Bioinformatics of Transcriptional Regulation

Size: px
Start display at page:

Download "Bioinformatics of Transcriptional Regulation"

Transcription

1 Bioinformatics of Transcriptional Regulation Carl Herrmann IPMB & DKFZ

2 Wechselwirkung von Maßnahmen und Auswirkungen Einflussmöglichkeiten in einem Dialog

3 From genes to active compounds transcription factor A transcription factor B cellular output target gene cis-regulatory module erna lincrna (RIP-seq) ncrna chromatin structure mirna mrna PMID

4 Program of these lectures Introduction ; representation of TFBS specificities ; experimental approaches ; clustering motifs Predicting TFBS in sequences using matrices (pattern matching) ; using additional information to improve TFBS predictions Motif discovery in sequences (word counting, EM,...) ; including phylogenetic information Predicting cis-regulatory modules (supervised and unsupervised) Applications to ChIP datasets Analysis of RNA-seq data : statistical approaches, measuring differential expression

5 First example of a regulatory system glucose is the prefered source of carbon for E. coli lac operon needs to be turned on if ONLY lactose available 2 mechanisms [Jacob & Monod, J.Mol.Bio. (1961)] camp favors binding of RNAP ; [camp] inversely related to [glucose] repressor protein (lac I gene) : constitutively active ; cannot bind the DNA element in presence of lactose

6 Organismal complexity [D.Potier, PhD thesis, 2011]

7 «Junk DNA?»

8 Organismal complexity ~ regulatory complexity [Ahnert, Fink, Zinovyev, 2008] Proportion of non-coding DNA correlates with organismal complexity Proportion of transcription factors correlates with organismal complexity

9 Transcriptional regulation in «higher» eukaryotes 2. Chromatin structure epigenetic factors chromatin wrapped around nucleosomes 3. 3D chromatin conformation 1. Binding of transcription factors 4. Readout : gene expression [ Wasserman & Sandelin, Nat.Rev.Gen (2004) ]

10 What experimental data? Genetic factors (epigenetic) chromatin structure: ChIP-seq post-translational modifications of histons DNA methylation assays DNA methylation DNAse I hypersensitive regions, FAIRE-seq open chromatin regions Chromatin 3D conformation ChIP-seq, ChIP-exo binding sites for transcription factors 3C/4C/Hi-C interaction points Readout : gene expression microarray : cdna, oligoarrays RNA sequencing (RNA-seq)

11 Chromatin Immunoprecipitation (ChIP) Chromatin immunoprecipitation (ChIP) yields DNA fragments, that are bound by the protein of interest. Identification of the fragments : hybridisation on microarrays (mostly tilling arrays = ChIP-chip) : genome-wide PCR/qPCR targeted expriment Important aspect sequencing (ChIP-seq) genome-wide Quality/Specificity of the antibody? DNA fragment (~ bp) binding site (~10 bp)?

12 ChIP-sequencing [Wilbanks & Faccioti PLoS One (2010)] Perfect world Real life Nkx2.5 ChIP-seq in mouse cell lines (GSE21529)

13 Experimental identification of binding sites ChIP-exo [Rhee & Pugh, Cell 2011] ChIP fragments are digested with exo-nuclease much higher resolution ("single-base") than ChIP-chip/ChIP-seq

14 Histone modifications histones are subject to post-translational modifications at their N-terminal tail Lysine methylation Lysine/arginine acetylation Serine phosphorylation ubiquitylation they modify the physical properties of the DNA-nucleosome interactions

15 Chromatin binding proteins Histone modifying enzymes [Wikipedia]

16 Histone modification histone modifications are a good proxy of gene expression and presence of regulatory elements [Barth et al. Trends in Biochemical Sciences, 2010]

17 Example 3 Datasets EZH2 Methyltransferase H3K27me3 H3K27me3 HNF4A transcription factor Distal binding site (away from gene) 2 cell lines (ENCODE) Strong correlation between enzyme binding and corresponding histone modification

18 Long range chromatin interactions Chromosome conformation capture (3C) allows to verify physical interaction of 2 loci («one-to-one») Circularized 3C (4C) allows to identify all interaction points of a given locus («one-to-all») [Wikipedia]

19 Long range chromatin interactions Yet another C : Hi-C («all-to-all») [E Lieberman-Aiden et al. Science 2009] Hi-C can determine the global structure of the DNA molecule (low resolution ~ 1 Mb)

20 Long range chromatin interactions X-ray diffraction patterns (R. Franklin)

21 Long range chromatin interactions Chromatin interaction analysis by paired-end tag sequencing (ChIA-pet) : identify interactions mediated through a particular protein of interest (polymerase, transcription factor, CTCF,...) [MJ Fullwood et al. Nature 462, (2009)]

22 Long range chromatin interactions ChIA-pet shows numerous enhancer-promoter interactions but also many promoter-promoter interactions Hypothesis : Promoters kann act in trans and be used as enhancers for distal genes [Li G et al. Cell (2012)]

23 Do we still understand anything? promoters can act as enhancers enhancers can act as promoters coding exons can serve as enhancers enhancers are transcribed as lincrna

24 transcription factor promoter transcript

25 bi-directionnally transcribed promoter long-range enhancer acting as promoter coding exon enhancer enhancer RNA (erna) polycomb associated gene silencer

26 Operon : born-again? "Intriguingly, the multigene complexes illustrated in this study are, in principle, akin to the bacterial operon as a mechanism for coordinated transcriptional regulation of related genes, suggesting the possibility of a chromatin-based operon mechanism (chro-operon or chroperon) for spatiotemporal regulation of gene transcription in eukaryotic nuclei."

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

NGS Approaches to Epigenomics

NGS Approaches to Epigenomics I519 Introduction to Bioinformatics, 2013 NGS Approaches to Epigenomics Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Background: chromatin structure & DNA methylation Epigenomic

More information

CHAPTER 13 LECTURE SLIDES

CHAPTER 13 LECTURE SLIDES CHAPTER 13 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

Measuring Protein-DNA interactions

Measuring Protein-DNA interactions Measuring Protein-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Transcription Factors are genetic switches 3 Regulation of Gene Expression by Transcription

More information

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

GENE REGULATION. Gene regulation occurs at the level of transcription or production of mrna

GENE REGULATION. Gene regulation occurs at the level of transcription or production of mrna GENE REGULATION Virtually every cell in your body contains a complete set of genes But they are not all turned on in every tissue Each cell in your body expresses only a small subset of genes at any time

More information

2/10/17. Contents. Applications of HMMs in Epigenomics

2/10/17. Contents. Applications of HMMs in Epigenomics 2/10/17 I529: Machine Learning in Bioinformatics (Spring 2017) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Background:

More information

Gene Regulation 10/19/05

Gene Regulation 10/19/05 10/19/05 Gene Regulation (formerly Gene Prediction - 2) Gene Prediction & Regulation Mon - Overview & Gene structure review: Eukaryotes vs prokaryotes Wed - Regulatory regions: Promoters & enhancers -

More information

Chapter 18. Regulation of Gene Expression

Chapter 18. Regulation of Gene Expression Chapter 18 Regulation of Gene Expression 2007-2008 Control of Prokaryotic (Bacterial) Genes 2007- Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

BIOLOGY. Chapter 16 GenesExpression

BIOLOGY. Chapter 16 GenesExpression BIOLOGY Chapter 16 GenesExpression CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Gene Expression 2014 Pearson Education, Inc. Figure 16.1 Differential Gene Expression results

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol claus.schwechheimer@wzw.tum.de

More information

Chapter 13 - Regulation of Gene Expression

Chapter 13 - Regulation of Gene Expression Chapter 13 - Regulation of Gene Expression 1. Describe the typical components of an operon in an E. coli (prokaryotic) cell. (p. 238-239) a. regulator gene - b. promoter - c. operator - d. structural gene

More information

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

Einführung in die Genetik

Einführung in die Genetik Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de schneitz@wzw.tum.de Twitter: @PlantDevTUM, #genetiktum FB: Plant Development TUM Prof. Dr. Claus Schwechheimer

More information

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes Chapter 17 Lecture Concepts of Genetics Tenth Edition Regulation of Gene Expression in Eukaryotes Chapter Contents 17.1 Eukaryotic Gene Regulation Can Occur at Any of the Steps Leading from DNA to Protein

More information

Regulation of Gene Expression

Regulation of Gene Expression CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 15 Regulation of Gene Expression Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Control of Eukaryotic Gene Expression (Learning Objectives)

Control of Eukaryotic Gene Expression (Learning Objectives) Control of Eukaryotic Gene Expression (Learning Objectives) 1. Compare and contrast chromatin and chromosome: composition, proteins involved and level of packing. Explain the structure and function of

More information

Chapter 11: Regulation of Gene Expression

Chapter 11: Regulation of Gene Expression Chapter Review 1. It has long been known that there is probably a genetic link for alcoholism. Researchers studying rats have begun to elucidate this link. Briefly describe the genetic mechanism found

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression 1 How Gene Regulation Works 2 Control of Gene Expression Controlling gene expression is often accomplished by controlling transcription initiation Regulatory proteins bind to

More information

What we ll do today. Types of stem cells. Do engineered ips and ES cells have. What genes are special in stem cells?

What we ll do today. Types of stem cells. Do engineered ips and ES cells have. What genes are special in stem cells? Do engineered ips and ES cells have similar molecular signatures? What we ll do today Research questions in stem cell biology Comparing expression and epigenetics in stem cells asuring gene expression

More information

Do engineered ips and ES cells have similar molecular signatures?

Do engineered ips and ES cells have similar molecular signatures? Do engineered ips and ES cells have similar molecular signatures? Comparing expression and epigenetics in stem cells George Bell, Ph.D. Bioinformatics and Research Computing 2012 Spring Lecture Series

More information

Modelling and Analysis in Bioinformatics: Gene regulation and experimental functional genomics

Modelling and Analysis in Bioinformatics: Gene regulation and experimental functional genomics Modelling and Analysis in Bioinformatics: Gene regulation and experimental functional genomics Antti Honkela 9 November 2015 Local overview of the course Past two weeks: abstract networks Upcoming two

More information

REGULATION OF PROTEIN SYNTHESIS. II. Eukaryotes

REGULATION OF PROTEIN SYNTHESIS. II. Eukaryotes REGULATION OF PROTEIN SYNTHESIS II. Eukaryotes Complexities of eukaryotic gene expression! Several steps needed for synthesis of mrna! Separation in space of transcription and translation! Compartmentation

More information

Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017

Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017 Functional Genomics Overview RORY STARK PRINCIPAL BIOINFORMATICS ANALYST CRUK CAMBRIDGE INSTITUTE 18 SEPTEMBER 2017 Agenda What is Functional Genomics? RNA Transcription/Gene Expression Measuring Gene

More information

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION.

CELL BIOLOGY - CLUTCH CH. 7 - GENE EXPRESSION. !! www.clutchprep.com CONCEPT: CONTROL OF GENE EXPRESSION BASICS Gene expression is the process through which cells selectively to express some genes and not others Every cell in an organism is a clone

More information

Chapter 15 Gene Regulation in Prokaryotes

Chapter 15 Gene Regulation in Prokaryotes Chapter 15 Gene Regulation in Prokaryotes 17-1 Sections to study 15.1 The elements of prokaryotic gene expression 15.2 Regulation of transcription initiation via DNA-binding proteins 15.3 RNA-mediated

More information

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology Unit 7 Genetic Regulation, Development, and Biotechnology The BIG Questions How are genes turned on & off in eukaryotes and prokaryotes? How do cells with the same genes differentiate to perform completely

More information

(c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/ :57 PM

(c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/ :57 PM C2006/F2402 '14 OUTLINE OF LECTURE #11 (c) 2014 Dr. Alice Heicklen & Dr. Deborah Mowshowitz, Columbia University, New York, NY. Last update 02/26/2014 12:57 PM Handouts: 10C -- Typical Eukaryotic Gene,

More information

Wednesday, November 22, 17. Exons and Introns

Wednesday, November 22, 17. Exons and Introns Exons and Introns Introns and Exons Exons: coded regions of DNA that get transcribed and translated into proteins make up 5% of the genome Introns and Exons Introns: non-coded regions of DNA Must be removed

More information

Section C: The Control of Gene Expression

Section C: The Control of Gene Expression Section C: The Control of Gene Expression 1. Each cell of a multicellular eukaryote expresses only a small fraction of its genes 2. The control of gene expression can occur at any step in the pathway from

More information

Computational Biology I LSM5191 (2003/4)

Computational Biology I LSM5191 (2003/4) Computational Biology I LSM5191 (2003/4) Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression I Flow of information: DNA to polypeptide DNA Start Exon1 Intron Exon2 Termination

More information

Lecture 5: Regulation

Lecture 5: Regulation Machine Learning in Computational Biology CSC 2431 Lecture 5: Regulation Instructor: Anna Goldenberg Central Dogma of Biology Transcription DNA RNA protein Process of producing RNA from DNA Constitutive

More information

DNA Transcription. Dr Aliwaini

DNA Transcription. Dr Aliwaini DNA Transcription 1 DNA Transcription-Introduction The synthesis of an RNA molecule from DNA is called Transcription. All eukaryotic cells have five major classes of RNA: ribosomal RNA (rrna), messenger

More information

Genetics Biology 331 Exam 3B Spring 2015

Genetics Biology 331 Exam 3B Spring 2015 Genetics Biology 331 Exam 3B Spring 2015 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) DNA methylation may be a significant mode of genetic regulation

More information

GENE REGULATION IN PROKARYOTES

GENE REGULATION IN PROKARYOTES GENE REGULATION IN PROKARYOTES Prepared by Brenda Leady, University of Toledo Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gene regulation refers to

More information

Control of Eukaryotic Genes

Control of Eukaryotic Genes Control of Eukaryotic Genes 2007-2008 The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression Different cell types of a organism contain the same DNA but the DNA is expressed differently. External signals can cause a cell to change the expression of its genes. DNA elements

More information

Gene Expression. Lesson 6

Gene Expression. Lesson 6 Gene Expression Lesson 6 Regulation of gene expression Gene regulation turning on or off specific genes depending on the requirements of an organism Housekeeping genes are always switched on (vital life

More information

Year III Pharm.D Dr. V. Chitra

Year III Pharm.D Dr. V. Chitra Year III Pharm.D Dr. V. Chitra 1 Genome entire genetic material of an individual Transcriptome set of transcribed sequences Proteome set of proteins encoded by the genome 2 Only one strand of DNA serves

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Chapter 2. An Introduction to Genes and Genomes

Chapter 2. An Introduction to Genes and Genomes PowerPoint Lectures for Introduction to Biotechnology, Second Edition William J.Thieman and Michael A.Palladino Chapter 2 An Introduction to Genes and Genomes Lectures by Lara Dowland Chapter Contents

More information

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter

Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter Plant Molecular and Cellular Biology Lecture 9: Nuclear Genome Organization: Chromosome Structure, Chromatin, DNA Packaging, Mitosis Gary Peter 9/16/2008 1 Learning Objectives 1. List and explain how DNA

More information

Applications of ChIP. November 05, David Grotsky, PhD Scientific Support Specialist - Epigenetics

Applications of ChIP. November 05, David Grotsky, PhD Scientific Support Specialist - Epigenetics Applications of ChIP November 05, 2014 David Grotsky, PhD Scientific Support Specialist - Epigenetics Overview Introduction to chromatin and ChIP The histone code hypothesis What we learn from ChIP-on-chip

More information

Chapter 14 Regulation of Transcription

Chapter 14 Regulation of Transcription Chapter 14 Regulation of Transcription Cis-acting sequences Distance-independent cis-acting elements Dissecting regulatory elements Transcription factors Overview transcriptional regulation Transcription

More information

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS

Chapter 19 Genetic Regulation of the Eukaryotic Genome. A. Bergeron AP Biology PCHS Chapter 19 Genetic Regulation of the Eukaryotic Genome A. Bergeron AP Biology PCHS 2 Do Now - Eukaryotic Transcription Regulation The diagram below shows five genes (with their enhancers) from the genome

More information

2/19/13. Contents. Applications of HMMs in Epigenomics

2/19/13. Contents. Applications of HMMs in Epigenomics 2/19/13 I529: Machine Learning in Bioinformatics (Spring 2013) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Background:

More information

Applications of HMMs in Epigenomics

Applications of HMMs in Epigenomics I529: Machine Learning in Bioinformatics (Spring 2013) Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Background:

More information

Bi 8 Lecture 10. Ellen Rothenberg 4 February 2016

Bi 8 Lecture 10. Ellen Rothenberg 4 February 2016 Bi 8 Lecture 10 Bacterial regulation, II Ellen Rothenberg 4 February 2016 Not all bacterial promoters use the same σ factors, and this provides added regulation capability Most sigma factors are related

More information

Synthetic cells: do bacteria need all its genes? No.

Synthetic cells: do bacteria need all its genes? No. NO NEED TO REFER TO THE SLIDES. بسم هللا الرحمن الرحيم Do we need all the non coding regions of the DNA? Two weeks ago, they discovered that the genome of a plant is very small (recall that plant genome

More information

Chapter 18: Regulation of Gene Expression. Gene Regulation. Transcription Factors 3/21/2017

Chapter 18: Regulation of Gene Expression. Gene Regulation. Transcription Factors 3/21/2017 Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression September 28, 2006 Chromatin Structure ~140 bp ~60 bp Transcriptional Regulation: 1. Packing prevents access CH 3 2. Acetylation ( C O )

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis

Gene expression analysis. Biosciences 741: Genomics Fall, 2013 Week 5. Gene expression analysis Gene expression analysis Biosciences 741: Genomics Fall, 2013 Week 5 Gene expression analysis From EST clusters to spotted cdna microarrays Long vs. short oligonucleotide microarrays vs. RT-PCR Methods

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

REGULATION OF GENE EXPRESSION

REGULATION OF GENE EXPRESSION REGULATION OF GENE EXPRESSION Each cell of a living organism contains thousands of genes. But all genes do not function at a time. Genes function according to requirements of the cell. Genes control the

More information

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA

Biotechnology Unit 3: DNA to Proteins. From DNA to RNA From DNA to RNA Biotechnology Unit 3: DNA to Proteins I. After the discovery of the structure of DNA, the major question remaining was how does the stored in the 4 letter code of DNA direct the and of

More information

Differences between prokaryotes & eukaryotes. Gene function

Differences between prokaryotes & eukaryotes. Gene function GENE REGULATION Differences between prokaryotes & eukaryotes Gene function Description of Prokaryotic Chromosome and E.coli Review Differences between Prokaryotic & Eukaryotic Chromosomes Four differences

More information

GENETICS - CLUTCH CH.10 TRANSCRIPTION.

GENETICS - CLUTCH CH.10 TRANSCRIPTION. !! www.clutchprep.com CONCEPT: OVERVIEW OF TRANSCRIPTION Transcription is the process of using DNA as a template to RNA RNA polymerase is the enzyme that transcribes DNA - There are many different types

More information

Gene Regulation Biology

Gene Regulation Biology Gene Regulation Biology Potential and Limitations of Cell Re-programming in Cancer Research Eric Blanc KCL April 13, 2010 Eric Blanc (KCL) Gene Regulation Biology April 13, 2010 1 / 21 Outline 1 The Central

More information

DNA:CHROMATIN INTERACTIONS

DNA:CHROMATIN INTERACTIONS DNA:CHROMATIN INTERACTIONS Exploring transcription factor binding and the epigenomic landscape Chris Seward Introductions Cell and Developmental Biology PhD Candidate in Dr. Lisa Stubbs Laboratory Currently

More information

Next-generation sequencing technologies

Next-generation sequencing technologies Next-generation sequencing technologies Illumina: Summary https://www.youtube.com/watch?v=fcd6b5hraz8 Illumina platforms: Benchtop sequencers https://www.illumina.com/systems/sequencing-platforms.html

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Eukaryotic Genes 2007-2008 The BIG Questions n How are genes turned on & off in eukaryotes? n How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites

17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 17.5 Eukaryotic Transcription Initiation Is Regulated by Transcription Factors That Bind to Cis-Acting Sites 1 Section 17.5 Transcription regulatory proteins, transcription factors, target cis-acting sites

More information

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Genes - DNA - Chromosome Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology DNA Cellular DNA contains genes and intragenic regions both of which may

More information

WORKSHOP. Transcriptional circuitry and the regulatory conformation of the genome. Ofir Hakim Faculty of Life Sciences

WORKSHOP. Transcriptional circuitry and the regulatory conformation of the genome. Ofir Hakim Faculty of Life Sciences WORKSHOP Transcriptional circuitry and the regulatory conformation of the genome Ofir Hakim Faculty of Life Sciences Chromosome conformation capture (3C) Most GR Binding Sites Are Distant From Regulated

More information

REGULATION OF GENE EXPRESSION

REGULATION OF GENE EXPRESSION REGULATION OF GENE EXPRESSION Each cell of a living organism contains thousands of genes. But all genes do not function at a time. Genes function according to requirements of the cell. Genes control the

More information

Announcement Structure Analysis

Announcement Structure Analysis Announcement Structure Analysis BSC 4439/BSC 5436: Biomedical Informatics: Structure Analysis Spring 2019, CB117 Monday and Wednesday 12:00 1:15pm Office hour: Monday and Wednesday 1:15 2pm Topics include

More information

Bi8 Lecture 19. Review and Practice Questions March 8th 2016

Bi8 Lecture 19. Review and Practice Questions March 8th 2016 Bi8 Lecture 19 Review and Practice Questions March 8th 2016 Common Misconceptions Where Words Matter Common Misconceptions DNA vs RNA vs Protein Su(H) vs Su(H) Replication Transcription Transcribed vs

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Chromatin and Transcription

Chromatin and Transcription Chromatin and Transcription Chromatin Structure Chromatin Represses Transcription Nucleosome Positioning Histone Acetylation Chromatin Remodeling Histone Methylation CHIP Analysis Chromatin and Elongation

More information

Lecture 9 Controlling gene expression

Lecture 9 Controlling gene expression Lecture 9 Controlling gene expression BIOLOGY Campbell, Reece and Mitchell Chapter 18 334- (352-356) Every cell in your body contains the same number of genes approximately 35, 000 DNA is wound around

More information

EUKARYOTIC GENE CONTROL

EUKARYOTIC GENE CONTROL EUKARYOTIC GENE CONTROL THE BIG QUESTIONS How are genes turned on and off? How do cells with the same DNA/ genes differentiate to perform completely different and specialized functions? GENE EXPRESSION

More information

Value Correct Answer Feedback. Student Response. A. Dicer enzyme. complex. C. the Dicer-RISC complex D. none of the above

Value Correct Answer Feedback. Student Response. A. Dicer enzyme. complex. C. the Dicer-RISC complex D. none of the above 1 RNA mediated interference is a post-transcriptional gene silencing mechanism Which component of the RNAi pathway have been implicated in cleavage of the target mrna? A Dicer enzyme B the RISC-siRNA complex

More information

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated

More information

Applied Bioinformatics - Lecture 16: Transcriptomics

Applied Bioinformatics - Lecture 16: Transcriptomics Applied Bioinformatics - Lecture 16: Transcriptomics David Hendrix Oregon State University Feb 15th 2016 Transcriptomics High-throughput Sequencing (deep sequencing) High-throughput sequencing (also

More information

CHAPTERS , 17: Eukaryotic Genetics

CHAPTERS , 17: Eukaryotic Genetics CHAPTERS 14.1 14.6, 17: Eukaryotic Genetics 1. Review the levels of DNA packing within the eukaryote nucleus. Label each level. (A similar diagram is on pg 188 of your textbook.) 2. How do the coding regions

More information

Genome 373: High- Throughput DNA Sequencing. Doug Fowler

Genome 373: High- Throughput DNA Sequencing. Doug Fowler Genome 373: High- Throughput DNA Sequencing Doug Fowler Tasks give ML unity We learned about three tasks that are commonly encountered in ML Models/Algorithms Give ML Diversity Classification Regression

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: _ Date: _ CH 12 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many codons are needed to specify three amino acids? a. 6 c. 3 b. 12

More information

Gene Expression and Regulation - 1

Gene Expression and Regulation - 1 Gene Expression and Regulation - 1 We have been discussing the molecular structure of DNA and its function in DNA replication and in transcription. Earlier we discussed how genes interact in transmission

More information

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs

Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs Chapter 8 DNA Recognition in Prokaryotes by Helix-Turn-Helix Motifs 1. Helix-turn-helix proteins 2. Zinc finger proteins 3. Leucine zipper proteins 4. Beta-scaffold factors 5. Others λ-repressor AND CRO

More information

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Reverse transcriptase Allostery: cdna library Transformation Part II Short Answer 1. Describe the reasons for

More information

ChIP-seq analysis 2/28/2018

ChIP-seq analysis 2/28/2018 ChIP-seq analysis 2/28/2018 Acknowledgements Much of the content of this lecture is from: Furey (2012) ChIP-seq and beyond Park (2009) ChIP-seq advantages + challenges Landt et al. (2012) ChIP-seq guidelines

More information

Epigenetics. Medical studies in English, Lecture # 12,

Epigenetics. Medical studies in English, Lecture # 12, Epigenetics Medical studies in English, 2018. Lecture # 12, Epigenetics Regulation of gene activity in eukaryotes Correlation of chromatin structure with transcription stably heritable phenotype resulting

More information

Motivation From Protein to Gene

Motivation From Protein to Gene MOLECULAR BIOLOGY 2003-4 Topic B Recombinant DNA -principles and tools Construct a library - what for, how Major techniques +principles Bioinformatics - in brief Chapter 7 (MCB) 1 Motivation From Protein

More information

7.1 The lac Operon 7-1

7.1 The lac Operon 7-1 7.1 The lac Operon The lac operon was the first operon discovered It contains 3 genes coding for E. coli proteins that permit the bacteria to use the sugar lactose Galactoside permease (lacy) which transports

More information

STSs and ESTs. Sequence-Tagged Site: short, unique sequence Expressed Sequence Tag: short, unique sequence from a coding region

STSs and ESTs. Sequence-Tagged Site: short, unique sequence Expressed Sequence Tag: short, unique sequence from a coding region STSs and ESTs Sequence-Tagged Site: short, unique sequence Expressed Sequence Tag: short, unique sequence from a coding region 1991: 609 ESTs [Adams et al.] June 2000: 4.6 million in dbest Genome sequencing

More information

32 Gene regulation in Eukaryotes Lecture Outline 11/28/05. Gene Regulation in Prokaryotes and Eukarykotes

32 Gene regulation in Eukaryotes Lecture Outline 11/28/05. Gene Regulation in Prokaryotes and Eukarykotes 3 Gene regulation in Eukaryotes Lecture Outline /8/05 Gene regulation in eukaryotes Chromatin remodeling More kinds of control elements Promoters, Enhancers, and Silencers Combinatorial control Cell-specific

More information

Chapter 18: Regulation of Gene Expression

Chapter 18: Regulation of Gene Expression Chapter 18: Regulation of Gene Expression Regulation of Metabolism Shuts off transcription Types of Feedback Negative feedback = body s response is to reduce the stimulus Ex: regulation of body temp, blood

More information

Name Class Date. Practice Test

Name Class Date. Practice Test Name Class Date 12 DNA Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. What do bacteriophages infect? a. mice. c. viruses.

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2013-2014 MOLECULAR BIOLOGY BIO-2B02 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question

More information

Regulation of Gene Expression

Regulation of Gene Expression Slide 1 Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes

Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Expressed genes profiling (Microarrays) Overview Of Gene Expression Control Profiling Of Expressed Genes Genes can be regulated at many levels Usually, gene regulation, are referring to transcriptional

More information

Bi 1x Spring 2016: LacI Titration

Bi 1x Spring 2016: LacI Titration Bi 1x Spring 2016: LacI Titration 1 Overview In this experiment, you will measure the effect of various mutated LacI repressor ribosome binding sites in an E. coli cell by measuring the expression of a

More information

Chapter 6: Transcription and RNA Processing in Eukaryotes

Chapter 6: Transcription and RNA Processing in Eukaryotes 3. Basic Genetics Plant Molecular Biology Chapter 6: Transcription and RNA Processing in Eukaryotes - Genetic organization in eukaryote - Transcription in eukaryote - - RNA processing in eukaryote - Translation

More information

Transcriptional Regulation

Transcriptional Regulation Transcriptional Regulation Gene expression responds to environmental conditions. Some regulatory proteins are present at only 5 10 copies, whereas under certain conditions, the expression of these proteins

More information

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write.

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write. Name KEY Section Biology 201 (Genetics) Exam #3 120 points 20 November 2006 Read the question carefully before answering. Think before you write. You will have up to 50 minutes to take this exam. After

More information

Chapter 13. The Nucleus. The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a "true nucleus".

Chapter 13. The Nucleus. The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a true nucleus. Chapter 13 The Nucleus The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a "true nucleus". Fig.13.1. The EM of the Nucleus of a Eukaryotic Cell 13.1. The Nuclear Envelope

More information

Prokaryotic Transcription

Prokaryotic Transcription Prokaryotic Transcription Transcription Basics DNA is the genetic material Nucleic acid Capable of self-replication and synthesis of RNA RNA is the middle man Nucleic acid Structure and base sequence are

More information