Cell cycle. Chen Li. Department of cellular and genetic medicine

Size: px
Start display at page:

Download "Cell cycle. Chen Li. Department of cellular and genetic medicine"

Transcription

1 Cell cycle Chen Li Department of cellular and genetic medicine

2 Outline A. Historical background B. Phases of cell cycle C. DNA replication D. Telomere & telomerase E. DNA repair F. Mitosis & Meiosis G. Cyclins and CDKs H. Cell-cycle checkpoints

3 A. Historical background

4 Discovery of the cell cycle Alma Howard & Stephen Pelc, 1953 Leland H. Hartwell, Paul M. Nurse & R. Timothy Hunt, 2001, Noble Prize

5 Definition of the cell cycle Cell cycle from the end of division (parental cell) to the next end of division (daughter cells).

6 B. Phases of cell cycle C. DNA replication D. Telomere & telomerase E. DNA repair F. Mitosis & Meiosis

7 Interphase Interphase is the period between each mitotic cell division. 95% of cell cycle is interphase. Cell metabolism, DNA replication, RNA transcription, protein translation take place in interphase.

8 Interphase Gap 1 & Gap 2 phase (G1 & G2), cells grow & metabolize, RNA & proteins synthesis. Synthesis phase (S), DNA replication & repair.

9 Cell prepares to enter S phase. Time courses are cell diverse. Different cell types: Cycling cell Quiescent cell (G0 cell) Terminal differentiation cells G1 Phase

10 Restriction point Restriction point (eukaryote cells), Check point (yeast)

11 S Phase DNA replication Centrosome replication Histone synthesis Nucleosome package

12 C. DNA replication

13 DNA replication DNA replication takes place in S (synthesis) phase of interphase.

14 Start of DNA replication Origin Replication fork Replication bubble Start in bi-direction Start at different time

15 DNA polymerase Type DNA Polymerase α DNA Polymerase β DNA Polymerase γ DNA Polymerase δ DNA Polymerase ε Location nucleus nucleus mitochondria nucleus nucleus Function 5 to 3 polymerase 3 to 5 exon exonuclease 5 to 3 exon exonuclease replication, bind primase (synthesis RNA pimer) DNA repair replication & maintaining mitochondria genome elongation Fill gap, recombination, repair

16 RNA primer, primase, primosome Replisome 5 to 3 replication Semi-conservative replication Priming & Replisome

17 Extend of DNA strand

18 Extend of DNA strand Semi-discontinuous extension leading strand & lagging strand Okazaki fragment

19 Stop of DNA replication Two opposite direction replication forks meet or the replication fork meets a stop DNA replication sequence. Nucleosome of parent chromatin open one by one. Parent histone move to daughter leading strand. Lagging strand new histone is synthesis. Histone octamer don t separate, total conservative replication

20 D. Telomere & telomerase

21 Telomere & telomerase Elizabeth H. Blackburn Carol W. Greider Jack W. Szostak 2009

22 Clinical implications Aging: organ regeneration therapies, progeria, extend lifespan Cancer Heart disease, diabetes, psychological stress

23 Replication of telomeres

24 Special features of replication Bi-directional initiation Semi-conservative replication Semi-discontinuous extension

25 E. DNA repair

26 DNA repair Photo reactivation Excision repair Recombination repair Induction repair Dark repair

27 Clinical implications Skin cancer: excision repair deficient Breast cancer : recombination repair deficient, BRCA-2

28 G2 Phase DNA copies duplicated from 2n to 4n. Cell growth continues. Enzymes and other proteins are synthesized for cell division

29 F. Mitosis & Meiosis

30 M Phase Cytoplasm division (cytokinesis) Nuclear division (karyokinesis) Identical genotypes but different phenotypes in daughter cells, eg: Stem cells

31 Chromatin coils. Centromere & kinetochore appears Nucleus disappears. Microtubule forms Centrosome migrate. Prophase is the longest phase of mitosis. Prophase

32 Prometaphase Nuclear membrane and lamina break down X shape chromosome forms Microtubule capture chromosome Kinetochore microtubule & polar microtubule form Spindle forms

33 Breakdown and re-formation of Nuclear lamina

34 Metaphase Chromatids attach to spindle fibers. Chromatids alignment to equatorial plate of spindle.

35 Anaphase Centromere splits. Chromatids separate to chromosomes.

36 Telophase Nuclear membrane and lamina reform. Chromosomes uncoil. Kinetochore microtubule disappear, Polar microtubule elongate

37 Cytokinesis Equatorial plate constricts to form furrow. Actin & myosin filaments forms contractile ring.

38 Meiosis Meiosis is a special form of mitosis in eukaryotes cells. One DNA replication, twice division. Special features: homologue chromosomes pair, synapsis, recombination. Evolutional role: Reduce DNA from 4N to 1N provide genetic stability, recombination provide genetic diversity.

39 Comparison between mitosis & Meiosis

40 Stages of meiosis Premeiotic interphase: G1, S, G2 Meiosis I: prophase, prometaphase, metaphase, anaphase, telophase, cytokinesis Meiosis I Prophase: leptotene phase, zygotene phase, pachytene phase, diplotene phase, diakinesis phase Interkinesis Meiosis II

41 Key stages of meiosis

42 Meiosis I Prophase Leptotene phase: chromatins condense (two chromatids stick together) Zygotene phase: homologous chromosomes pair, bivalent, synapsis, synaptonemal complex, (DNA replicate) Pachytene phase: recombination, histone synthesis Diplotene phase: homologous chromosome separate, chiasma. Diakinesis phase: chiasma terminalization

43 Other stages in meiosis I Meiosis I metaphase: tetrad, 4 kinetochore Meiosis I anaphase: random 8.4 million combination + recombination + random mating of sperm & oocyte = unique gamete Interkinesis / no interkinesis.

44 Meiosis II Meiosis II: spermatogenesis, oogenesis Spermatogenesis: spermatoponium, primary & secondary spermatocyte, spermatid, sperm Oogenesis: oogonium, primary & secondary oocyte, meiotic arrest at prophase I, polar body

45 Oogenesis & spermatogenesis Overview of mitosis & meiosis

46 G. Cyclins and CDKs

47 Cell cycle regulation discovery Hartwell, 1960s Identified CDC (cell division cycle ) genes. Identified Cdc28, codes p34/cdc28 protein, start gene, G1 S Identified checkpoints

48 Cell cycle regulation discovery Nurse, 1970s Identified cdc2, G2 M & G1 S. Isolated the first cdc gene, cdc2, codes protein p34/cdc2 Isolated the first human homolog gene, coding CDK1 protein CDK activation is dependent on phosphorylation.

49 Cell cycle regulation discovery Hunt, 1980s Identified cyclin genes The concentration of cyclins rise and fall in a predictable pattern as the cell cycles progress.

50 Mitosis promoter factor (MPF) Johnson & Rao, Masui & Markert, 1970s MPF = p32 + p45 MPF = Cdc2 + cyclin B

51 Cyclin Mammalian cyclin A, B, C, D, E, F, G, H Cyclins are synthesized at specific stages of the cell cycle.

52 CDK CDK (cyclin-dependent kinases, human homolog protein), CDC (cell division cycle gene, yeast genes) Mammalian CDK1, 2, 3, 4, 5, 6, 7, 8 CDK is serine / threonine kinase. CDKs are constitutively expressed.

53 Cyclin and CDK Cyclin is the regulatory subunit of the cyclin / CDK complex, CDK is the catalytic subunit They form heterodimer complex through Cyclin box and CDK kinase domain.

54 CDK activity is dependent upon Cyclin The cyclins accumulate throughout interphase and are rapidly degraded toward the end of mitosis. CDK Kinase activity reaches maximum when bind to cyclin.

55 Cyclin and CDK

56 Different Cyclin / CDK complex Vertebrate Yeast Complex Cyclin CDK Cyclin CDK G 1 -CDK Cyclin D CDK4 6 Cln 3 CDK1(CDC28) G 1 /S-CDK Cyclin E CDK2 Cln 1 2 CDK1(CDC28) S-CDK Cyclin A CDK2 Clb 5 6 CDK1(CDC28) M-CDK Cyclin B CDK1(CDC2) Clb 1-4 CDK1(CDC28)

57 G1->S Go through G1 restriction point is controlled by complexes of Cdk4 and Cdk6 with cyclin D. Cdk2/cyclin E complexes function in late G1 and are required for the G1 to S transition.

58 G2->M Cdk2/cyclin A complexes are then required for progression through S phase. CDK1/cyclin B complexes drive the G2 to M transition.

59 CDK activation Step 1. CDK1 forms complexes with cyclin B during S and G2 phases, no kinase activity.

60 CDK activation Step 2. Weel/mik1 kinase, CDK activting kinase phosphorylate CDK1 on threonine-161, as well as on tyrosine-15 (and threonine-14 in vertebrate cells), no kinase activity.

61 CDK activation Step 3. Cdc25c dephosphorylation of Thr14 and Tyr15 activates MPF at the G2 to M transition.

62 Regulation of MPF CDK activation

63 CDK activator Weel1 helps the phosphorylation of Thr14 and Tyr15 while Cdc25 phosphatase helps the dephosphorylation

64 CDK inhibitors Cyclin-dependent kinase inhibitors, CDKI The CIP/KIP family includes the genes p21, p27 and p57, inhibit CDK2, CDK3, CDK4, CDK6 The INK4a family includes p16, p15, p18, p19, inhibit CDK4, CDK6

65 Targets of CDK Activate other protein kinases. Phosphorylate structural proteins.

66 H. Cell-cycle checkpoints

67 Cell-cycle checkpoints G1-S checkpoint: Restriction point / start S checkpoint G2-M checkpoint M checkpoint: Spindle checkpoint

68 DNA damage checkpoints Sensors of damage: ATM, ATR Signal transducers: CHEK1, CHEK2 Effectors: p53, cdc25, prb Mediators: BRCA1, Clapin, 53BP1, MDC1

69 ATM & ATR ATM (ataxiatelangiectasa mutated) ATR (ATM and Rad3 related)

70 p53

71 prb Retinoblastoma, two-hit theory of cancer, 1970s

72 Clinical implication Leukemia: ataxia-telangiectasa Cancer

73 Roles of cell cycle regulation Active / inactive proteins in specific phase of cell cycle in an ordered and directional way (positive control) Prevent uncontrolled cell division, block cell cycle at checkpoints in specific phase to detect and repair DNA damage (negative control) Response to the external stimulus or stress (response) Cell cycle regulation

74 Thanks!

Chapter 3. DNA Replication & The Cell Cycle

Chapter 3. DNA Replication & The Cell Cycle Chapter 3 DNA Replication & The Cell Cycle DNA Replication and the Cell Cycle Before cells divide, they must duplicate their DNA // the genetic material DNA is organized into strands called chromosomes

More information

Section 10. Junaid Malek, M.D.

Section 10. Junaid Malek, M.D. Section 10 Junaid Malek, M.D. Cell Division Make sure you understand: How do cells know when to divide? (What drives the cell cycle? Why is it important to regulate this?) How is DNA replication regulated?

More information

Biology Lecture 2 Genes

Biology Lecture 2 Genes Genes Definitions o Gene: DNA that codes for a single polypeptide/mrna/rrna/trna o Euchromatin: region of DNA containing genes being actively transcribed o Heterochromatin: region of DNA containing genes

More information

CELLULAR PROCESSES; REPRODUCTION. Unit 5

CELLULAR PROCESSES; REPRODUCTION. Unit 5 CELLULAR PROCESSES; REPRODUCTION Unit 5 Cell Cycle Chromosomes and their make up Crossover Cytokines Diploid (haploid diploid and karyotypes) Mitosis Meiosis What is Cancer? Somatic Cells THE CELL CYCLE

More information

DNA Replication in Eukaryotes

DNA Replication in Eukaryotes OpenStax-CNX module: m44517 1 DNA Replication in Eukaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

DNA is a functional genetic material as it:

DNA is a functional genetic material as it: DNA DNA is a functional genetic material as it: varies between species and individuals can store information remains constant within a species Replicates undergoes mutations 1 `It has not escaped our notice

More information

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm Fig. 16-7a end Hydrogen bond end 1 nm 3.4 nm 0.34 nm (a) Key features of DNA structure end (b) Partial chemical structure end Fig. 16-8 Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Concept 16.2: Many

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Name Date Class Cell Processes Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a cycle diagram that shows the events

More information

Molecular Biology, Lecture 3 DNA Replication

Molecular Biology, Lecture 3 DNA Replication Molecular Biology, Lecture 3 DNA Replication We will continue talking about DNA replication. We have previously t discussed the structure of DNA. DNA replication is the copying of the whole DNA content

More information

DNA STRUCTURE. Nucleotides: Nitrogenous Bases (Carry the Genetic Code) Expectation Sheet: DNA & Cell Cycle. I can statements: Basic Information:

DNA STRUCTURE. Nucleotides: Nitrogenous Bases (Carry the Genetic Code) Expectation Sheet: DNA & Cell Cycle. I can statements: Basic Information: Expectation Sheet: DNA & Cell Cycle NAME: Test is 11/8/17 I can statements: I can discuss how DNA is found in all organisms and that the structure is common to all living things. I can diagram and label

More information

NUCLEUS. Fig. 2. Various stages in the condensation of chromatin

NUCLEUS. Fig. 2. Various stages in the condensation of chromatin NUCLEUS Animal cells contain DNA in nucleus (contains ~ 98% of cell DNA) and mitochondrion. Both compartments are surrounded by an envelope (double membrane). Nuclear DNA represents some linear molecules

More information

The differences between Eukaryotes and Prokaryotes

The differences between Eukaryotes and Prokaryotes PHAR 2811 Dale s lecture 5 page 1 The differences between Eukaryotes and Prokaryotes Eukaryotic Replication. Replication is intimately linked to cell division in all organisms; both prokaryote and eukaryote.

More information

1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast

1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast 1. Describe the structure of DNA. Be sure to include what forms the skeleton and how are the strands held together? 2. Compare and contrast chromosomes, chromatids, genes, and alleles. 3. Compare and contrast

More information

6.2 Chromatin is divided into euchromatin and heterochromatin

6.2 Chromatin is divided into euchromatin and heterochromatin 6.2 Chromatin is divided into euchromatin and heterochromatin Individual chromosomes can be seen only during mitosis. During interphase, the general mass of chromatin is in the form of euchromatin. Euchromatin

More information

Genetics and Heredity. Mr. Gagnon

Genetics and Heredity. Mr. Gagnon Genetics and Heredity Mr. Gagnon Key Terms: Traits Heredity Genetics Purebred Genes Alleles Recessive Allele Dominant Allele Hybrids Key Concepts: What factors control the inheritance of traits in organisms?

More information

DNA Replication. The Organization of DNA. Recall:

DNA Replication. The Organization of DNA. Recall: Recall: The Organization of DNA DNA Replication Chromosomal form appears only during mitosis, and is used in karyotypes. folded back upon itself (chromosomes) coiled around itself (chromatin) wrapped around

More information

The information provided below may be useful in answering some questions.

The information provided below may be useful in answering some questions. Molecular Exam 1 More Tutorial at www.dumblittledoctor.com The information provided below may be useful in answering some questions. INFORMATION ON COMPONENTS OF RIBOSOMES I. Prokaryotes (e.g. E. coli)

More information

EUKARYOTIC REGULATION C H A P T E R 1 3

EUKARYOTIC REGULATION C H A P T E R 1 3 EUKARYOTIC REGULATION C H A P T E R 1 3 EUKARYOTIC REGULATION Every cell in an organism contains a complete set of DNA. But it doesn t use all of the DNA it receives Each cell chooses different DNA sequences

More information

Exam III Material Questions. Multiple Choice Choose A, B, C, D on your computer grid sheet and on this exam booklet. (2 pt. ea.)

Exam III Material Questions. Multiple Choice Choose A, B, C, D on your computer grid sheet and on this exam booklet. (2 pt. ea.) Exam III Material Questions Multiple Choice Choose A, B, C, D on your computer grid sheet and on this exam booklet. (2 pt. ea.) Chapter 12 23. Which of the following effects of a low calorie diet (caloric

More information

DNA Replication and Repair

DNA Replication and Repair DNA Replication and Repair http://hyperphysics.phy-astr.gsu.edu/hbase/organic/imgorg/cendog.gif Overview of DNA Replication SWYK CNs 1, 2, 30 Explain how specific base pairing enables existing DNA strands

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses)

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) Consist of chemically linked sequences of nucleotides Nitrogenous base Pentose-

More information

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides.

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides. DNA replication Replication represents the duplication of the genetic information encoded in DNA that is the crucial step in the reproduction of living organisms and the growth of multicellular organisms.

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

Storage and Expression of Genetic Information

Storage and Expression of Genetic Information Storage and Expression of Genetic Information 29. DNA structure, Replication and Repair ->Ch 25. DNA metabolism 30. RNA Structure, Synthesis and Processing ->Ch 26. RNA metabolism 31. Protein Synthesis

More information

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand.

DNA replication: Enzymes link the aligned nucleotides by phosphodiester bonds to form a continuous strand. DNA replication: Copying genetic information for transmission to the next generation Occurs in S phase of cell cycle Process of DNA duplicating itself Begins with the unwinding of the double helix to expose

More information

Chapter 5 DNA and Chromosomes

Chapter 5 DNA and Chromosomes Chapter 5 DNA and Chromosomes DNA as the genetic material Heat-killed bacteria can transform living cells S Smooth R Rough Fred Griffith, 1920 DNA is the genetic material Oswald Avery Colin MacLeod Maclyn

More information

10-2 Cell Division (Pages )

10-2 Cell Division (Pages ) 10-2 Cell Division (Pages 244-245) What do you think would happen if a cell were simply to split into two, without any advance preparation? Would each daughter cell have everything it needed to survive?

More information

DNA Replication II Biochemistry 302. January 25, 2006

DNA Replication II Biochemistry 302. January 25, 2006 DNA Replication II Biochemistry 302 January 25, 2006 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

Gregor Mendel. Austrian Monk Worked with pea plants

Gregor Mendel. Austrian Monk Worked with pea plants Gregor Mendel Austrian Monk Worked with pea plants A. True Breeding Pea Plants Self pollinate and produce new plants genetically identical to themselves Mendel decides to cross pollinate the plants Offspring

More information

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry

Overview: Life s Operating Instructions Concept 16.1: DNA is the genetic material The Search for the Genetic Material: Scientific Inquiry Overview: Life s Operating Instructions In 1953, James Watson and Francis Crick introduced an elegant double-helical model for the structure of deoxyribonucleic acid, or DNA DNA, the substance of inheritance,

More information

DNA: Structure and Replication - 1

DNA: Structure and Replication - 1 DNA: Structure and Replication - 1 We have briefly discussed that DNA is the genetic molecule of life. In eukaryotic organisms DNA (along with its histone proteins) is found in chromosomes. All cell activities

More information

DNA REPLICATION. Anna Onofri Liceo «I.Versari»

DNA REPLICATION. Anna Onofri Liceo «I.Versari» DNA REPLICATION Anna Onofri Liceo «I.Versari» Learning objectives 1. Understand the basic rules governing DNA replication 2. Understand the function of key proteins involved in a generalised replication

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Chapter 16 Objectives Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin;

More information

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005

DNA Replication II Biochemistry 302. Bob Kelm January 26, 2005 DNA Replication II Biochemistry 302 Bob Kelm January 26, 2005 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

2012 GENERAL [5 points]

2012 GENERAL [5 points] GENERAL [5 points] 2012 Mark all processes that are part of the 'standard dogma of molecular' [ ] DNA replication [ ] transcription [ ] translation [ ] reverse transposition [ ] DNA restriction [ ] DNA

More information

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce Chromosomes Chromosomes Strands of DNA that contain all of the genes an organism needs to survive and reproduce Genes Segments of DNA that specify how to build a protein genes may specify more than one

More information

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer

Chapter 18: Regulation of Gene Expression. 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Chapter 18: Regulation of Gene Expression 1. Gene Regulation in Bacteria 2. Gene Regulation in Eukaryotes 3. Gene Regulation & Cancer Gene Regulation Gene regulation refers to all aspects of controlling

More information

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology

Friday, April 17 th. Crash Course: DNA, Transcription and Translation. AP Biology Friday, April 17 th Crash Course: DNA, Transcription and Translation Today I will 1. Review the component parts of a DNA molecule. 2. Describe the process of transformation. 3. Explain what is meant by

More information

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes.

DNA replication. Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. DNA replication Begins at specific sites on a double helix. Proceeds in both directions. Is initiated at many points in eukaryotic chromosomes. Figure 10.8 http://www.hhmi.org/biointeractive/media/ DNAi_replication_schematic-lg.mov

More information

The DNA Molecule: The Molecular Basis of Inheritance

The DNA Molecule: The Molecular Basis of Inheritance Slide hapter 6 he DN Molecule: he Molecular Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil ampbell and Jane Reece Lectures by hris Romero, updated by Erin Barley

More information

Problem Set 2B Name and Lab Section:

Problem Set 2B Name and Lab Section: Problem Set 2B 9-26-06 Name and Lab Section: 1. Define each of the following rearrangements (mutations) (use one phrase or sentence for each). Then describe what kind of chromosomal structure you might

More information

Protein Synthesis & Gene Expression

Protein Synthesis & Gene Expression DNA provides the instructions for how to build proteins Each gene dictates how to build a single protein in prokaryotes The sequence of nucleotides (AGCT) in DNA dictates the order of amino acids that

More information

Chapter 13. The Nucleus. The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a "true nucleus".

Chapter 13. The Nucleus. The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a true nucleus. Chapter 13 The Nucleus The nucleus is the hallmark of eukaryotic cells; the very term eukaryotic means having a "true nucleus". Fig.13.1. The EM of the Nucleus of a Eukaryotic Cell 13.1. The Nuclear Envelope

More information

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a GENETICS I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide 1. 2. 3. chains wrap around each other to form a Chains run in opposite direction known as Type of bond between the

More information

DNA: Structure and Replication - 1

DNA: Structure and Replication - 1 DNA: Structure and Replication - 1 We have briefly discussed that DNA is the genetic molecule of life. In eukaryotic organisms DNA (along with its histone proteins) is found in chromosomes. We have also

More information

DNA Structure and Replication. Higher Human Biology

DNA Structure and Replication. Higher Human Biology DNA Structure and Replication Higher Human Biology Learning Intention Describe the structure of DNA Explain the base pairing rule using adenine, thymine, cytosine and guanine 1 Division and differentiation

More information

CHAPTERS , 17: Eukaryotic Genetics

CHAPTERS , 17: Eukaryotic Genetics CHAPTERS 14.1 14.6, 17: Eukaryotic Genetics 1. Review the levels of DNA packing within the eukaryote nucleus. Label each level. (A similar diagram is on pg 188 of your textbook.) 2. How do the coding regions

More information

DNA REPLICATION & REPAIR

DNA REPLICATION & REPAIR DNA REPLICATION & REPAIR Table of contents 1. DNA Replication Model 2. DNA Replication Mechanism 3. DNA Repair: Proofreading 1. DNA Replication Model Replication in the cell cycle 3 models of DNA replication

More information

Cells and Tissues. Overview CELLS

Cells and Tissues. Overview CELLS Cells and Tissues WIll The basic unit of structure and function in the human body is the cell. Each of a cell's parts, or organelles, as well as the entire cell, is organized to perform a specific function.

More information

Chapter 30. Replication. Meselson Stahl Experiment. BCH 4054 Chapter 30 Lecture Notes. Slide 1. Slide 2 Conceptual Mechanism of.

Chapter 30. Replication. Meselson Stahl Experiment. BCH 4054 Chapter 30 Lecture Notes. Slide 1. Slide 2 Conceptual Mechanism of. BCH 4054 Chapter 30 Lecture Notes 1 Chapter 30 DNA Replication and Repair 2 Conceptual Mechanism of Replication Strand separation, with copying of each strand by Watson-Crick base pairing Fig 30.2 Three

More information

Page 1. Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell?

Page 1. Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell? Name: 1) Which letter indicates a cell structure that directly controls the movement of molecules into and out of the cell? A) A B) B C) C D) D 2) A single-celled organism is represented in the diagram

More information

Biochemistry. DNA Polymerase. Structure and Function of Biomolecules II. Principal Investigator

Biochemistry. DNA Polymerase. Structure and Function of Biomolecules II. Principal Investigator Paper : 03 Module: 14 Principal Investigator Paper Coordinator and Content Writer Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Dr. Sunil Kumar Khare, Professor, Department of Chemistry,

More information

Biology Eighth Edition Neil Campbell and Jane Reece

Biology Eighth Edition Neil Campbell and Jane Reece BIG IDEA III Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring Understanding 3.A Heritable information provides for continuity of life. Essential

More information

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology

Genes - DNA - Chromosome. Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Genes - DNA - Chromosome Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology DNA Cellular DNA contains genes and intragenic regions both of which may

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

Crossing-Over and Recombination

Crossing-Over and Recombination Updated 2/20/06 Crossing-Over and Recombination Required Readings: Fu, H. et al., 2002. Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. PNAS

More information

REGULATION OF PROTEIN SYNTHESIS. II. Eukaryotes

REGULATION OF PROTEIN SYNTHESIS. II. Eukaryotes REGULATION OF PROTEIN SYNTHESIS II. Eukaryotes Complexities of eukaryotic gene expression! Several steps needed for synthesis of mrna! Separation in space of transcription and translation! Compartmentation

More information

Cell cycle oscillations. Active Cdk1-Cyclin Inactive Cdk1-Cyclin Active APC

Cell cycle oscillations. Active Cdk1-Cyclin Inactive Cdk1-Cyclin Active APC Cell cycle oscillations Active Cdk1-Cyclin Inactive Cdk1-Cyclin Active APC 20 Ubiquitin mediated proteolysis Glycine Isopeptide bond Lysine Many biological processes are regulated by controlling the stability

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

DNA Replication. Packet #17 Chapter #16

DNA Replication. Packet #17 Chapter #16 DNA Replication Packet #17 Chapter #16 1 HISTORICAL FACTS ABOUT DNA 2 Historical DNA Discoveries 1928 Frederick Griffith finds a substance in heat-killed bacteria that transforms living bacteria 1944 Oswald

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

Eukaryotic & Prokaryotic Transcription. RNA polymerases

Eukaryotic & Prokaryotic Transcription. RNA polymerases Eukaryotic & Prokaryotic Transcription RNA polymerases RNA Polymerases A. E. coli RNA polymerase 1. core enzyme = ββ'(α)2 has catalytic activity but cannot recognize start site of transcription ~500,000

More information

Chapter 13 DNA The Genetic Material Replication

Chapter 13 DNA The Genetic Material Replication Chapter 13 DNA The Genetic Material Replication Scientific History The march to understanding that DNA is the genetic material T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944)

More information

LECTURE 26. a) A light-independent repair mechanism that involves three steps:

LECTURE 26. a) A light-independent repair mechanism that involves three steps: LECTURE 26 DNA REPAIR A. The capability for repair of damaged DNA is found in one form or another in all organisms. Prokaryotes (e.g., E. coli) have five repair systems, whereas higher organisms (e.g.,

More information

Cyclin- Dependent Protein Kinase. Function

Cyclin- Dependent Protein Kinase. Function Complex Cyclin Cyclin- Dependent rotein Kinase Function promotes passage through restriction G1-CDK Complex Cyclin D CDK4 or CDK6 point in late G1 G1/S-CDK Complex Cyclin E CDK2 commits the cell to DA

More information

Tumor Growth Suppression Through the Activation of p21, a Cyclin-Dependent Kinase Inhibitor

Tumor Growth Suppression Through the Activation of p21, a Cyclin-Dependent Kinase Inhibitor Tumor Growth Suppression Through the Activation of p21, a Cyclin-Dependent Kinase Inhibitor Nicholas Love 11/28/01 A. What is p21? Introduction - p21 is a gene found on chromosome 6 at 6p21.2 - this gene

More information

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight?

Read each question, and write your answer in the space provided. 2. How did Mendel s scientific work differ from the work of T. A. Knight? Name Date Class CHAPTER 8 DIRECTED READING Mendel and Heredity Section 8-1: The Origins of Genetics Mendel and Others Studied Garden-Pea Traits 1. What did T. A. Knight discover? 2. How did Mendel s scientific

More information

Primer on Genome Biology Part I: Fundamentals

Primer on Genome Biology Part I: Fundamentals Primer on Genome Biology Part I: Fundamentals PB HLTH C240F/STAT C245F Division of Biostatistics and Department of Statistics University of California, Berkeley www.stat.berkeley.edu/~sandrine Copyright

More information

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s

GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s GENE REGULATION slide shows by Kim Foglia modified Slides with blue edges are Kim s 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP GO if they have

More information

Chapter 16. The Molecular Basis of Inheritance

Chapter 16. The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical model for the

More information

DNA: The Genetic Material. Chapter 10

DNA: The Genetic Material. Chapter 10 DNA: The Genetic Material Chapter 10 DNA as the Genetic Material DNA was first extracted from nuclei in 1870 named nuclein after their source. Chemical analysis determined that DNA was a weak acid rich

More information

DNA Replication I Biochemistry 302. Bob Kelm January 24, 2005

DNA Replication I Biochemistry 302. Bob Kelm January 24, 2005 DNA Replication I Biochemistry 302 Bob Kelm January 24, 2005 Watson Crick prediction: Each stand of parent DNA serves as a template for synthesis of a new complementary daughter strand Fig. 4.12 Proof

More information

Active Learning Exercise 9. The Hereditary Material: DNA

Active Learning Exercise 9. The Hereditary Material: DNA Name Biol 211 - Group Number Active Learning Exercise 9. The Hereditary Material: DNA Reference: Chapter 16 (Biology by Campbell/Reece, 8 th ed.) 1. a.) What is a nucleotide? b.) What is a nitrogen base?

More information

Bacterial DNA replication

Bacterial DNA replication Bacterial DNA replication Summary: What problems do these proteins solve? Tyr OH attacks PO4 and forms a covalent intermediate Structural changes in the protein open the gap by 20 Å! 1 Summary: What problems

More information

Brief History. Many people contributed to our understanding of DNA

Brief History. Many people contributed to our understanding of DNA DNA (Ch. 16) Brief History Many people contributed to our understanding of DNA T.H. Morgan (1908) Frederick Griffith (1928) Avery, McCarty & MacLeod (1944) Erwin Chargaff (1947) Hershey & Chase (1952)

More information

DNA RNA PROTEIN SYNTHESIS -NOTES-

DNA RNA PROTEIN SYNTHESIS -NOTES- DNA RNA PROTEIN SYNTHESIS -NOTES- THE COMPONENTS AND STRUCTURE OF DNA DNA is made up of units called nucleotides. Nucleotides are made up of three basic components:, called deoxyribose in DNA In DNA, there

More information

CHAPTER 11 LECTURE SLIDES

CHAPTER 11 LECTURE SLIDES CHAPTER 11 LECTURE SLIDES Prepared by Brenda Leady University of Toledo To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off.

More information

DNA makes RNA makes Proteins. The Central Dogma

DNA makes RNA makes Proteins. The Central Dogma DNA makes RNA makes Proteins The Central Dogma TRANSCRIPTION DNA RNA transcript RNA polymerase RNA PROCESSING Exon RNA transcript (pre-mrna) Intron Aminoacyl-tRNA synthetase NUCLEUS CYTOPLASM FORMATION

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 - Genetics: Progress from Mendel to DNA: Gregor Mendel, in the mid 19 th century provided the

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Eukaryotic Genes 2007-2008 The BIG Questions n How are genes turned on & off in eukaryotes? n How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes?

Bio11 Announcements. Ch 21: DNA Biology and Technology. DNA Functions. DNA and RNA Structure. How do DNA and RNA differ? What are genes? Bio11 Announcements TODAY Genetics (review) and quiz (CP #4) Structure and function of DNA Extra credit due today Next week in lab: Case study presentations Following week: Lab Quiz 2 Ch 21: DNA Biology

More information

Post transcriptional regulation of cyclin E during the embryonic development of Xenopus laevis

Post transcriptional regulation of cyclin E during the embryonic development of Xenopus laevis University of Iowa Iowa Research Online Theses and Dissertations 2006 Post transcriptional regulation of cyclin E during the embryonic development of Xenopus laevis Michael Keith Slevin University of Iowa

More information

The replication forks Summarising what we know:

The replication forks Summarising what we know: When does replication occur? MBLG1001 lecture 10 Replication the once in a lifetime event! Full blown replication only occurs once, just before cell division BUT the DNA template is constantly being repaired.

More information

Molecular Biology of the Gene

Molecular Biology of the Gene Molecular Biology of the Gene : where the genetic information is stored, blueprint for making proteins. RNA: Always involved in protein synthesis Macromolecules (polymers!) Monomers (units): nucleotides

More information

Bio 121 Practice Exam 3

Bio 121 Practice Exam 3 The material covered on Exam 3 includes lecture since the last exam and text chapters 13-21. Be sure that you read chapter 19, which was not represented in the notes. 1. Which of the following is an enveloped

More information

Chapter 2 DNA extended response [108 marks]

Chapter 2 DNA extended response [108 marks] Chapter 2 DNA extended response [108 marks] 1a. Describe the genetic code and its relationship to polypeptides and proteins. Remember, up to TWO quality of construction marks per essay. a. (the genetic

More information

Viral DNA replication

Viral DNA replication Viral DNA replication Lecture 8 Biology 3310/4310 Virology Spring 2017 The more the merrier --ANONYMOUS Viral DNA genomes must be replicated to make new progeny Parvovirus Retrovirus Poliovirus VII Hepatitis

More information

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE

CHAPTER 16 MOLECULAR BASIS OF INHERITANCE CHAPTER 16 MOLECULAR BASIS OF INHERITANCE DNA as genetic material? Deducted that DNA is the genetic material Initially worked by studying bacteria & the viruses that infected them 1928 Frederick Griffiths

More information

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review

AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review AP BIOLOGY RNA, DNA, & Proteins Chapters 16 & 17 Review Enzyme that adds nucleotide subunits to an RNA primer during replication DNA polymerase III Another name for protein synthesis translation Sugar

More information

7.06 Cell Biology EXAM #2 March 20, 2003

7.06 Cell Biology EXAM #2 March 20, 2003 7.06 Cell Biology EXAM #2 March 20, 2003 This is an open book exam, and you are allowed access to books, a calculator, and notes but not computers or any other types of electronic devices. Please write

More information

Biologia Genômica. 2º Semestre, Replicação de DNA em Bactérias e no Núcleo Eucariótico. Prof. Marcos Túlio

Biologia Genômica. 2º Semestre, Replicação de DNA em Bactérias e no Núcleo Eucariótico. Prof. Marcos Túlio Biologia Genômica 2º Semestre, 2017 Replicação de DNA em Bactérias e no Núcleo Eucariótico Prof. Marcos Túlio mtoliveria@fcav.unesp.br Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal Instituto

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Watson and Crick 1953 article in Nature Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible

More information

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides

Reproduction, Heredity, & Molecular Genetics. A. lipids B. amino acids C. nucleotides D. polysaccarides Name: Date: 1. A strand of DNA consists of thousands of smaller, repeating units known as A. lipids B. amino acids C. nucleotides D. polysaccarides 2. Which two bases are present in equal amounts in a

More information

Epigenetics. Medical studies in English, Lecture # 12,

Epigenetics. Medical studies in English, Lecture # 12, Epigenetics Medical studies in English, 2018. Lecture # 12, Epigenetics Regulation of gene activity in eukaryotes Correlation of chromatin structure with transcription stably heritable phenotype resulting

More information