Lecture 13 Nanophotonics in plasmonics. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Size: px
Start display at page:

Download "Lecture 13 Nanophotonics in plasmonics. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku"

Transcription

1 Lecture 13 Nanophotonics in plasmonics EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

2 Schedule for the rest of the semester Introduction to light-matter interaction (1/26): How to determine ε(r)? The relationship to basic excitations. Basic excitations and measurement of ε(r). (1/31) Structure dependence of ε(r) overview (2/2) Surface effects (2/7): Surface EM wave Surface polaritons Size dependence Case studies (2/9 2/16): Quantum wells, wires, and dots Nanophotonics in microscopy Nanophotonics in plasmonics Dispersion engineering (2/21 3/7): Material dispersion Waveguide dispersion (photonic crystals) 2

3 Outline Today, we will discuss the applications of surface plasmon polaritons in the following areas. Sensing Nanoscale light guiding Nanolithography LED efficiency enhancement 3

4 Surface plasmon for sensing Ref: Prasad, Biophotonics, figures 9.23 and

5 Bio sensing Ref: Prasad, Biophotonics, figure

6 Surface plasmon polariton (SPP) confinement ~100nm ~10nm dielectric metal Most of the energy is confined in the dielectric side. 6

7 Plasmonic planar waveguide L W λ=633 nm Ref: J. R. Krenn and J. C. Weeber, Phil. Trans. R. Soc. Lond. A 362 (2004)

8 Interference Ref: J. R. Krenn and J. C. Weeber, Phil. Trans. R. Soc. Lond. A 362 (2004)

9 Plasmonic nanoparticle waveguide λ=1.55µm. Propagation length = 50µm. Ref: S. Maier et al., Appl. Phys. Lett., 86 (2005)

10 Plasmonic V-groove waveguide Ref: S. Bozhevolnyi et al., Phys. Rev. Lett., 95 (2005)

11 Another example of coupler Ref: W. Nomura et al., Appl. Phys. Lett., 86 (2005)

12 Plasmonic printing Ref: P. G. Kik et al., Proc. Of SPIE, 4810 (2002) 7. 12

13 Ref: P. G. Kik et al., Proc. Of SPIE, 4810 (2002) 7. 13

14 Line/space pattern 2mm Mask pitch 300nm Interference of SPP generates extra fringes Ref: X. Luo and T. Ishihara, Appl. Phys. Lett., 84 (2004)

15 g-line (436 nm) The authors attributed the LER to the mask roughness. Ref: X. Luo and T. Ishihara, Appl. Phys. Lett., 84 (2004)

16 Superlens version I-line (365 nm) Ref:N. Fang et al., Science, 308 (2005)

17 Negative resist ~ 120 nm thick before printing Ref:N. Fang et al., Science, 308 (2005)

18 Spontaneous emission enhancement Corrugated metal can couple SP to radiation. Ref: K. Okamoto et al., Appl. Phys. Lett., 87 (2005)

19 Top-emitting organic LEDs Active layer Alq3 is pumped by a diode 410 nm from the bottom silica sub. Ref: S. Wedge et al., Appl. Phys. Lett., 85 (2004)

20 MDPC = metallic-dielectric photonic crystal L/S= 150/150 nm Active layer MEH-PPV is electrically pumped. Ref: C. Liu et al., Appl. Phys. Lett., 86 (2005)

21 Radiative lifetime shortening in fluorescence process Reduce the risk of photochemical destruction when molecules are in excited states for long time. Enhance quantum yield τ=2 µs w/o Ag: τ=280 µs Ref: D. A. Weitz et al., Opt. Lett., 7 (1982)

22 Directional fluorescence Ref: J. R. Lakowicz et al., J. Phys. D, 36 (2003) R

23 Recommended Readings Plasmonic biosensing P. N. Prasad, Biophotonics Plasmonic waveguide E. Ozbay, Science, 311 (2006) 189. Plasmonic printing P. G. Kik et al., Proc. Of SPIE, 4810 (2002) 7. 23

Basics of Plasmonics

Basics of Plasmonics Basics of Plasmonics Min Qiu Laboratory of Photonics and Microwave Engineering School of Information and Communication Technology Royal Institute of Technology (KTH) Electrum 229, 16440 Kista, Sweden http://www.nanophotonics.se/

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Plasmonics: Application-oriented fabrication. Part 1. Introduction

Plasmonics: Application-oriented fabrication. Part 1. Introduction Plasmonics: Application-oriented fabrication Part 1. Introduction Victor Ovchinnikov Department of Aalto Nanofab Aalto University Espoo, Finland Alvar Aalto was a famous Finnish architect and designer

More information

Surface plasmon enhanced emission from dye doped polymer layers

Surface plasmon enhanced emission from dye doped polymer layers Surface plasmon enhanced emission from dye doped polymer layers Terrell D. Neal, a) Koichi Okamoto, and Axel Scherer Department of Electrical Engineering, California Institute of Technology, Pasadena,

More information

How grooves reflect and confine surface plasmon polaritons

How grooves reflect and confine surface plasmon polaritons How grooves reflect and confine surface plasmon polaritons Martin Kuttge, 1,* F. Javier García de Abajo, 2 and Albert Polman 1 1 Center for Nanophotonics, FOM-Institute AMOLF, Sciencepark 113, 1098 XG

More information

Geometries and materials for subwavelength surface plasmon modes

Geometries and materials for subwavelength surface plasmon modes 44 J. Opt. Soc. Am. A/ Vol. 1, No. 1/ December 004 Zia et al. Geometries and materials for subwavelength surface plasmon modes Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma Geballe

More information

PLASMONICS: RECENT DEVELOPMENTS AND MAIN APPLICATIONS

PLASMONICS: RECENT DEVELOPMENTS AND MAIN APPLICATIONS PLASMONICS: RECENT DEVELOPMENTS AND MAIN APPLICATIONS Alexandra Boltasseva Department of Photonics Engineering Technical University of Denmark Many thanks to Mark Brongersma (Stanford) Sergey Bozhevolnyi

More information

THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips

THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips Invited Paper THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips Tie Jun Cui * and Xiaopeng Shen State Key Laboratory of Millimetre Waves, School of Information Science

More information

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings Resonant and non-resonant generation and focusing of surface plasmons with circular gratings Jennifer M. Steele *, Zhaowei Liu, Yuan Wang, and Xiang Zhang 5130 Etcheverry Hall, NSF Nanoscale Science and

More information

Electrically generated unidirectional surface plasmon source

Electrically generated unidirectional surface plasmon source Electrically generated unidirectional surface plasmon source L. Wang, 1 T. Li, 1,* L. Li, 1 W. Xia, 2 X. G. Xu, 2 and S. N. Zhu 1 1 National Laboratory of Solid State Microstructures, School of Physics,

More information

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Euiheon Chung 1, 2, Yang-Hyo Kim 1, Wai Teng Tang 3, Colin J. R. Sheppard 4, and 1, 5* Peter T. C. So

More information

SPIE NTU Student Chapter activities

SPIE NTU Student Chapter activities SPIE NTU Student Chapter activities Names and affiliations of current officers: President, Yuan Hsing Fu, yhfu@phys.ntu.edu.tw Vice-President, Tai Chi Chu, d91222023@ntu.edu.tw Secretary, Hung Ji Huang,

More information

arxiv: v1 [physics.optics] 3 Feb 2010

arxiv: v1 [physics.optics] 3 Feb 2010 Plasmonic crystal demultiplexer and multiports Aurelien Drezet, Daniel Koller, Andreas Hohenau, Alfred Leitner, Franz R. Aussenegg, and Joachim R. Krenn Institute of Physics and Erwin Schrödinger Institute

More information

An Easy Introduction to Plasmonics

An Easy Introduction to Plasmonics An Easy Introduction to Plasmonics Wolfgang Freude Institute of Photonics and Quantum Electronics (IPQ), University of Karlsruhe, Germany Universität Karlsruhe (TH) Institut für Photonik und Quantenelektronik

More information

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array

High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array PIERS ONLINE, VOL. 4, NO. 7, 2008 746 High Sensitivity of Phase-based Surface Plasmon Resonance in Nano-cylinder Array Bing-Hung Chen, Yih-Chau Wang, and Jia-Hung Lin Institute of Electronic Engineering,

More information

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration Yusheng Bian, 1 Zheng Zheng, 1,* Xin Zhao, 1 Jinsong Zhu, 2 and Tao Zhou 3 1 School of Electronic and Information Engineering,

More information

Phil Saunders, spacechannel.org

Phil Saunders, spacechannel.org Guidi with Phil Saunders, spacechannel.org ng Light Long-Range nge Plasmons Aloyse Degiron, Pierre Berini and David R. Smith Long-range surface plasmons are optical modes propagating along metallic circuits

More information

Energy transport in plasmon waveguides on chains of metal nanoplates

Energy transport in plasmon waveguides on chains of metal nanoplates OPTO-ELECTRONICS REVIEW 14(3), 243 251 DOI: 10.2478/s11772-006-0032-y Energy transport in plasmon waveguides on chains of metal nanoplates W.M. SAJ *, T.J. ANTOSIEWICZ, J. PNIEWSKI, and T. SZOPLIK Faculty

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

Satoshi Kawata. Near-Field Optic s and Surface Plasmon Polaritons

Satoshi Kawata. Near-Field Optic s and Surface Plasmon Polaritons Satoshi Kawata Near-Field Optic s and Surface Plasmon Polaritons Near-Field Optics and the Surface Plasmon Polariton Dieter W. Pohl 1 1. Introduction 1 2. Back to the Roots 1 2.1. Rayleigh and Mie Scattering

More information

arxiv:cond-mat/ v1 [cond-mat.other] 15 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.other] 15 Mar 2007 Efficient unidirectional nanoslit couplers for surface plasmons F. López-Tejeira, 1 Sergio G. Rodrigo, 1 L. Martín-Moreno, 1, F. J. García-Vidal, 2 E. Devaux, 3 T. W. Ebbesen, 3 J. R. Krenn, 4 I. P. Radko,

More information

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Surface Plasmon Effects in Nano-Optics Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Shanghai, Jan 2007 Summary Introduction: What is a surface plasmon?

More information

As coherent sources that can provide optical-frequency

As coherent sources that can provide optical-frequency pubs.acs.org/nanolett Hybrid Photon-Plasmon Nanowire Lasers Xiaoqin Wu,, Yao Xiao,, Chao Meng, Xining Zhang, Shaoliang Yu, Yipei Wang, Chuanxi Yang, Xin Guo, C. Z. Ning, and Limin Tong*, State Key Laboratory

More information

Plasmonic Nanostructures II

Plasmonic Nanostructures II Plasmonic Nanostructures II Dr. Krüger / Prof. M. Zacharias, IMTEK, Propagation of SPPs Propagation distance decreases with decreasing strip width! 2 Dr. Krüger / Prof. M. Zacharias, IMTEK, Bound and leaky

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Longwave plasmonics on doped silicon and silicides

Longwave plasmonics on doped silicon and silicides Longwave plasmonics on doped silicon and silicides Richard Soref, Robert E. Peale, and Walter Buchwald Sensors Directorate, Air Force Research Laboratory, AFRL/RYHC, Hanscom Air Force Base, MA 01731-2909

More information

Shape Light Beams. Using Plasmonics to. Federico Capasso, Nanfang Yu, Ertugrul Cubukcu and Elizabeth Smythe

Shape Light Beams. Using Plasmonics to. Federico Capasso, Nanfang Yu, Ertugrul Cubukcu and Elizabeth Smythe Using Plasmonics to Shape Light Beams Federico Capasso, Nanfang Yu, Ertugrul Cubukcu and Elizabeth Smythe Plasmonic structures shape semiconductor laser beams. Left: A plasmonic collimator spreads out

More information

nanosilicon Nanophotonics

nanosilicon Nanophotonics nanosilicon Nanophotonics Lorenzo Pavesi Universita di Trento Italy Outline Silicon Photonics NanoSilicon photonics Silicon Nanophotonics NanoSilicon Nanophotonics Conclusion Outline Silicon Photonics

More information

7-2E. Photonic crystals

7-2E. Photonic crystals 7-2E. Photonic crystals Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/ Univ Central Florida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/ose6938i/handouts/forms/allitems.aspx

More information

A visible-near infrared tunable waveguide based on plasmonic gold nanoshell

A visible-near infrared tunable waveguide based on plasmonic gold nanoshell Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2567-07 Chinese Physics B and IOP Publishing Ltd A visible-near infrared tunable waveguide based on plasmonic gold nanoshell Zhang Hai-Xi(

More information

Unidirectional surface plasmon-polariton excitation by a compact slot partially filled with dielectric

Unidirectional surface plasmon-polariton excitation by a compact slot partially filled with dielectric Unidirectional surface plasmon-polariton excitation by a compact slot partially filled with dielectric Dongdong Li, 1 Dao Hua Zhang, 1,* Changchun Yan, 2 Tao Li, 3 Yueke Wang, 1 Zhengji Xu, 1 Jun Wang,

More information

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector International Journal of Electrical Components and Energy Conversion 2017; 3(5): 83-87 http://www.sciencepublishinggroup.com/j/ijecec doi: 10.11648/j.ijecec.20170305.11 ISSN: 2469-8040 (Print); ISSN: 2469-8059

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Stijn Scheerlinck, Jonathan Schrauwen, Frederik Van Laere, Dirk Taillaert, Dries Van Thourhout and Roel Baets

More information

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high and own the gap of 10 μm. Supplementary Figure 2 Strictly

More information

Plasmon lasers: coherent light source at molecular scales

Plasmon lasers: coherent light source at molecular scales Early View publication on wileyonlinelibrary.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Laser Photonics Rev., 1 21 (2012) / DOI 10.1002/lpor.201100040 LASER

More information

Electrical Excitation of Surface Plasmon Polaritons

Electrical Excitation of Surface Plasmon Polaritons Electrical Excitation of Surface Plasmon Polaritons Cover: artist impression of electrically excited surface plasmon polaritons in a metal insulator metal geometry. Copyright cover: Tremani / AMOLF Ph.D.

More information

FABRICATION AND CHARACTERIZATION OF QUANTUM-WELL AND QUANTUM-DOT METAL CAVITY SURFACE-EMITTING NANOLASERS

FABRICATION AND CHARACTERIZATION OF QUANTUM-WELL AND QUANTUM-DOT METAL CAVITY SURFACE-EMITTING NANOLASERS FABRICATION AND CHARACTERIZATION OF QUANTUM-WELL AND QUANTUM-DOT METAL CAVITY SURFACE-EMITTING NANOLASERS By Eric Wei Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign

More information

1 Introduction. Keywords: double bowtie nanoantenna, ring grating, plasmonic, field enhancement, plasmon-emitter coupling

1 Introduction. Keywords: double bowtie nanoantenna, ring grating, plasmonic, field enhancement, plasmon-emitter coupling Nanospectroscopy 2015; 1: 61 66 Research Article Open Access N. Rahbany, W. Geng, S. Blaize, R. Salas-Montiel, R. Bachelot, C. Couteau* Integrated plasmonic double bowtie / ring grating structure for enhanced

More information

Optical and Photonic Glasses. Lecture 33. RE Doped Glasses III Decay Rates and Efficiency. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 33. RE Doped Glasses III Decay Rates and Efficiency. Professor Rui Almeida Optical and Photonic Glasses : RE Doped Glasses III Decay Rates and Efficiency Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Quantum efficiency

More information

Determination of the Surface Plasmons Polaritons extraction efficiency from a self-assembled plasmonic crystal

Determination of the Surface Plasmons Polaritons extraction efficiency from a self-assembled plasmonic crystal Determination of the Surface Plasmons Polaritons extraction efficiency from a self-assembled plasmonic crystal Hugo Frederich 1,2, Fangfang Wen 1,2, Julien Laverdant 1,2,3, Willy Daney de Marcillac 1,2,

More information

Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes.

Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes. Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes. Alireza Hassani and Maksim Skorobogatiy maksim.skorobogatiy@polymtl.ca www.photonics.phys.polymtl.ca Engineering

More information

Lunz, M.; de Boer, D.K.G.; Lozano, G.; Rodriguez, S.R.K.; Gómez Rivas, J.; Verschuuren, M.A.

Lunz, M.; de Boer, D.K.G.; Lozano, G.; Rodriguez, S.R.K.; Gómez Rivas, J.; Verschuuren, M.A. Plasmonic LED device Lunz, M.; de Boer, D.K.G.; Lozano, G.; Rodriguez, S.R.K.; Gómez Rivas, J.; Verschuuren, M.A. Published in: Proceedings of SPIE DOI: 10.1117/12.2052913 Published: 01/01/2014 Document

More information

CREOL, The College of Optics & Photonics, University of Central Florida

CREOL, The College of Optics & Photonics, University of Central Florida Metal Substrate Induced Control of Ag Nanoparticle Plasmon Resonances for Tunable SERS Substrates Pieter G. Kik 1, Amitabh Ghoshal 1, Manuel Marquez 2 and Min Hu 1 1 CREOL, The College of Optics and Photonics,

More information

Realisation d'un laser int6gr6 continu sur Nd:LiTaOs

Realisation d'un laser int6gr6 continu sur Nd:LiTaOs JOURNAL DE PHYSIQUE IV Colloque C4, supplkment au Journal de Physique 111, Volume 4, avril1994 Realisation d'un laser int6gr6 continu sur Nd:LiTaOs S. NOUH, I? BALDI, M. DE MICHELI, G. MONNOM, D.B. OSTROWSKY,

More information

Surface plasmon polariton mediated emission of light from top-emitting organic light-emitting diode type structures

Surface plasmon polariton mediated emission of light from top-emitting organic light-emitting diode type structures Organic Electronics 8 (2007) 136 147 www.elsevier.com/locate/orgel Surface plasmon polariton mediated emission of light from top-emitting organic light-emitting diode type structures S. Wedge a, *, A.

More information

Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies

Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies J. P. Balthasar Müller Science Institute, University of Iceland, Dunhaga 3, IS-107

More information

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007

High Power Operation of Cryogenic Yb:YAG. K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 High Power Operation of Cryogenic Yb:YAG K. F. Wall, B. Pati, and P. F. Moulton Photonics West 2007 San Jose, CA January 23, 2007 Outline Early work on cryogenic lasers MPS laser technology Recent program

More information

Digital resolution enhancement in surface plasmon microscopy

Digital resolution enhancement in surface plasmon microscopy Digital resolution enhancement in surface plasmon microscopy I.I. Smolyaninov 1) *, J. Elliott 2), G. Wurtz 2), A.V. Zayats 2), C.C. Davis 1) 1) Department of Electrical and Computer Engineering, University

More information

Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics

Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics Leiming Wang *, Jun Amano, and Po-Chieh Hung Konica Minolta Laboratory USA Inc. *Corresponding author: 2855 Campus Drive

More information

NOWADAYS, the bandwidth-limited electrical interconnects

NOWADAYS, the bandwidth-limited electrical interconnects 2876 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 17, SEPTEMBER 1, 2013 Optical Nanofilters Based on Meta-Atom Side-Coupled Plasmonics Metal- Insulator-Metal Waveguides Fu Sheng Ma and Chengkuo Lee, Member,

More information

Pennsylvania State University, Department of Engineering Science and Mechanics, University Park, PA 16802, USA ABSTRACT 1.

Pennsylvania State University, Department of Engineering Science and Mechanics, University Park, PA 16802, USA ABSTRACT 1. Effect of grating period on the excitation of multiple surfaceplasmon-polariton waves guided by the interface of a metal grating and a photonic crystal Anthony Shoji Hall +, Muhammad Faryad, Greg D. Barber

More information

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

Fs- Using Ultrafast Lasers to Add New Functionality to Glass An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference Fs- Using Ultrafast Lasers to Add New Functionality to Glass Denise M. Krol University of California, Davis 17th

More information

Surface-Plasmon-Enhanced Third-Order Harmonic Generation of Organic Materials

Surface-Plasmon-Enhanced Third-Order Harmonic Generation of Organic Materials Surface-Plasmon-Enhanced Third-Order Harmonic Generation of Organic Materials Fanghui Ren 1, Xiangyu Wang 1, Zhongan Li 2, Jingdong Luo 2, Sei-Hum Jang 2, Alex K-Y Jen 2, Alan X. Wang 1* 1 School of Electrical

More information

Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence

Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence Davy Gérard, Jérôme Wenger, Alexis Devilez, David Gachet, Brian Stout, Nicolas Bonod, Evgeny Popov,

More information

NoE Plasmo-nano-devices. Plasmonics Roadmap

NoE Plasmo-nano-devices. Plasmonics Roadmap NoE Plasmo-nano-devices Plasmonics Roadmap Alain Dereux Coordinator of NoE FP6 IST Plasmo-nano-devices adereux@u-bourgogne.fr http://www.plasmonanodevices.org Department of Nanosciences Submicron Optics

More information

2009 Department of Physics and Astronomy Georgia State University Atlanta, GA US Israel Binational Science Foundation

2009 Department of Physics and Astronomy Georgia State University Atlanta, GA US Israel Binational Science Foundation p.1 Photo Credit: I. Tsukerman, Seefeld, Austria, January, 2009 US Israel Binational Science Foundation Nanoplasmonics: The Physics behind the Applications Mark I. Stockman,, Atlanta, GA 30303, USA p.2

More information

All-optical modulation by plasmonic excitation of CdSe quantum dots

All-optical modulation by plasmonic excitation of CdSe quantum dots All-optical modulation by plasmonic excitation of CdSe quantum dots DOMENICO PACIFICI 1, HENRI J. LEZEC 1,2 AND HARRY A. ATWATER 1 * 1 California Institute of Technology, 1200 E. California Boulevard,

More information

Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes www.nature.com/scientificreports Received: 18 December 2017 Accepted: 27 February 2018 Published: xx xx xxxx OPEN Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold

More information

Formation of channels containing lead sulfide quantum dots using continuous-wave laser for active planar waveguides in glasses

Formation of channels containing lead sulfide quantum dots using continuous-wave laser for active planar waveguides in glasses Vol. 7, No. 1 1 Jan 2017 OPTICAL MATERIALS EXPRESS 281 Formation of channels containing lead sulfide quantum dots using continuous-wave laser for active planar waveguides in glasses BYOUNGJIN SO,1 JONG

More information

Optical Control of Surface Plasmon Coupling in Organic Light Emitting Devices with Nanosized Multi-cathode Structure

Optical Control of Surface Plasmon Coupling in Organic Light Emitting Devices with Nanosized Multi-cathode Structure Proceedings of the 5 th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11-13, 2014 Paper No. 234 Optical Control of Coupling in Organic Light Emitting

More information

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency

Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency Heat-fraction-limited CW Yb:YAG cryogenic solid-state laser with 100% photon slope efficiency David C. Brown*, Thomas M. Bruno, and Joseph M. Singley Snake Creek Lasers, LLC, Hallstead, PA, 18822, USA

More information

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting White Paper: Pixelligent Internal Light Zhiyun (Gene) Chen, Ph.D., Vice President of Engineering Jian Wang, Ph.D., Manager, Application Engineering Pixelligent Technologies LLC, 6411 Beckley Street, Baltimore,

More information

Imagerie et spectroscopie de fluorescence par excitation non radiative

Imagerie et spectroscopie de fluorescence par excitation non radiative Imagerie et spectroscopie de fluorescence par excitation non radiative comment s affranchir de la limite de diffraction Rodolphe Jaffiol, Cyrille Vézy, Marcelina Cardoso Dos Santos LNIO, UTT, Troyes NanoBioPhotonics

More information

InGaN quantum dot based LED for white light emitting

InGaN quantum dot based LED for white light emitting Emerging Photonics 2014 InGaN quantum dot based LED for white light emitting Luo Yi, Wang Lai, Hao Zhibiao, Han Yanjun, and Li Hongtao Tsinghua National Laboratory for Information Science and Technology,

More information

Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography

Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography Cameron L. C. Smith, 1,* Boris Desiatov, 2 Ilya Goykmann, 2 Irene Fernandez-Cuesta, 1 Uriel Levy, 2 and Anders Kristensen

More information

Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber

Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber Single-polarization ultra-large-mode-area Ybdoped photonic crystal fiber O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann Friedrich-Schiller University, Institute of Applied Physics,

More information

Infrared surface plasmon resonance biosensor

Infrared surface plasmon resonance biosensor Infrared surface plasmon resonance biosensor Justin W. Cleary, 1 Gautam Medhi, 1 Monas Shahzad, 1 Robert E. Peale, 1 * Walter R. Buchwald, 2 Sandy Wentzell, 2 Glenn D. Boreman, 3 Oliver Edwards, 4 and

More information

2.1 µm CW Raman Laser in GeO 2 Fiber

2.1 µm CW Raman Laser in GeO 2 Fiber 2.1 µm CW Raman Laser in GeO 2 Fiber B. A. Cumberland, S. V. Popov and J. R. Taylor Femtosecond Optics Group, Imperial College London, SW7 2AZ, United Kingdom O. I. Medvedkov, S. A. Vasiliev, E. M. Dianov

More information

Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films

Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films American Journal of Materials Science 2015, 5(3A): 31-35 DOI: 10.5923/s.materials.201502.05 Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films

More information

PUBLISHED VERSION.

PUBLISHED VERSION. PUBLISHED VERSION Ruan, Yinlan; Afshar Vahid, Shahraam; Monro, Tanya Mary Efficient excitation of surface plasmons in metal nanorods using large longitudinal component of high index nano fibers, Optics

More information

Comparison of cw laser generation in Er 3+, Yb 3+ : glass microchip lasers with different types of glasses

Comparison of cw laser generation in Er 3+, Yb 3+ : glass microchip lasers with different types of glasses OPTO ELECTRONICS REVIEW 19(4), 491 495 DOI: 10.2478/s11772 011 0048 9 Comparison of cw laser generation in Er 3+, Yb 3+ : glass microchip lasers with different types of glasses J. MŁYŃCZAK *1, K. KOPCZYŃSKI

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

Plasmonic Probe With Circular Nano-Moat for far-field Free Nanofocusing

Plasmonic Probe With Circular Nano-Moat for far-field Free Nanofocusing Zhang and Wang Nanoscale Research Letters (2016) 11:421 DOI 10.1186/s11671-016-1619-y NANO EXPRESS Plasmonic Probe With Circular Nano-Moat for far-field Free Nanofocusing Mingqian Zhang 1* and Tianying

More information

Directional Surface Plasmon Coupled Emission

Directional Surface Plasmon Coupled Emission Journal of Fluorescence, Vol. 14, No. 1, January 2004 ( 2004) Fluorescence News Directional Surface Plasmon Coupled Emission KEY WORDS: Surface plasmon coupled emission; high sensitivity detection; reduced

More information

Efficient organic distributed feedback lasers with active films imprinted by thermal nanoimprint lithography

Efficient organic distributed feedback lasers with active films imprinted by thermal nanoimprint lithography Efficient organic distributed feedback lasers with active films imprinted by thermal nanoimprint lithography bidali zenuenean, ondo dago. Efficient organic distributed feedback lasers with active films

More information

Nanofabrication with Laser Holographic Lithography for Nanophotonic Structures

Nanofabrication with Laser Holographic Lithography for Nanophotonic Structures Nanofabrication with Laser Holographic Lithography for Nanophotonic Structures Jong-Souk Yeo, Henry Lewis, and Neal Meyer Hewlett-Packard Company, 1 NE Circle Boulevard, Corvallis, Oregon, 9733, USA E-mail:

More information

S urface plasmon polaritons are coherent oscillations of electrons at metal-dielectric interfaces. They have

S urface plasmon polaritons are coherent oscillations of electrons at metal-dielectric interfaces. They have OPEN SUBJECT AREAS: NANOPHOTONICS AND PLASMONICS MICRO-OPTICS NANOWIRES PHOTONIC DEVICES Received 25 March 2013 Accepted 22 May 2013 Published 11 June 2013 Correspondence and requests for materials should

More information

Nano-Scale Manufacturing:

Nano-Scale Manufacturing: The Second U.S.-Korea Forum on Nanotechnology: Nanomanufacturing Research and Education Nano-Scale Manufacturing: Top-down, Bottom-up and System Engineering Cheng Sun, Xiang Zhang Center of Scalable and

More information

Curved Gratings as Plasmonic Lenses for Linearly Polarised Light

Curved Gratings as Plasmonic Lenses for Linearly Polarised Light Curved Gratings as Plasmonic Lenses for Linearly Polarised Light Alireza Maleki 1,2*, Thanh Phong Vo 1,2, Antoine Hautin 1,2,3, James E Downes 2, David W Coutts 1,2, and Judith M Dawes 1,2 1 ARC Centre

More information

Integrated-Optic Nanoparticle Biosensor Arrays

Integrated-Optic Nanoparticle Biosensor Arrays Integrated-Optic Nanoparticle Biosensor Arrays Steve Blair 1, Farhad Mahdavi 2, Jérôme Wenger 3, Davy Gérard 4 1,2 University of Utah, Dept. of Electrical and Computer Engineering, Salt Lake City, UT 84112,

More information

Near-Field Nano-Optics: From Basic Principles To Nano-Fabrication And Nano-Photonics (Lasers, Photonics, And Electro-Optics) By Motoichi Ohtsu

Near-Field Nano-Optics: From Basic Principles To Nano-Fabrication And Nano-Photonics (Lasers, Photonics, And Electro-Optics) By Motoichi Ohtsu Near-Field Nano-Optics: From Basic Principles To Nano-Fabrication And Nano-Photonics (Lasers, Photonics, And Electro-Optics) By Motoichi Ohtsu READ ONLINE If you are searched for the ebook by Motoichi

More information

Optical force generated from the gradient of the light field has

Optical force generated from the gradient of the light field has pubs.acs.org/nanolett Optical Forces in Hybrid Plasmonic Waveguides Xiaodong Yang,, Yongmin Liu, Rupert F. Oulton, Xiaobo Yin,, and Xiang Zhang*,, Materials Sciences Division, Lawrence Berkeley National

More information

F* techniques: FRAP, FLIP, FRET, FLIM,

F* techniques: FRAP, FLIP, FRET, FLIM, F* techniques: FRAP, FLIP, FRET, FLIM, FCS Antonia Göhler March 2015 Fluorescence explained in the Bohr model Absorption of light (blue) causes an electron to move to a higher energy orbit. After a particular

More information

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000 Confocal Microscopy of Electronic Devices James Saczuk Consumer Optical Electronics EE594 02/22/2000 Introduction! Review of confocal principles! Why is CM used to examine electronics?! Several methods

More information

High Gain Coefficient Phosphate Glass Fiber Amplifier

High Gain Coefficient Phosphate Glass Fiber Amplifier High Gain Coefficient Phosphate Glass Fiber Amplifier Michael R. Lange, Eddy Bryant Harris Corp. Government Communications Systems Division P.O. Box 37 (MS: 13-9116) Melbourne, FL 3292 Michael J. Myers,

More information

LPR Sensor Made by Using Ordered Porous Alumina

LPR Sensor Made by Using Ordered Porous Alumina UDC 669.716.9+669.218+534.428+615.076 LPR Sensor Made by Using Ordered Porous Alumina Yuichi TOMARU*, Takeharu TANI*, Yoshinori HOTTA**, Yusuke HATANAKA**, and Masayuki NAYA* Abstract We fabricated a LPR

More information

Monolithic Microphotonic Optical Isolator

Monolithic Microphotonic Optical Isolator Monolithic Microphotonic Optical Isolator Lei Bi, Juejun Hu, Dong Hun Kim, Peng Jiang, Gerald F Dionne, Caroline A Ross, L.C. Kimerling Dept. of Materials Science and Engineering Massachusetts Institute

More information

ENS 06 Paris, France, December 2006

ENS 06 Paris, France, December 2006 CARBON NANOTUBE ARRAY VIAS FOR INTERCONNECT APPLICATIONS Jyh-Hua ng 1, Ching-Chieh Chiu 2, Fuang-Yuan Huang 2 1 National Nano Device Laboratories, No.26, Prosperity Road I, Science-Based Industrial Park,

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

Laser operation in Nd:Sc 2 SiO 5 crystal based on transition 4 F 3/2 4 I 9/2 of Nd 3+ ions

Laser operation in Nd:Sc 2 SiO 5 crystal based on transition 4 F 3/2 4 I 9/2 of Nd 3+ ions Laser operation in Nd:Sc 2 SiO 5 crystal based on transition 4 F 3/2 4 I 9/2 of Nd 3+ ions X. Li, 1,2 G. Aka, 3,* L. H. Zheng, 2,3,4 J. Xu, 2,5 and Q. H. Yang 1 1 Department of Electronic Information Materials,

More information

NRL Institute for Nanoscience 1 May 2012

NRL Institute for Nanoscience 1 May 2012 NRL Institute for Nanoscience 1 May 2012 Dr. Eric S. Snow, Director The Naval Research Laboratory Highly interdisciplinary laboratory Research Focus Areas Battlespace Environments, Undersea Warfare, Space

More information

Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes

Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes Yusheng Bian and Qihuang Gong * State Key Laboratory for Mesoscopic Physics,

More information

SCIENCE CHINA Physics, Mechanics & Astronomy. New progress of plasmonics in complex metal nanostructures

SCIENCE CHINA Physics, Mechanics & Astronomy. New progress of plasmonics in complex metal nanostructures SCIENCE CHINA Physics, Mechanics & Astronomy Review December 2013 Vol.56 No.12: 2327 2336 85th Anniversary for the Institute of Physics, Chinese Academy of Sciences doi: 10.1007/s11433-013-5339-3 New progress

More information

FANO PLASMONICS MADE SIMPLE

FANO PLASMONICS MADE SIMPLE Higher-order resonances in single-arm nanoantennas: Evidence of Fano-like interference FANO PLASMONICS MADE SIMPLE F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros José A. Sánchez-Gil, Instituto

More information

The miniaturization of optical elements

The miniaturization of optical elements Identification of Higher Order Long-Propagation-Length Surface Plasmon Polariton Modes in Chemically Prepared Gold Nanowires Aniruddha Paul, David Solis, Jr., Kui Bao, Wei-Shun Chang, Scott Nauert, Leonid

More information

Inhibited local thermal effect in upconversion luminescence of YVO 4 :Yb 3+, Er 3+ inverse opals

Inhibited local thermal effect in upconversion luminescence of YVO 4 :Yb 3+, Er 3+ inverse opals Inhibited local thermal effect in upconversion luminescence of YVO 4 :Yb 3+, Er 3+ inverse opals Yongsheng Zhu, 1,2 Wen Xu, 1 Hanzhuang Zhang, 2 Sai Xu, 1 Yunfeng Wang, 2 Qinlin Dai, 3 Biao Dong, 1 Lin

More information

Efficient Cryogenic Near-Infrared Tm:YLF Laser

Efficient Cryogenic Near-Infrared Tm:YLF Laser Efficient Cryogenic Near-Infrared Tm:YLF Laser CHRIS E. ALESHIRE, CHARLES X. YU, PATRICIA A. REED, AND TSO YEE FAN * MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts, 02421, USA *fan@ll.mit.edu

More information

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors

Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal Label-Free Biosensors Sensors 2013, 13, 3232-3241; doi:10.3390/s130303232 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Design Optimization of Structural Parameters for Highly Sensitive Photonic Crystal

More information