic neighborhoods Shear efficiency is not really random Some genomic regions are fragile and sensitive; some are protected Chromatin-matched, co-sheared controls are essential Most peak-finders are strongly biased to compare controls and experimental with similar numbers of reads Repeatability is key Biological, or at least technical, replicates are also essential Artifactual peaks are very easy to generate! Other ways to validate: Known targets Known motifs Similar targets in different cell types or tissues Peak width Transcription factors typically yield sharp peaks; chromatin marks are sometimes broader and more diffuse

8 User-friendly tools MACS: Model based peak detection, is sensitive to peak enrichment and background Zhang et al, Genome Biology 2008, Feng et al. 2012, Nat Procols PMID: (Xiaole Liu lab); MACS1 is best for sharp peaks (TFs); will break diffuse peaks into smaller regions MACS2 is designed to allow broad- or sharp-peak detection HOMER ( Can be easily tweaked for more sensitive peak detection Comes packaged wiith a rich set of peak annotation tools Tools for DNAse-seq, High-C, differential ChIP analysis and many more Both tools permit generation of wiggle files or similar that can be viewed in the UCSC browser Looking at your data is a very important step! Peak finders can miss peaks that you can easily see by eye! Differential ChIP and connection to differential expression Just like differential sequence analysis comparison requires rigorous normalization Normalization is complicated for ChIP peak height? Peak shape? Summit position? Read density? Local neighborhoods? Not as simple as an intensity score or a yes/no count Chromatin dynamics and expression dynamics *might* or *might not* be temporally coordinated 200 _ FCX120 CK1+2 1M H3K4me3 ChIP 200 _ FCX120 EX1+2 1M H3K4me3 ChIP 70 _ FCX30 CK1+2 5M h3k27ac ChIP 70 _ FCX30 EX1+2 5M h3k27ac ChIP 40 _ FCX120 CK1+2 4M h3k4me1 ChIP 40 _ FCX120 EX1+2 4M h3k4me1 ChIP 30 _ FCX120 EX1+2 5M H3K27me3 ChIP 30 _ FCX120 CK1+2 5M H3K27me3 ChIP 5 kb mm9 76,304,000 76,305,000 76,306,000 76,307,000 76,308,000 76,309,000 76,310,000 76,311,000 76,312,000 76,313,000 UCSC Genes (RefSeq, GenBank, trnas & Comparative Genomics) Hsf1 Hsf1 Hsf1 Hsf1 Hsf Frontal Cortex 120 min control samples 1+2 1M cells H3K4me3 ChIP Frontal Cortex 120 min exp samples 1+2 1M cells H3K4me3 ChIP Frontal Cortex 30 min control sample 1+2 5M h3k27ac Frontal Cortex 30 min experimental sample 1+2 5M h3k27ac Frontal Cortex 120 min control sample 1+2 4M cells h3k4me Frontal Cortex 120 min experimental sample 1+2 4M cells h3k4me Frontal Cortex 120 min exp samples 1+2 5M cells H3K27me3 ChIP?

9 Data from ChIP with TFs, modified Histones, and other proteins are available for human (and to some degree, mouse and flies) as Tables in the UCSC genome browser ( From Hoffman et al, Nucl Acid Res 41:827, 2013 Yet another example of why you should look at your data Scale chr17: Mouse mrnas FCX120 CK1+2 1M H3K4me3 ChIP FCX120 EX1+2 1M H3K4me3 ChIP FCX30 CK1+2 5M h3k27ac ChIP FCX30 EX1+2 5M h3k27ac ChIP FCX120 CK1+2 4M h3k4me1 ChIP FCX120 EX1+2 1M h3k4me1 ChIP FCX120 CK1+2 5M H3K27me3 ChIP FCX120 EX1+2 5M H3K27me3 ChIP Hspa1b 5 kb mm9 35,095,000 35,100,000 35,105,000 Hspa1a Spliced ESTs

10 Transposon-based alternatives These tools address an important issue: Library preps fail unless you start with significant ChIP input How to work with samples for which millions of cells are not available? Solution Library prep without linker ligation A transposon brings in the essential Illumina (or other) primers Library prep is completed simply with PCR The need for substantial input DNA is removed TN5 (e.g. Illumina library oligos) transposase tagmentawon inserwon ConWnued reacwon PCR Ready to sequence

11 Regular ChIP prep ChIP tagmentation Treat with transposase and tag oligos while chromatin is still on the beads Release after tagmentation, PCR, sizeselect and sequence (no library prep!) Issues related to tagmentation Illumina-owned kit is expensive but Ratio of DNA: transposase Has to be adjusted for each cell type and chromatin prep Need even fragmentation to avoid bias, and small enough fragments, in general, for illumina Need to avoid making fragments too small Bias observed in DNA: controls are complicated Solution in ChiPmentation Tagmentation while DNA is still protected by the antibody and cross-linked chromatin, still on the bead Protects from over-tagmentation, this allowing a full digestion without fear of losing the DNA Allows the protocol to work over a 25X range of DNA: transposon and lessens worries about time Genome Res 24:

12 Genome Biology Topic overview Lectures Ross Hardison Basics of gene regulation, epigenetics and ENCODE results David Hawkins Chromatin states, biological applications James Taylor Higher dimension chromatin structure Lisa Stubbs Integrating data for biological inference: Basics of Expression correlation methods Workshops Bowtie and MACS on Galaxy Peaks to features in Galaxy Bowtie and MACs / Tophat->Cuffdiff on the command line Monday: student s choice How to for ECR browser and Z-picture (sequence alignments and conserved motifs) Simple methods for expression correlation: Cluster and Cytoscape ChIP peaks to Meme-ChIP (online connection to the meme suite for large peak sets) DAVID functional clustering analysis (GO and pathway analysis tools online

Introduction to genome biology

Introduction to genome biology Introduction to genome biology Lisa Stubbs Deep transcritpomes for traditional model species from ENCODE (and modencode) Deep RNA-seq and chromatin analysis on 147 human cell types, as well as tissues,

More information

DNA:CHROMATIN INTERACTIONS

DNA:CHROMATIN INTERACTIONS DNA:CHROMATIN INTERACTIONS Exploring transcription factor binding and the epigenomic landscape Chris Seward Introductions Cell and Developmental Biology PhD Candidate in Dr. Lisa Stubbs Laboratory Currently

More information

ChIP-seq analysis 2/28/2018

ChIP-seq analysis 2/28/2018 ChIP-seq analysis 2/28/2018 Acknowledgements Much of the content of this lecture is from: Furey (2012) ChIP-seq and beyond Park (2009) ChIP-seq advantages + challenges Landt et al. (2012) ChIP-seq guidelines

More information

APPLICATION NOTE. Abstract. Introduction

APPLICATION NOTE. Abstract. Introduction From minuscule amounts to magnificent results: reliable ChIP-seq data from 1, cells with the True MicroChIP and the MicroPlex Library Preparation kits Abstract Diagenode has developed groundbreaking solutions

More information

Applied Bioinformatics - Lecture 16: Transcriptomics

Applied Bioinformatics - Lecture 16: Transcriptomics Applied Bioinformatics - Lecture 16: Transcriptomics David Hendrix Oregon State University Feb 15th 2016 Transcriptomics High-throughput Sequencing (deep sequencing) High-throughput sequencing (also

More information

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis Gene expression analysis Biosciences 741: Genomics Fall, 2013 Week 5 Gene expression analysis From EST clusters to spotted cdna microarrays Long vs. short oligonucleotide microarrays vs. RT-PCR Methods

More information

ChIP-seq data analysis with Chipster. Eija Korpelainen CSC IT Center for Science, Finland

ChIP-seq data analysis with Chipster. Eija Korpelainen CSC IT Center for Science, Finland ChIP-seq data analysis with Chipster Eija Korpelainen CSC IT Center for Science, Finland chipster@csc.fi What will I learn? Short introduction to ChIP-seq Analyzing ChIP-seq data Central concepts Analysis

More information

The ENCODE Encyclopedia. & Variant Annotation Using RegulomeDB and HaploReg

The ENCODE Encyclopedia. & Variant Annotation Using RegulomeDB and HaploReg The ENCODE Encyclopedia & Variant Annotation Using RegulomeDB and HaploReg Jill E. Moore Weng Lab University of Massachusetts Medical School October 10, 2015 Where s the Encyclopedia? ENCODE: Encyclopedia

More information

Applications of short-read

Applications of short-read Applications of short-read sequencing: RNA-Seq and ChIP-Seq BaRC Hot Topics March 2013 George Bell, Ph.D. http://jura.wi.mit.edu/bio/education/hot_topics/ Sequencing applications RNA-Seq includes experiments

More information

Sequencing applications. Today's outline. Hands-on exercises. Applications of short-read sequencing: RNA-Seq and ChIP-Seq

Sequencing applications. Today's outline. Hands-on exercises. Applications of short-read sequencing: RNA-Seq and ChIP-Seq Sequencing applications Applications of short-read sequencing: RNA-Seq and ChIP-Seq BaRC Hot Topics March 2013 George Bell, Ph.D. http://jura.wi.mit.edu/bio/education/hot_topics/ RNA-Seq includes experiments

More information

2/10/17. Contents. Applications of HMMs in Epigenomics

2/10/17. Contents. Applications of HMMs in Epigenomics 2/10/17 I529: Machine Learning in Bioinformatics (Spring 2017) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Background:

More information

ChIP. November 21, 2017

ChIP. November 21, 2017 ChIP November 21, 2017 functional signals: is DNA enough? what is the smallest number of letters used by a written language? DNA is only one part of the functional genome DNA is heavily bound by proteins,

More information

Galaxy Platform For NGS Data Analyses

Galaxy Platform For NGS Data Analyses Galaxy Platform For NGS Data Analyses Weihong Yan wyan@chem.ucla.edu Collaboratory Web Site http://qcb.ucla.edu/collaboratory http://collaboratory.lifesci.ucla.edu Workshop Outline ü Day 1 UCLA galaxy

More information

Novel methods for RNA and DNA- Seq analysis using SMART Technology. Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc.

Novel methods for RNA and DNA- Seq analysis using SMART Technology. Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc. Novel methods for RNA and DNA- Seq analysis using SMART Technology Andrew Farmer, D. Phil. Vice President, R&D Clontech Laboratories, Inc. Agenda Enabling Single Cell RNA-Seq using SMART Technology SMART

More information

Deep Sequencing technologies

Deep Sequencing technologies Deep Sequencing technologies Gabriela Salinas 30 October 2017 Transcriptome and Genome Analysis Laboratory http://www.uni-bc.gwdg.de/index.php?id=709 Microarray and Deep-Sequencing Core Facility University

More information

Green Center Computational Core ChIP- Seq Pipeline, Just a Click Away

Green Center Computational Core ChIP- Seq Pipeline, Just a Click Away Green Center Computational Core ChIP- Seq Pipeline, Just a Click Away Venkat Malladi Computational Biologist Computational Core Cecil H. and Ida Green Center for Reproductive Biology Science Introduc

More information

Introduction to NGS analyses

Introduction to NGS analyses Introduction to NGS analyses Giorgio L Papadopoulos Institute of Molecular Biology and Biotechnology Bioinformatics Support Group 04/12/2015 Papadopoulos GL (IMBB, FORTH) IMBB NGS Seminar 04/12/2015 1

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday 15 June 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA

More information

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015

ChIP-Seq Tools. J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 ChIP-Seq Tools J Fass UCD Genome Center Bioinformatics Core Wednesday September 16, 2015 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind DNA or

More information

TECH NOTE Ligation-Free ChIP-Seq Library Preparation

TECH NOTE Ligation-Free ChIP-Seq Library Preparation TECH NOTE Ligation-Free ChIP-Seq Library Preparation The DNA SMART ChIP-Seq Kit Ligation-free template switching technology: Minimize sample handling in a single-tube workflow >> Simplified protocol with

More information

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014

ChIP-Seq Data Analysis. J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 ChIP-Seq Data Analysis J Fass UCD Genome Center Bioinformatics Core Wednesday December 17, 2014 What s the Question? Where do Transcription Factors (TFs) bind genomic DNA 1? (Where do other things bind

More information

Gene Expression Microarrays. For microarrays, purity of the RNA was further assessed by

Gene Expression Microarrays. For microarrays, purity of the RNA was further assessed by Supplemental Methods Gene Expression Microarrays. For microarrays, purity of the RNA was further assessed by an Agilent 2100 Bioanalyzer. 500 ng of RNA was reverse transcribed into crna and biotin-utp

More information

ChIP-seq/Functional Genomics/Epigenomics. CBSU/3CPG/CVG Next-Gen Sequencing Workshop. Josh Waterfall. March 31, 2010

ChIP-seq/Functional Genomics/Epigenomics. CBSU/3CPG/CVG Next-Gen Sequencing Workshop. Josh Waterfall. March 31, 2010 ChIP-seq/Functional Genomics/Epigenomics CBSU/3CPG/CVG Next-Gen Sequencing Workshop Josh Waterfall March 31, 2010 Outline Introduction to ChIP-seq Control data sets Peak/enriched region identification

More information

ChIP-seq and RNA-seq. Farhat Habib

ChIP-seq and RNA-seq. Farhat Habib ChIP-seq and RNA-seq Farhat Habib fhabib@iiserpune.ac.in Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions

More information

SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS

SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS SO YOU WANT TO DO A: RNA-SEQ EXPERIMENT MATT SETTLES, PHD UNIVERSITY OF CALIFORNIA, DAVIS SETTLES@UCDAVIS.EDU Bioinformatics Core Genome Center UC Davis BIOINFORMATICS.UCDAVIS.EDU DISCLAIMER This talk/workshop

More information

ChIP-seq and RNA-seq

ChIP-seq and RNA-seq ChIP-seq and RNA-seq Biological Goals Learn how genomes encode the diverse patterns of gene expression that define each cell type and state. Protein-DNA interactions (ChIPchromatin immunoprecipitation)

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk bit.ly/bio2_2012 The Central Dogma

More information

Nature Methods: doi: /nmeth.4396

Nature Methods: doi: /nmeth.4396 Supplementary Figure 1 Comparison of technical replicate consistency between and across the standard ATAC-seq method, DNase-seq, and Omni-ATAC. (a) Heatmap-based representation of ATAC-seq quality control

More information

NGS Approaches to Epigenomics

NGS Approaches to Epigenomics I519 Introduction to Bioinformatics, 2013 NGS Approaches to Epigenomics Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Background: chromatin structure & DNA methylation Epigenomic

More information

Charles Girardot, Furlong Lab. MACS, CisGenome, SISSRs and other peak calling algorithms: differences and practical use

Charles Girardot, Furlong Lab. MACS, CisGenome, SISSRs and other peak calling algorithms: differences and practical use Charles Girardot, Furlong Lab MACS, CisGenome, SISSRs and other peak calling algorithms: differences and practical use ChIP-Seq signal properties Only 5 ends of ChIPed fragments are sequenced Shifted read

More information

Applications of ChIP. November 05, David Grotsky, PhD Scientific Support Specialist - Epigenetics

Applications of ChIP. November 05, David Grotsky, PhD Scientific Support Specialist - Epigenetics Applications of ChIP November 05, 2014 David Grotsky, PhD Scientific Support Specialist - Epigenetics Overview Introduction to chromatin and ChIP The histone code hypothesis What we learn from ChIP-on-chip

More information

Genome 373: High- Throughput DNA Sequencing. Doug Fowler

Genome 373: High- Throughput DNA Sequencing. Doug Fowler Genome 373: High- Throughput DNA Sequencing Doug Fowler Tasks give ML unity We learned about three tasks that are commonly encountered in ML Models/Algorithms Give ML Diversity Classification Regression

More information

A more efficient, sensitive and robust method of chromatin immunoprecipitation (ChIP)

A more efficient, sensitive and robust method of chromatin immunoprecipitation (ChIP) A more efficient, sensitive and robust method of chromatin immunoprecipitation (ChIP) ADVANCEMENTS IN EPIGENETICS Introducing ChIP and Chromatrap Chromatrap is a more efficient, sensitive and robust method

More information

Next- genera*on Sequencing. Lecture 13

Next- genera*on Sequencing. Lecture 13 Next- genera*on Sequencing Lecture 13 ChIP- seq Applica*ons iden%fy sequence varia%ons DNA- seq Iden%fy Pathogens RNA- seq Kahvejian et al, 2008 Protein-DNA interaction DNA is the informa*on carrier of

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq Part 1 An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk http://bit.ly/bio2links

More information

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup

Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup Data and Metadata Models Recommendations Version 1.2 Developed by the IHEC Metadata Standards Workgroup 1. Introduction The data produced by IHEC is illustrated in Figure 1. Figure 1. The space of epigenomic

More information

Figure S1. nuclear extracts. HeLa cell nuclear extract. Input IgG IP:ORC2 ORC2 ORC2. MCM4 origin. ORC2 occupancy

Figure S1. nuclear extracts. HeLa cell nuclear extract. Input IgG IP:ORC2 ORC2 ORC2. MCM4 origin. ORC2 occupancy A nuclear extracts B HeLa cell nuclear extract Figure S1 ORC2 (in kda) 21 132 7 ORC2 Input IgG IP:ORC2 32 ORC C D PRKDC ORC2 occupancy Directed against ORC2 C-terminus (sc-272) MCM origin 2 2 1-1 -1kb

More information

Supplemental Figure 1 A

Supplemental Figure 1 A Supplemental Figure A prebleach postbleach 2 min 6 min 3 min mh2a.-gfp mh2a.2-gfp mh2a2-gfp GFP-H2A..9 Relative Intensity.8.7.6.5 mh2a. GFP n=8.4 mh2a.2 GFP n=4.3 mh2a2 GFP n=2.2 GFP H2A n=24. GFP n=7.

More information

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013

Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA. March 2, Steven R. Kain, Ph.D. ABRF 2013 Integrated NGS Sample Preparation Solutions for Limiting Amounts of RNA and DNA March 2, 2013 Steven R. Kain, Ph.D. ABRF 2013 NuGEN s Core Technologies Selective Sequence Priming Nucleic Acid Amplification

More information

ChampionChIP Quick, High Throughput Chromatin Immunoprecipitation Assay System

ChampionChIP Quick, High Throughput Chromatin Immunoprecipitation Assay System ChampionChIP Quick, High Throughput Chromatin Immunoprecipitation Assay System Liyan Pang, Ph.D. Application Scientist 1 Topics to be Covered Introduction What is ChIP-qPCR? Challenges Facing Biological

More information

Targeted RNA sequencing reveals the deep complexity of the human transcriptome.

Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Tim R. Mercer 1, Daniel J. Gerhardt 2, Marcel E. Dinger 1, Joanna Crawford 1, Cole Trapnell 3, Jeffrey A. Jeddeloh 2,4, John

More information

nature methods A paired-end sequencing strategy to map the complex landscape of transcription initiation

nature methods A paired-end sequencing strategy to map the complex landscape of transcription initiation nature methods A paired-end sequencing strategy to map the complex landscape of transcription initiation Ting Ni, David L Corcoran, Elizabeth A Rach, Shen Song, Eric P Spana, Yuan Gao, Uwe Ohler & Jun

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Endogenous gene tagging to study subcellular localization and chromatin binding. a, b, Schematic of experimental set-up to endogenously tag RNAi factors using the CRISPR Cas9 technology,

More information

Basics of RNA-Seq. (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly, PhD Team Lead, NCI Single Cell Analysis Facility

Basics of RNA-Seq. (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly, PhD Team Lead, NCI Single Cell Analysis Facility 2018 ABRF Meeting Satellite Workshop 4 Bridging the Gap: Isolation to Translation (Single Cell RNA-Seq) Sunday, April 22 Basics of RNA-Seq (With a Focus on Application to Single Cell RNA-Seq) Michael Kelly,

More information

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012

Assay Standards Working Group Nov 2012 Assay Standards Working Group Recommendations, November 2012 Assay Standards Working Group Recommendations, November 2012 Contents Assay Standards Working Group Recommendations, August 2012... 1 Contents... 1 Introduction... 2 1: Reference Epigenome Criteria...

More information

WORKSHOP. Transcriptional circuitry and the regulatory conformation of the genome. Ofir Hakim Faculty of Life Sciences

WORKSHOP. Transcriptional circuitry and the regulatory conformation of the genome. Ofir Hakim Faculty of Life Sciences WORKSHOP Transcriptional circuitry and the regulatory conformation of the genome Ofir Hakim Faculty of Life Sciences Chromosome conformation capture (3C) Most GR Binding Sites Are Distant From Regulated

More information

Introductory Next Gen Workshop

Introductory Next Gen Workshop Introductory Next Gen Workshop http://www.illumina.ucr.edu/ http://www.genomics.ucr.edu/ Workshop Objectives Workshop aimed at those who are new to Illumina sequencing and will provide: - a basic overview

More information

TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA

TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA TECH NOTE Pushing the Limit: A Complete Solution for Generating Stranded RNA Seq Libraries from Picogram Inputs of Total Mammalian RNA Stranded, Illumina ready library construction in

More information

Genome 541 Gene regulation and epigenomics Lecture 3 Integrative analysis of genomics assays

Genome 541 Gene regulation and epigenomics Lecture 3 Integrative analysis of genomics assays Genome 541 Gene regulation and epigenomics Lecture 3 Integrative analysis of genomics assays Please consider both the forward and reverse strands (i.e. reverse compliment sequence). You do not need to

More information

Supplemental Figure 1.

Supplemental Figure 1. Supplemental Data. Charron et al. Dynamic landscapes of four histone modifications during de-etiolation in Arabidopsis. Plant Cell (2009). 10.1105/tpc.109.066845 Supplemental Figure 1. Immunodetection

More information

Introduction to ChIP Seq data analyses. Acknowledgement: slides taken from Dr. H

Introduction to ChIP Seq data analyses. Acknowledgement: slides taken from Dr. H Introduction to ChIP Seq data analyses Acknowledgement: slides taken from Dr. H Wu @Emory ChIP seq: Chromatin ImmunoPrecipitation it ti + sequencing Same biological motivation as ChIP chip: measure specific

More information

PrimePCR Assay Validation Report

PrimePCR Assay Validation Report Gene Information Gene Name minichromosome maintenance complex component 8 Gene Symbol Organism Gene Summary Gene Aliases RefSeq Accession No. UniGene ID Ensembl Gene ID MCM8 Human The protein encoded by

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. sndrop-seq overview.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. sndrop-seq overview. Supplementary Figure 1 sndrop-seq overview. A. sndrop-seq method showing modifications needed to process nuclei, including bovine serum albumin (BSA) coating and droplet heating to ensure complete nuclear

More information

Go to Bottom Left click WashU Epigenome Browser. Click

Go to   Bottom Left click WashU Epigenome Browser. Click Now you are going to look at the Human Epigenome Browswer. It has a more sophisticated but weirder interface than the UCSC Genome Browser. All the data that you will view as tracks is in reality just files

More information

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction Lecture 8 Reading Lecture 8: 96-110 Lecture 9: 111-120 DNA Libraries Definition Types Construction 142 DNA Libraries A DNA library is a collection of clones of genomic fragments or cdnas from a certain

More information

Caroline Townsend December 2012 Biochem 218 A critical review of ChIP-seq enrichment analysis tools

Caroline Townsend December 2012 Biochem 218 A critical review of ChIP-seq enrichment analysis tools Caroline Townsend December 2012 Biochem 218 A critical review of ChIP-seq enrichment analysis tools Introduction Transcriptional regulation, chromatin states, and genome stability pathways are largely

More information

DIAMANTINA INSTITUTE for Cancer, Immunology and Metabolic Medicine

DIAMANTINA INSTITUTE for Cancer, Immunology and Metabolic Medicine DIAMANTINA INSTITUTE for Cancer, Immunology and Metabolic Medicine Defining MYB Transcriptional Network by Genome-wide Chromatin Occupancy Profiling (ChIP-Seq) 2010 E.Glazov, L. Zhao Transcription Factors:

More information

02 Agenda Item 03 Agenda Item

02 Agenda Item 03 Agenda Item 01 Agenda Item 02 Agenda Item 03 Agenda Item SOLiD 3 System: Applications Overview April 12th, 2010 Jennifer Stover Field Application Specialist - SOLiD Applications Workflow for SOLiD Application Application

More information

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326:

Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: Lieberman-Aiden et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 326: 289-293. : Understanding the 3D conformation of the genome can

More information

A Brief History. Bootstrapping. Bagging. Boosting (Schapire 1989) Adaboost (Schapire 1995)

A Brief History. Bootstrapping. Bagging. Boosting (Schapire 1989) Adaboost (Schapire 1995) A Brief History Bootstrapping Bagging Boosting (Schapire 1989) Adaboost (Schapire 1995) What s So Good About Adaboost Improves classification accuracy Can be used with many different classifiers Commonly

More information

Complete Sample to Analysis Solutions for DNA Methylation Discovery using Next Generation Sequencing

Complete Sample to Analysis Solutions for DNA Methylation Discovery using Next Generation Sequencing Complete Sample to Analysis Solutions for DNA Methylation Discovery using Next Generation Sequencing SureSelect Human/Mouse Methyl-Seq Kyeong Jeong PhD February 5, 2013 CAG EMEAI DGG/GSD/GFO Agilent Restricted

More information

Bioinformatics of Transcriptional Regulation

Bioinformatics of Transcriptional Regulation Bioinformatics of Transcriptional Regulation Carl Herrmann IPMB & DKFZ c.herrmann@dkfz.de Wechselwirkung von Maßnahmen und Auswirkungen Einflussmöglichkeiten in einem Dialog From genes to active compounds

More information

RNAseq Applications in Genome Studies. Alexander Kanapin, PhD Wellcome Trust Centre for Human Genetics, University of Oxford

RNAseq Applications in Genome Studies. Alexander Kanapin, PhD Wellcome Trust Centre for Human Genetics, University of Oxford RNAseq Applications in Genome Studies Alexander Kanapin, PhD Wellcome Trust Centre for Human Genetics, University of Oxford RNAseq Protocols Next generation sequencing protocol cdna, not RNA sequencing

More information

Computational Analysis of Ultra-high-throughput sequencing data: ChIP-Seq

Computational Analysis of Ultra-high-throughput sequencing data: ChIP-Seq Computational Analysis of Ultra-high-throughput sequencing data: ChIP-Seq Philipp Bucher Wednesday January 21, 2009 SIB graduate school course EPFL, Lausanne Data flow in ChIP-Seq data analysis Level 1:

More information

Experimental Design. Dr. Matthew L. Settles. Genome Center University of California, Davis

Experimental Design. Dr. Matthew L. Settles. Genome Center University of California, Davis Experimental Design Dr. Matthew L. Settles Genome Center University of California, Davis settles@ucdavis.edu What is Differential Expression Differential expression analysis means taking normalized sequencing

More information

Library construction for nextgeneration sequencing: Overviews. and challenges

Library construction for nextgeneration sequencing: Overviews. and challenges Library construction for nextgeneration sequencing: Overviews and challenges During this time, as sequencing technologies have improved and evolved, so too have methods for preparing nucleic acids for

More information

Transcriptome analysis

Transcriptome analysis Statistical Bioinformatics: Transcriptome analysis Stefan Seemann seemann@rth.dk University of Copenhagen April 11th 2018 Outline: a) How to assess the quality of sequencing reads? b) How to normalize

More information

Next-generation sequencing technologies

Next-generation sequencing technologies Next-generation sequencing technologies NGS applications Illumina sequencing workflow Overview Sequencing by ligation Short-read NGS Sequencing by synthesis Illumina NGS Single-molecule approach Long-read

More information

Astrocyte GCRB/BICF Workflow for ChIP-Seq Analysis. Venkat Beibei

Astrocyte GCRB/BICF Workflow for ChIP-Seq Analysis. Venkat Beibei Astrocyte GCRB/BICF Workflow for ChIP-Seq Analysis Venkat Malladi @GCRB Beibei Chen @BICF What%is%ChIP+Seq?% Chromatin immunoprecipitation followed by Sequencing (ChIP-Seq): Identify the binding sites

More information

Supplementary Table 1: Oligo designs. A list of ATAC-seq oligos used for PCR.

Supplementary Table 1: Oligo designs. A list of ATAC-seq oligos used for PCR. Ad1_noMX: Ad2.1_TAAGGCGA Ad2.2_CGTACTAG Ad2.3_AGGCAGAA Ad2.4_TCCTGAGC Ad2.5_GGACTCCT Ad2.6_TAGGCATG Ad2.7_CTCTCTAC Ad2.8_CAGAGAGG Ad2.9_GCTACGCT Ad2.10_CGAGGCTG Ad2.11_AAGAGGCA Ad2.12_GTAGAGGA Ad2.13_GTCGTGAT

More information

Genome 541! Unit 4, lecture 3! Genomics assays

Genome 541! Unit 4, lecture 3! Genomics assays Genome 541! Unit 4, lecture 3! Genomics assays I d like a bit more background on the assays and bioterminology.!! The phantom peak concept was confusing.! I didn t quite understand what the phantom peak

More information

Next-generation sequencing technologies

Next-generation sequencing technologies Next-generation sequencing technologies Illumina: Summary https://www.youtube.com/watch?v=fcd6b5hraz8 Illumina platforms: Benchtop sequencers https://www.illumina.com/systems/sequencing-platforms.html

More information

Nature Genetics: doi: /ng Supplementary Figure 1. ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets.

Nature Genetics: doi: /ng Supplementary Figure 1. ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets. Supplementary Figure 1 ChIP-seq genome browser views of BRM occupancy at previously identified BRM targets. Gene structures are shown underneath each panel. Supplementary Figure 2 pref6::ref6-gfp complements

More information

2/19/13. Contents. Applications of HMMs in Epigenomics

2/19/13. Contents. Applications of HMMs in Epigenomics 2/19/13 I529: Machine Learning in Bioinformatics (Spring 2013) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Background:

More information

Figure 7.1: PWM evolution: The sequence affinity of TFBSs has evolved from single sequences, to PWMs, to larger and larger databases of PWMs.

Figure 7.1: PWM evolution: The sequence affinity of TFBSs has evolved from single sequences, to PWMs, to larger and larger databases of PWMs. Chapter 7 Discussion This thesis presents dry and wet lab techniques to elucidate the involvement of transcription factors (TFs) in the regulation of the cell cycle and myogenesis. However, the techniques

More information

Genomics and Gene Recognition Genes and Blue Genes

Genomics and Gene Recognition Genes and Blue Genes Genomics and Gene Recognition Genes and Blue Genes November 3, 2004 Eukaryotic Gene Structure eukaryotic genomes are considerably more complex than those of prokaryotes eukaryotic cells have organelles

More information

How to deal with your RNA-seq data?

How to deal with your RNA-seq data? How to deal with your RNA-seq data? Rachel Legendre, Thibault Dayris, Adrien Pain, Claire Toffano-Nioche, Hugo Varet École de bioinformatique AVIESAN-IFB 2017 1 Rachel Legendre Bioinformatics 27/11/2018

More information

Applications of HMMs in Epigenomics

Applications of HMMs in Epigenomics I529: Machine Learning in Bioinformatics (Spring 2013) Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Background:

More information

Lecture 5: Regulation

Lecture 5: Regulation Machine Learning in Computational Biology CSC 2431 Lecture 5: Regulation Instructor: Anna Goldenberg Central Dogma of Biology Transcription DNA RNA protein Process of producing RNA from DNA Constitutive

More information

Next Workshop on Epigenetic Profiling ChIP & MCIp

Next Workshop on Epigenetic Profiling ChIP & MCIp Next Workshop on Epigenetic Profiling ChIP & MCIp 18-21st October 2010 Organized by the Division of Epigenomics and Cancer Risk Factors DKFZ Heidelberg, and Diagenode s training team Have you heard about

More information

Measuring Protein-DNA interactions

Measuring Protein-DNA interactions Measuring Protein-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Transcription Factors are genetic switches 3 Regulation of Gene Expression by Transcription

More information

CollecTF Documentation

CollecTF Documentation CollecTF Documentation Release 1.0.0 Sefa Kilic August 15, 2016 Contents 1 Curation submission guide 3 1.1 Data.................................................... 3 1.2 Before you start.............................................

More information

TECH NOTE Stranded NGS libraries from FFPE samples

TECH NOTE Stranded NGS libraries from FFPE samples TECH NOTE Stranded NGS libraries from FFPE samples Robust performance with extremely degraded FFPE RNA (DV 200 >25%) Consistent library quality across a range of input amounts (5 ng 50 ng) Compatibility

More information

Non-coding Function & Variation, MPRAs II. Mike White Bio /5/18

Non-coding Function & Variation, MPRAs II. Mike White Bio /5/18 Non-coding Function & Variation, MPRAs II Mike White Bio 5488 3/5/18 MPRA Review Problem 1: Where does your CRE DNA come from? DNA synthesis Genomic fragments Targeted regulome capture Problem 2: How do

More information

Non-coding Function & Variation, MPRAs. Mike White Bio5488 3/5/18

Non-coding Function & Variation, MPRAs. Mike White Bio5488 3/5/18 Non-coding Function & Variation, MPRAs Mike White Bio5488 3/5/18 Outline MONDAY Non-coding function and variation The barcode Basic versions of MRPA technology WEDNESDAY More varieties of MRPAs Some key

More information

Gene Regulation 10/19/05

Gene Regulation 10/19/05 10/19/05 Gene Regulation (formerly Gene Prediction - 2) Gene Prediction & Regulation Mon - Overview & Gene structure review: Eukaryotes vs prokaryotes Wed - Regulatory regions: Promoters & enhancers -

More information

Nature Genetics: doi: /ng.3556 INTEGRATED SUPPLEMENTARY FIGURE TEMPLATE. Supplementary Figure 1

Nature Genetics: doi: /ng.3556 INTEGRATED SUPPLEMENTARY FIGURE TEMPLATE. Supplementary Figure 1 INTEGRATED SUPPLEMENTARY FIGURE TEMPLATE Supplementary Figure 1 REF6 expression in transgenic lines. (a,b) Expression of REF6 in REF6-HA ref6 and REF6ΔZnF-HA ref6 plants detected by RT qpcr (a) and immunoblot

More information

PrimePCR Assay Validation Report

PrimePCR Assay Validation Report Gene Information Gene Name Gene Symbol Organism Gene Summary Gene Aliases RefSeq Accession No. UniGene ID Ensembl Gene ID PARK2 co-regulated PACRG Human This gene encodes a protein that is conserved across

More information

Like use other ChIP kits, before handle ChIP assay please choose a good antibody suitable for precipitation the crosslinked protein / DNA complexes.

Like use other ChIP kits, before handle ChIP assay please choose a good antibody suitable for precipitation the crosslinked protein / DNA complexes. ChIP Assay Kit Cat:RK20100 Like use other ChIP kits, before handle ChIP assay please choose a good antibody suitable for precipitation the crosslinked protein / DNA complexes. Manufactured by Global Headquarters

More information

Computational Investigation of Gene Regulatory Elements. Ryan Weddle Computational Biosciences Internship Presentation 12/15/2004

Computational Investigation of Gene Regulatory Elements. Ryan Weddle Computational Biosciences Internship Presentation 12/15/2004 Computational Investigation of Gene Regulatory Elements Ryan Weddle Computational Biosciences Internship Presentation 12/15/2004 1 Table of Contents Introduction.... 3 Goals..... 9 Methods.... 12 Results.....

More information

Figure S1: NUN preparation yields nascent, unadenylated RNA with a different profile from Total RNA.

Figure S1: NUN preparation yields nascent, unadenylated RNA with a different profile from Total RNA. Summary of Supplemental Information Figure S1: NUN preparation yields nascent, unadenylated RNA with a different profile from Total RNA. Figure S2: rrna removal procedure is effective for clearing out

More information

Diagenode ideal ChIP-seq kit for Histones for 100 reactions (C )

Diagenode ideal ChIP-seq kit for Histones for 100 reactions (C ) Meyer 3310 Department of Animal Science, UC Davis Standard Protocol Title: chip-seq Protocol for animal tissues Doc. No HZ-SP-07 PI Dr. Zhou Date June 5 2018 Preparation: Diagenode ideal ChIP-seq kit for

More information

Introduction to RNA-Seq. David Wood Winter School in Mathematics and Computational Biology July 1, 2013

Introduction to RNA-Seq. David Wood Winter School in Mathematics and Computational Biology July 1, 2013 Introduction to RNA-Seq David Wood Winter School in Mathematics and Computational Biology July 1, 2013 Abundance RNA is... Diverse Dynamic Central DNA rrna Epigenetics trna RNA mrna Time Protein Abundance

More information

Multi-omics in biology: integration of omics techniques

Multi-omics in biology: integration of omics techniques 31/07/17 Летняя школа по биоинформатике 2017 Multi-omics in biology: integration of omics techniques Konstantin Okonechnikov Division of Pediatric Neurooncology German Cancer Research Center (DKFZ) 2 Short

More information

RNA-Seq Workshop AChemS Sunil K Sukumaran Monell Chemical Senses Center Philadelphia

RNA-Seq Workshop AChemS Sunil K Sukumaran Monell Chemical Senses Center Philadelphia RNA-Seq Workshop AChemS 2017 Sunil K Sukumaran Monell Chemical Senses Center Philadelphia Benefits & downsides of RNA-Seq Benefits: High resolution, sensitivity and large dynamic range Independent of prior

More information

High-throughput Transcriptome analysis

High-throughput Transcriptome analysis High-throughput Transcriptome analysis CAGE and beyond Dr. Rimantas Kodzius, Singapore, A*STAR, IMCB rkodzius@imcb.a-star.edu.sg for KAUST 2008 Agenda 1. Current research - PhD work on discovery of new

More information

NGS Data Analysis and Galaxy

NGS Data Analysis and Galaxy NGS Data Analysis and Galaxy University of Pretoria Pretoria, South Africa 14-18 October 2013 Dave Clements, Emory University http://galaxyproject.org/ Fourie Joubert, Burger van Jaarsveld Bioinformatics

More information

Sequence Analysis. II: Sequence Patterns and Matrices. George Bell, Ph.D. WIBR Bioinformatics and Research Computing

Sequence Analysis. II: Sequence Patterns and Matrices. George Bell, Ph.D. WIBR Bioinformatics and Research Computing Sequence Analysis II: Sequence Patterns and Matrices George Bell, Ph.D. WIBR Bioinformatics and Research Computing Sequence Patterns and Matrices Multiple sequence alignments Sequence patterns Sequence

More information

Supplementary Figure 2

Supplementary Figure 2 Supplementary Figure 2 a SBS-C1 SBS-C2 SBS-C3 SBS-C4 SBS-C5 SBS-C6 SBS-C7 SBS-C8 SBS-C9 LCR CNS-1 CNS-2 Il5 Rad50 Il13 Il4 Kif3a Sept8 0 50 100 150 200kb Sau3AI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

More information

Finding Genes with Genomics Technologies

Finding Genes with Genomics Technologies PLNT2530 Plant Biotechnology (2018) Unit 7 Finding Genes with Genomics Technologies Unless otherwise cited or referenced, all content of this presenataion is licensed under the Creative Commons License

More information