Transgenic Plants: Experiences and Challenges

Size: px
Start display at page:

Download "Transgenic Plants: Experiences and Challenges"

Transcription

1 Transgenic Plants: Experiences and Challenges Dr Anil Kumar Associate Professor & Incharge Deptt. Of Molecular Biology & Genetic Engineering, CBSH GBPUAT Pantnagar Uttranchal Pin

2 Agriculture : a scenario Main stay of our economy Productivity enhancement by combined efforts of agricultural scientists Green revolution in mid 60 s and 70 s in 20 th century Alleviation of world hunger, poverty and malnutrition Food security Nutritional security

3 Enhanced Agricultural Productivity: Why? Burgeoning and upsurging population (160 persons per minute) Plateuing of productivity due to adopting traditional farming practices Sinking of cultivable land Decaying of natural agricultural resource base Catering need of over 11 billion people by doubling of grain yield by 2050

4 POPULATION GROWTH : URGENT NEED TO INCREASE AGRICULTURAL PRODUCTIVITY POPULATION (MILLION) INDIAN POPULATION IS EXPONENTIALLY GROWING AND EXPECTED TO REACH 1.38 BILLION BY 2020.

5 Biotechnology : An answer Crop improvement programme through new found wisdom of Biotechnology Remedy of stagnation of crop productivity Impact on food production system through balanced approach and knowledge of Plant tissue culture Molecular Biology Cell Biology Biochemical Engineering Gene technology Plant breeding

6 Plant Breeding Biotechnology Improved Genotypes/ Cultivars Integrated Farm Management Enhanced crop Productivity And Production

7 Gene technology An additional tool for crop improvement programme Two keys of plant improvement Creation of variation Selection for positive attribute The attributes : Improvement of important agricultural traits Food and nutritional security Producing specialty foods, biochemicals, pharamaceuticals and smart designer crops Protecting plants against the ever increasing threats of biotic stress Alleviating the hazards of abiotic stress

8 IS IT POSSIBLE? GENE TECHNOLOGY MAKES IT POSSIBLE PRO--PRO P P PRO--EUK P Bacteria EUK--EUK EUK--PRO GENE Plant Animal

9 Transgenic Technology : Art and science of creating designer crops Identification of useful gene (s) Creation of a suitable gene construct Transfer of this construct in to plant cells/tissues in vitro ( maintained as organized explants such as immature embryos, stem sections, cotyledons etc. Using tissue culture techniques, through a process called transformation. Selection of transformed cell lines or seedling using a suitable marker system and regeneration of fertile plants from the transformed cells. Analysis of transformed plants for several aspects including stable integration, expression and genetic behaviour of transgene(s)

10 Procedure to develop transgenic biotech crop.

11 How are Transgenic crops made? Locating Genes for Plant Traits Identifying & locating genes for agriculturally important traits : Most limiting step in transgenic process Little is Known about specific genes to enhance yield potential improve stress tolerance modify chemical properties of harvested products otherwise affect plant characters Identifying a single gene for a trait is not sufficient Must understand how the gene is regulated What other effects it might have on the plant How it interacts with other genes active in the same biochemical pathway

12 Designing Genes for Insertion Once a gene has been isolated & cloned : it must be suitably modified for effective insertion into a plant A promoter sequence must be added for the gene to be correctly expressed Sometimes, the cloned gene is modified to achieve greater expression in a plant The termination sequence signals to the cellular machinery that the end of the gene sequence has been reached A selectable marker gene is added to the gene "construct" in order to identify plant cells or tissues that have successfully integrated the transgene.

13 Simplified representation of a constructed transgene, containing necessary components for successful integration and expression

14 Promoters used for Transgene expression It is the ON/OFF switch : controls when & where in the plant the gene will be expressed Most promoters used are CONSTITUTIVE : cause gene expression throughout the life cycle of plant in most tissues. CaMV 35S Promoter : Most commonly used & gives high degree of expression in plants Other promoters : More Specific : respond to cues in the plant s internal & external environment Promoter from cab gene (encoding chlorophyll a/b binding proteins) : Light inducible Promoters from Arabidopsis : Specifically & rapidly induced by natural plant stress/wounding related semiochemical cis-jasmone

15 Selectable Marker Genes Gene that facilitates the detection of genetically modified plant tissue during development Two major types of genes Conferring resistance to antibiotics Conferring tolerance to herbicides Other genes coming up

16 Drug (Antibiotic) resistance Marker npt II (Neomycin Phosphotransferase) hpt (Hygromycin Phosphotransferase) dhfr (Dihydrofolate reductase) ble gat (Gentamycin Acetyltransferase) Substrate for selection G418, Kanamycin, Neomycin Hygromycin Methotrexate, Trimethoprim Bleomycin Gentamycin

17 Herbicide resistance marker bar & pat (Phosphinothricin acetyltransferase) epsps (5-enolpyruvylshikhimate-3- phosphate synthase) Substrate for Selection Phosphenothricin (Bialaphos, Basta) Glyphosate

18 Risks & Concerns of using Antibiotic Resistance Genes Horizontal Gene Transfer Transfer of these genes from the transgenic plants to the microbes Make the bacteria in the guts of animals and humans resistant to antibiotics Make antibiotic medicines less effective Transfer to soil microbes : A field study shows that transgenic DNA persists for 2 years after the GM crop has been harvested

19 Other genes used as Selectable Marker Genes man A gene from E coli encodes mannose phosphate transferase and confer upon transformed cells ability to use mannose as a sole carbon source Ipt (isopentenyl transferase) gene from Agrobacterium located on T-DNA and induces cytokinin synthesis. Plants selected on the basis of their ability to produce shoots from callus on medium lacking cytokinins. Betaine aldehyde dehydrogenase gene (BADH) from Spinach Used with chloroplast genome.converts toxic betaine aldehyde to non-toxic glycine betaine, which also serves as an osmoprotectant and confer drought/salt tolerance

20 Selection of successfully transformed tissues Following the gene insertion process, plant tissues are transferred to a selective medium containing an antibiotic or herbicide, depending on which selectable marker was used. Only plants expressing the selectable marker gene will survive, and it is assumed that these plants will also possess the transgene of interest. Thus, subsequent steps in the process will only use these surviving plants.

21 Regeneration of whole plants To obtain whole plants from transgenic tissues such as immature embryos, they are grown under controlled environmental conditions in a series of media containing nutrients and hormones, a process known as tissue culture. Once whole plants are generated and produce seed, evaluation of the progeny begins. This regeneration step has been a stumbling block in producing transgenic plants in many species, but specific varieties of most crops can now be transformed and regenerated.

22 PRODUCTS WHEAT TRANSGENIC CROPS DEVELOPED SO FAR AT PANTNAGAR GENE INTROGR -ESSED PAT GENETICALLY ALTERED TRAITS HERBICIDE RESISTANCE (BASTA) BRASSICA OSMOTIN TOLERANCE TO ALTERNARIA BLIGHT AND SALINITY BRASSICA TOMATO CARROT ANNEXIN Pr M E Pr M E GUS MODULATION OF HYPERSENSITIVE RESPONSE AGAINST ALTERNARIA BLIGHT AND POWDERY MILDEW PRODUCTION OF EDIBLE VACCINE AGAINST JAPANESE ENCEPHALITIS VIRUS

23 TRANSGENIC TECHNOLOGY AN APPROACH FOR ENGINEERING RESISTANCE CELL PROLIFERATION CELL DEATH PLANT DEFENSE?? SYSTEMIC RESISTANT GENE OSMOTIN & ANNEXIN?? DIFFERENTIATION & DEVELOPMENT AT LEAST FOUR DIFFERENT SIGNALLING PATHWAYS ARE KNOWN TO EXIST IN PLANT CELL. ONE OR MORE OF SIGNALLING COMPONENTS CAN BE MODULATED BY TRANSFERRING STRESS RELATED USEFUL GENE. THIS MAY ENGINEER RESISTANCE.

24 Different stages of hardening of transformed plants. (a) Rooted PCR positive shoots transferred in plastic pots covered with polybags kept for hardening at transgenic glass house. (b) A PCR positive plant growing in the pot. (c) A hardened PCR positive plant growing in plantation pot after 2 months. (d) Hardened PCR positive plants growing at transgenic glass house.

25 Alternaria blight tolerance in Brassica

26 Five Brassica transformants harboring Annexin(T0 plants) were scored for various diseases, no. of pods, no. of seeds etc. PLANT NO. Natural infection in plants growing in glass house under high humidity and high temp No. of pods obtained No. of seeds obtained Control Alternaria blight (++) and powdery mildew(++) D38 Only powdery mildew (+++) D14 Only powdery mildew (+++) D11 (1) Alternaria blight (++) and powdery mildew (++) D62 Died early (only powdery mildew) 6 35 D17 Alternaria blight (+) and powdery mildew (++)

27 INHERITANCE OF ANNEXIN TRANSGENE IN T 1 PLANTS M M kb 1.0 kb Annexin PCR of T 1 progeny of T 0 plant Lane M = 100 bp ladder Lanes 1-10 = T 1 progeny plants of T 0 plant THIS EXPERIMENT HAS FURTHER REVEALED THAT A TRANSFORMANT PLANT HAS MOSAICS OF GENE WHEN GROWN IN VITRO FROM CALLUS. THE GENE MOSAICS COULD OCCUR AT BOTH ORGAN AND TISSUE OR CELLULAR LEVEL.

28 Edible vaccine against Japanese Encephalitis virus Callusing Shoot initiation Different stages of regeneration in tomato Rooting in solid medium Rooting in liquid medium

29 Transformed plant kept for hardening Presence of Transgene in tomato by PCR amplification

30 Problems Associated with production of Transgenic plants Low regeneration frequency associated with albinism and anthocyanin pigmentation which varied from explants to explants and crop to crop and resolved by the use of additives Low transformation frequency after cocultivation, varied from to 5% in our experiments due to induction of hypersensitive response by Agrobacterium Large number of escapes when Kanamycin is used as a selectable marker

31 Production of gene mosaics especially in the transgenic plants developed through organogenesis during callus culture Pleiotropic effects of transgene insertions like dwarfism, seed germination, developmental and differentiation changes and alteration of other important processes and traits Segregation problems in subsequent generations if homozygosity is not obtained Problems of stability in subsequent generations due to gene silencing

32 Transgene silencing Reduced/abolished expression of foreign gene Loss of expression : Not due to loss of transgene but due to their inactivation Concept of gene Space : Genomes are made of isochores (long stretches of DNA with high compositional homogeneity) If a GC rich transgene is integrated into a GC isochore or an AT rich transgene is integrated into an AT isochore : It is Transcribed If a GC rich transgene is integrated into the AT rich gene space or vice versa : It is Inactivated, as there is no compositional homogeneity with the neighboring sequences

33 Position Dependent & Sequence Dependent Gene silencing Transgene integrates into a genomic region containing heterochromatin. The repressive chromatin structure & DNA methylation can spread into the transgenic locus from the flanking genomic DNA Homology Dependent Gene Silencing Caused by Multiple copies of transgene (Repeat induced gene silencing) Affect not only the stability of transgene but also alter the activity of endogenous gene (Cosuppression)

34 Transcriptional Gene Silencing No mrna is produced from silenced gene Affected loci : nucleation points for heterochromatin formation & DNA methylation Post Transcriptional Gene Silencing Transcription is required for silencing to take place Induce degradation of mrna : very little accumulate in cytoplasm

35 Genetically Modified Organisms Pitfalls Possible cause(s) Multiple transgene copies. Loss of proper feedback control. Bad expression: Level, tissue, time. Possible outcome(s) Organism out of harmony Low viability or death. Should be detectable during development. Risk minimization Use progressive methods Disturbance at insertion site Danger is with occasional need for normal function, such as resistance to a rare pathogen. Insertion in appropriately benign region.

36 Genetically Modified Organisms Pitfalls Possible cause(s) Resulting organism conflicts with environment and/or interacting organisms. Possible outcome(s) Threatened insect populations. Resistant pests. GMOs could spread out of control, either directly or via their gametes. Risk minimization Understand the species, its modes of propagation, and its interactions with other species and the environment. Resulting organism generates inappropriate food product. Hormones, pesticides, residues, allergens etc. in product. Understand risks and test widely for safety.

37 Genetically Modified Organisms Pitfalls Possible cause(s) Possible outcome(s) Risk minimization Public perception on safety, ethics, welfare. Market failure Generate arguably safe GMOs and educate public maybe difficult. Other unknown causes Other unknown outcomes Keep an open and critical mind.

38

39

The genetically modified maize is proposed to be used as any other maize.

The genetically modified maize is proposed to be used as any other maize. Opinion of the Scientific Committee on Plants Regarding "Submission for Placing on the Market of Glufosinate Tolerant Corns ( Zea Mays) Transformation Event T25" by the Agrevo Company (NOTIFICATION C/F/95/12/07)

More information

Lab 10: Exploring GMOs

Lab 10: Exploring GMOs Lab 10: Exploring GMOs Notebook Lab Objectives To understand how genetic engineering supplements traditional methods of plant breeding to generate new traits in crop plants To understand how changing the

More information

Hmgr1 gene integrated Hevea - future GM rubber to the field

Hmgr1 gene integrated Hevea - future GM rubber to the field Hmgr1 gene integrated Hevea - future GM rubber to the field Jayashree, R., Venkatachalam, P., Thulaseedharan, A., Kala, R.G., Leda, P. and Nazeem, P.A Rubber Research Institute of India, Kottayam 686 009,

More information

BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology

BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology BIO1PS 2012 Plant Science Topic 4 Lectures 2 and 3 Introduction to Plant Biotechnology Dr. Michael Emmerling Department of Botany Room 410 m.emmerling@latrobe.edu.au Some Key Words Agrobacterium Ti plasmid

More information

Guided Notes Unit 5: Molecular Genetics

Guided Notes Unit 5: Molecular Genetics Name: Date: Block: Chapter 8: From DNA to Protein I. Concept 8.4: Transcription a. Central Dogma of Molecular Biology i. Information flows in one direction: ii. How? Guided Notes Unit 5: Molecular Genetics

More information

Biotechnology and its Applications

Biotechnology and its Applications Biotechnology and its Applications Very Short Answers Questions: 1. Give different types of cry genes and pests which are controlled by the proteins encoded by these genes? A: cryiac, cryiiab and cry IAb

More information

Inheritance and expression of transgenes in white clover

Inheritance and expression of transgenes in white clover Agronomy Society of New Zealand Special Publication No. 11 / Grassland Research and Practice Series No. 6 131 Inheritance and expression of transgenes in white clover ALICIA SCOTT 1, D.R. WOODFIELD, ANNE

More information

GM (Genetically Modified) Plants. Background

GM (Genetically Modified) Plants. Background 1 GM (Genetically Modified) Plants Background Genetically modified crops (GM) have been used since 1996 in the U.S. GM crops contain foreign genetic material The DNA may be from another plant or from a

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT SELECTIVE BREEDING, GM & CLONING CLASS 9 AND 10 Name :... Date:... Selective Breeding Selective breeding

More information

Horticulture and GMOs Current Status and the Future

Horticulture and GMOs Current Status and the Future Horticulture and GMOs Current Status and the Future Kevin M. Folta Professor and Chairman Horticultural Sciences Department kfolta@ufl.edu kfolta.blogspot.com @kevinfolta Current Status and Current Traits

More information

Chapter 7 Agricultural Biotechnology

Chapter 7 Agricultural Biotechnology Chapter 7 Agricultural Biotechnology Outline: 7.1 Introduction 7.2 Plant tissue culture 7.3 Genetically Modified Plant 7.4 Animal cloning 7.5 Genetically modified animal 2 Learning outcomes: Describe the

More information

Barley as a model for cereal engineering and genome editing. Wendy Harwood

Barley as a model for cereal engineering and genome editing. Wendy Harwood Barley as a model for cereal engineering and genome editing Wendy Harwood MonoGram 29 th April 2015 www.bract.org BRACT Transformation Platform Over-expression of single genes RNAi based silencing Promoter

More information

Plant Biotechnology I METHODOLOGY. Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic.

Plant Biotechnology I METHODOLOGY. Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic. Plant Biotechnology I METHODOLOGY Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc, Czech Republic Ivo Frébort Summary of the plant biotechnology lectures Plant Biotechnology

More information

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

Biotechnology: Genomics: field that compares the entire DNA content of different organisms Biotechnology: New Terms Today: Genome Genetic engineering, transgenic organisms, GM food, Reproductive and therapeutic cloning Stem cells, plouripotent, totipotent Gene therapy Genomics: field that compares

More information

Plant Biotechnology. The Genetic Manipulation of Plants OXPORD VNIVERSITY PRESS. Adrian Slater, Nigel W. Scott. Mark R. Fowler.

Plant Biotechnology. The Genetic Manipulation of Plants OXPORD VNIVERSITY PRESS. Adrian Slater, Nigel W. Scott. Mark R. Fowler. Plant Biotechnology The Genetic Manipulation of Plants Adrian Slater, Nigel W. Scott and Mark R. Fowler De Montfort University OXPORD VNIVERSITY PRESS Preface List of Abbreviations Foreword v xiii xxi

More information

GMO & Food Safety. Presented By: Dr. Yasser Mostafa Quality & Food Safety Manager MARS KSA

GMO & Food Safety. Presented By: Dr. Yasser Mostafa Quality & Food Safety Manager MARS KSA GMO & Food Safety Presented By: Dr. Yasser Mostafa Quality & Food Safety Manager MARS KSA Contents: What are genetically modified (GM) organisms and GM foods? Why are GM foods produced? Are GM foods assessed

More information

Optimizing Gene Function in Plants

Optimizing Gene Function in Plants Optimizing Gene Function in Plants Linda Castle, Research Coordinator Pioneer i-bred International, Inc. March 21, 2007 European Food Safety Authority Parma, Italy 2 Gene shuffling A recombinant DNA technology

More information

Emerging technology and prospects of genetic engineering to increase food production and quality. Crop Yield 9/12/2012

Emerging technology and prospects of genetic engineering to increase food production and quality. Crop Yield 9/12/2012 Emerging technology and prospects of genetic engineering to increase food production and quality Dr. Joe Kuhl Dept. of Plant, Soil, & Entomological Sciences September 12, 2012 Crop Yield Thomas Malthus

More information

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A.

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. tumefaciens to the plant inspired the promise that A. tumefaciens might

More information

PRINSIP BIOTEKNOLOGY. Application of Biotech on Plants, Agriculture

PRINSIP BIOTEKNOLOGY. Application of Biotech on Plants, Agriculture PRINSIP BIOTEKNOLOGY Application of Biotech on Plants, Agriculture Materi Traditional methods, selective breeding Recombinant DNA technology How to deliver genes in plants The major concerns about GMO

More information

Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms

Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms Duncanrig Secondary JHM&MHC 2015 Page 1 of 18 On completion of this

More information

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS?

[ 2 ] [ 3 ] WHAT IS BIOTECHNOLOGY? HOW IS BIOTECHNOLOGY DIFFERENT FROM THE TRADITIONAL WAY OF IMPROVING CROPS? WHAT IS BIOTECHNOLOGY? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology

Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology 1 Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology Purpose and expected outcomes 1. Recombinant DNA (rdna) technology allows scientists to transfer genes from

More information

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology 1 Biotechnology is defined as the technology that involves the use of living organisms

More information

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha

Basic Concepts and History of Genetic Engineering. Mitesh Shrestha Basic Concepts and History of Genetic Engineering Mitesh Shrestha Genetic Engineering AKA gene manipulation, gene cloning, recombinant DNA technology, genetic modification, and the new genetics. A technique

More information

Muhammad Musa, Ph.D. Senior Program Specialist (Crops) SAARC Agriculture Centre, Dhaka Bangladesh

Muhammad Musa, Ph.D. Senior Program Specialist (Crops) SAARC Agriculture Centre, Dhaka Bangladesh Agriculture Centre SAARC Muhammad Musa, Ph.D. Senior Program Specialist (Crops), Dhaka Bangladesh Challenges Food production situation in South Asia population vis-à-vis production levels Poverty (37%)

More information

Chapter 6: Plant Biotechnology

Chapter 6: Plant Biotechnology Chapter 6: Plant Biotechnology Chapter Contents 6.1 The Future of Agriculture: Plant Transgenics 6.2 Methods Used in Plant Transgenesis 6.3 Practical Applications 6.4 Health and Environmental Concerns

More information

Genetic Engineering Methods

Genetic Engineering Methods Genetic Engineering Methods Outline Why do it? Research examples: poplar trees Plant gene transfer concepts and methods Getting genes ready for transfer (recombinant DNA/plasmids) Analysis of transgenic

More information

Genes, Mendel and Meiosis

Genes, Mendel and Meiosis Genes, Mendel and Meiosis Why are Genetics Important? Key to plants being able to survive (evolve) changes in environment is genetic variation. Plant breeders use this genetic variation to breed new cultivars.

More information

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory 13 Biotechnology Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made

More information

Biosc10 schedule reminders

Biosc10 schedule reminders Biosc10 schedule reminders Review of molecular biology basics DNA Is each person s DNA the same, or unique? What does DNA look like? What are the three parts of each DNA nucleotide Which DNA bases pair,

More information

Testing GM crops. Mitesh Shrestha

Testing GM crops. Mitesh Shrestha Testing GM crops Mitesh Shrestha GMO food/feed testing is based on some fundamental principles of genetic engineering and cellular physiology: DNA: The introduction of foreign DNA into a recipient plant

More information

Experimental Tools and Resources Available in Arabidopsis. Manish Raizada, University of Guelph, Canada

Experimental Tools and Resources Available in Arabidopsis. Manish Raizada, University of Guelph, Canada Experimental Tools and Resources Available in Arabidopsis Manish Raizada, University of Guelph, Canada Community website: The Arabidopsis Information Resource (TAIR) at http://www.arabidopsis.org Can order

More information

What is Biotechnology?

What is Biotechnology? What is Biotechnology? Biotechnology is a modern technology that makes use of organisms (or parts thereof) to: make or modify products; improve and develop microorganisms, plants or animals; or develop

More information

Genetic Engineering 1 of 27 Boardworks Ltd 2012

Genetic Engineering 1 of 27 Boardworks Ltd 2012 Genetic Engineering 1 of 27 Boardworks Ltd 2012 2 of 27 Boardworks Ltd 2012 What is genetic engineering? 3 of 27 Boardworks Ltd 2012 DNA of living organisms can be modified by the insertion or removal

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Study-IQ education

Study-IQ education Science & Tech Target- 2018 (Series-7) BIOTECHNOLOGY By Dr. Ravi P. Agrahari - Scientist in IIT Delhi - Author of Mc Graw Hill Publication for Science & Technology - last 17 years teaching experience for

More information

Generated by Foxit PDF Creator Foxit Software For evaluation only. Biotechnology in Plant Pathology

Generated by Foxit PDF Creator Foxit Software  For evaluation only. Biotechnology in Plant Pathology Biotechnology in Plant Pathology Plant Biotechnology Definition: The use of tissue culture & genetic engineering techniques to produce genetically modified plants that show improved desirable characteristics.

More information

Science to Support Plant Protection for Horticulture AAFC s Science & Technology Branch

Science to Support Plant Protection for Horticulture AAFC s Science & Technology Branch Science to Support Plant Protection for Horticulture AAFC s Science & Technology Branch Crop, Plant Protection and the Environment Committee March 15, 2018 Dr. Della Johnston Outline Strategic direction

More information

Chapter 9. Biotechnology and DNA Technology

Chapter 9. Biotechnology and DNA Technology Chapter 9 Biotechnology and DNA Technology SLOs Compare and contrast biotechnology, recombinant DNA technology, and genetic engineering. Identify the roles of a clone and a vector in making recombined

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Quiz - Chapter 10 - Agriculture, Biotechnology, and the Future of Food MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Monoculture. A) farming

More information

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology

A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology How Are Large DNA Molecules Analyzed? Naturally occurring enzymes that cleave and repair DNA are used in the laboratory to manipulate

More information

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Genetic Engineering Direct, deliberate modification of an organism s genome bioengineering Biotechnology use of an organism s biochemical

More information

Role of PGPR in sustainable agriculture: Global climate Change and Water sustainability

Role of PGPR in sustainable agriculture: Global climate Change and Water sustainability Role of PGPR in sustainable agriculture: Global climate Change and Water sustainability 4 th Asian PGPR Conference, Hanoi 3-6 th May, 2015 Rupak Kumar Sarma Life Science Division Institute of Advanced

More information

Refresher on gene expression - DNA: The stuff of life

Refresher on gene expression - DNA: The stuff of life Plant Pathology 602 Plant-Microbe Interactions Lecture 2 Molecular methods for studying hostpathogen interactions I Sophien Kamoun kamoun.1@osu.edu The Ohio State University Ohio Agricultural Research

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

Chapter 15 Gene Technologies and Human Applications

Chapter 15 Gene Technologies and Human Applications Chapter Outline Chapter 15 Gene Technologies and Human Applications Section 1: The Human Genome KEY IDEAS > Why is the Human Genome Project so important? > How do genomics and gene technologies affect

More information

Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Het

Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Het CET BIOLOGY BIOTECHNOLOGY II Q. Importing better varieties of plants from outside and acclimatizing i them to local l environment is 1. Selection 2. Cloning 3. Introduction 4. Heterosis Q. Bagging is done

More information

Biology on. Report to. Sciences, Bangalore New Delhi. Indian Academy of. India, Allahabad. Sponsored) PSGR

Biology on. Report to. Sciences, Bangalore New Delhi. Indian Academy of. India, Allahabad. Sponsored) PSGR Science Academies Lecture Workshop on Developmental and Molecular Biology on 11 12, December 2014 Report to Indian Academy of Sciences Sciences, Bangalore Indian National Science Academy New Delhi The

More information

Anti-Aging Skin Care Regimen. What is Phyto Stem Cell Plant Cell Callus?

Anti-Aging Skin Care Regimen. What is Phyto Stem Cell Plant Cell Callus? Anti-Aging Skin Care Regimen What is Phyto Stem Cell Plant Cell Callus? 01 Plant Cell Culture Technology for Anti-Aging Actives Phytochemicals are non-nutritive plant chemicals that have protective or

More information

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050

Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Innovative Trait Development Tools in Plant Breeding will be Crucial for Doubling Global Agricultural Productivity by 2050 Greg Gocal, Ph.D., Senior Vice President, Research and Development CRISPR Precision

More information

Summary Notification Information Format

Summary Notification Information Format BIJLAGE 12 Summary Notification Information Format A. General information A1. Details of notification Notification Number Member State Belgium Date of Acknowledgement Title of the Project Scientific field

More information

Developing New GM Products and Detection Methods

Developing New GM Products and Detection Methods Developing New GM Products and Detection Methods Dave Grothaus Monsanto Company Slides Thanks to: International Life Sciences Institute Crop Life International Indus try Colleagues Hope Hart - Syngenta

More information

Chapter 5. Genetically Modified Foods are Not Fearful

Chapter 5. Genetically Modified Foods are Not Fearful Chapter 5 Genetically Modified Foods are Not Fearful The discussion of the subject of genetically modified foods has been avoided, because it has delicate problems politically, economically and from various

More information

Genetic Engineering for Better Agriculture, Food and Medicine. Prof.Dr. Shahana Urooj Kazmi University of Karachi

Genetic Engineering for Better Agriculture, Food and Medicine. Prof.Dr. Shahana Urooj Kazmi University of Karachi Genetic Engineering for Better Agriculture, Food and Medicine Prof.Dr. Shahana Urooj Kazmi University of Karachi People invented winemaking about 10,000 years ago. Followed by ensiling. Then meat preservation.

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

Procedures of Application for Safety Assessment of Foods and Food Additives Produced by Recombinant DNA Techniques

Procedures of Application for Safety Assessment of Foods and Food Additives Produced by Recombinant DNA Techniques Ministry of Health and Welfare Announcement No. 233 According to the Specifications and Standards for Foods, Food Additives and Other Related Products (Ministry of Health and Welfare Announcement No.370-December

More information

A GENE REVOLUTION. Can genetically engineered food help end hunger?

A GENE REVOLUTION. Can genetically engineered food help end hunger? CHAPTER 20 FEEDING THE WORLD A GENE REVOLUTION Can genetically engineered food help end hunger? A GENE REVOLUTION Can genetically engineered food help end hunger? While the Green Revolution increased crop

More information

Identification of useful potato germplasm adapted to biotic and abiotic stresses caused by global climate change: old genes coping new challenges

Identification of useful potato germplasm adapted to biotic and abiotic stresses caused by global climate change: old genes coping new challenges Policy Seminar on the International Treaty on Plant Genetic Resources for Food and Agriculture: Global Challenges and Future Direction Identification of useful potato germplasm adapted to biotic and abiotic

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Genetically Modified Organisms

Genetically Modified Organisms Genetically Modified Organisms 1 Genetically Modified Organisms! Farmers have been genetically modifying plants for 1000s of years! Modern technology allows for the insertion of desirable genes into target

More information

Prospects of GM Crops and Regulatory considerations

Prospects of GM Crops and Regulatory considerations Prospects of GM Crops and Regulatory considerations Dr.R.S.Kulkarni Professor of Genetics & Plant Breeding University of Agricultural Sciences GKVK, Bangalore THE GLOBAL VALUE OF THE BIOTECH CROP MARKET

More information

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition

Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Molecular assessment of GMOs Ilona Kryspin Sørensen PhD DTU Food Division for Risk Assessment and Nutrition Objective : to assess the level of documentation necessary for the evaluation of the insertion

More information

New Plant Breeding Techniques: Zn Finger Nucleases and Transcription Factors

New Plant Breeding Techniques: Zn Finger Nucleases and Transcription Factors New Plant Breeding Techniques: Zn Finger Nucleases and Transcription Factors Andrew F. Roberts, Ph.D. Deputy Director, CERA September 19, 2013 Contents of the talk Old Plant Breeding Techniques and Biosafety

More information

What is DNA? Gene (skin colour) Gene (iris colour)

What is DNA? Gene (skin colour) Gene (iris colour) What is DNA? Gene (skin colour) Adenine Thymine Gene (iris colour) Guanine Cytosine 1 is deoxyribonucleic acid, a molecule found in the cells of all living organisms. It carries the information responsible

More information

Biotechnology. Chapter 17 section 1 (only)

Biotechnology. Chapter 17 section 1 (only) Biotechnology Chapter 17 section 1 (only) 5-16-16 Learning Goals for Today: Explain how DNA profiling can identify individuals Interpret data from DNA electrophoresis Discuss genetically modified organisms

More information

Genetically Modified Organisms

Genetically Modified Organisms Genetically Modified Organisms 1 Genetically Modified Organisms Farmers have been genetically modifying plants for 1000s of years Must take undesirable traits with those selected for Modern technology

More information

Standards for Safety Assessments of Food Additives produced Using Genetically Modified Microorganisms

Standards for Safety Assessments of Food Additives produced Using Genetically Modified Microorganisms Standards for Safety Assessments of Food Additives produced Using Genetically Modified Microorganisms (Food Safety Commission Decision of March 25, 2004) Chapter 1 General Provisions No. 1 Background on

More information

Grand Challenges. Plant Science for a Better World

Grand Challenges. Plant Science for a Better World Grand Challenges Crop Science Society of America Plant Science for a Better World Written by the CSSA Grand Challenges Committee Crop Science Society of America Headquarters Offices Phone: (608) 273-8080

More information

West Africa Centre for Crop Improvement. New Four Year Ph D Programme In Plant Breeding f or West Africa Centre For Crop Improvement

West Africa Centre for Crop Improvement. New Four Year Ph D Programme In Plant Breeding f or West Africa Centre For Crop Improvement West Africa Centre for Crop Improvement New Four Year Ph D Programme In Plant Breeding f or West Africa Centre For Crop Improvement Introduction The West Africa Centre for Crop Improvement (WACCI), a partnership

More information

Unit 8.3: Biotechnology

Unit 8.3: Biotechnology Unit 8.3: Biotechnology Lesson Objectives Describe gene cloning and the polymerase chain reaction. Explain how DNA technology is applied in medicine and agriculture. Identify some of the ethical, legal,

More information

TOPIC BIOTECHNOLOGY

TOPIC BIOTECHNOLOGY TOPIC 3.5 - BIOTECHNOLOGY 3.5 A Techniques & Profiling IB BIO 3.5 3 Understandings U1: Gel electrophoresis is used to separate proteins or fragments of DNA according to size. Gel electrophoresis is a technique

More information

Genetically Modified Organisms II. How are transgenic plants generated? The components of T DNA transfer. Plants

Genetically Modified Organisms II. How are transgenic plants generated? The components of T DNA transfer. Plants Genetically Modified Organisms II Plants How are transgenic plants generated? The bacterium Agrobacterium tumefaciens is a pathogen of plants that causes crown gall tumors. Crown gall tumor Agrobacterium

More information

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology.

Page 3. 18) The diagram below illustrates some key steps of a procedure in one area of biotechnology. Name: 1117 1 Page 1 1) A small amount of DNA was taken from a fossil of a mammoth found frozen in glacial ice. Genetic technology can be used to produce a large quantity of identical DNA from this mammoth's

More information

International Baccalaureate Biology Option B. Biotechnology and Bioinformatics

International Baccalaureate Biology Option B. Biotechnology and Bioinformatics International Baccalaureate Biology Option B Introduction Biotechnology and Bioinformatics Welcome to the International Baccalaureate Revision Guide for Option B. Sections B1 to B3 form the common core

More information

Transgenic Plants Model Answers

Transgenic Plants Model Answers Transgenic Plants Model Answers Compiled by Mr. Nitin Swamy Asst. Prof. Department of Biotechnology Page 1 of 7 Transgenic plants are the ones, whose DNA is modified using genetic engineering techniques.

More information

Genetic engineering and the food we eat*

Genetic engineering and the food we eat* Genetic engineering and the food we eat* Prof. Daniel Chamovitz Tel Aviv University *and the clothes we wear, and the medicines we take, and gasoline we burn Problem #1: World Population is exploding 2011

More information

Lecture Series 10 The Genetics of Viruses and Prokaryotes

Lecture Series 10 The Genetics of Viruses and Prokaryotes Lecture Series 10 The Genetics of Viruses and Prokaryotes The Genetics of Viruses and Prokaryotes A. Using Prokaryotes and Viruses for Genetic Experiments B. Viruses: Reproduction and Recombination C.

More information

This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown

This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown Molecular Genetics Exam 3 Key page 1 of 5 This pedigree shows a family affected by an autosomal dominant genetic disease. Genotypes for five markers, A through E, are shown I 1 2 II 1 2 III The genotypes

More information

Welcome to. Genetic Improvements Techniques and a Future in Small Farms

Welcome to. Genetic Improvements Techniques and a Future in Small Farms Welcome to Genetic Improvements Techniques and a Future in Small Farms The 2014 Educational Program Committee is pleased to share conference educational materials with you under the condition that they

More information

CHAPTERS 16 & 17: DNA Technology

CHAPTERS 16 & 17: DNA Technology CHAPTERS 16 & 17: DNA Technology 1. What is the function of restriction enzymes in bacteria? 2. How do bacteria protect their DNA from the effects of the restriction enzymes? 3. How do biologists make

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture

Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture Microbially Mediated Plant Salt Tolerance and Microbiome based Solutions for Saline Agriculture Contents Introduction Abiotic Tolerance Approaches Reasons for failure Roots, microorganisms and soil-interaction

More information

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 20 Biotechnology PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Unit 3: Sustainability and Interdependence

Unit 3: Sustainability and Interdependence Unit 3: Sustainability and Interdependence Sub-topic 3.2 Plant and Animal Breeding Page 1 of 17 On completion of this sub-topic I will be able to: understand that plant and animal breeding involves the

More information

Texas A&M AgriLife Research LOWER RIO GRANDE VALLEY REGION RESEARCH GOALS AND IMPACTS. Texas A&M AgriLife Research and Extension Center at Weslaco

Texas A&M AgriLife Research LOWER RIO GRANDE VALLEY REGION RESEARCH GOALS AND IMPACTS. Texas A&M AgriLife Research and Extension Center at Weslaco Texas A&M AgriLife Research LOWER RIO GRANDE VALLEY REGION RESEARCH GOALS AND IMPACTS Texas A&M AgriLife Research and Extension Center at Weslaco 2015 GOAL Protect water quality and increase the amount

More information

AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS

AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS AGROBACTERIUM - MEDIATED TRANSFORMATION OF SECONDARY SOMATIC EMBRYOS FROM ROSA HYBRIDA L. AND RECOVERY OF TRANSGENIC PLANTS A. Borissova, T. Hvarleva, I. Bedzhov, V. Kondakova, A. Atanassov, I. Atanassov

More information

BIOTECHNOLOGY. It s in your genes!

BIOTECHNOLOGY. It s in your genes! BIOTECHNOLOGY It s in your genes! Technology is Essential to Science Sample collection and treatment Measurement Data collection and storage Computation Communication of information Traditional Biotechnology

More information

Biology 3201 Genetics Unit #8

Biology 3201 Genetics Unit #8 Biology 3201 Genetics Unit #8 Diagnosis and Treatment of Genetic Disorders Genetic Engineering The Human Genome Project GMOs and GMFs Cloning Diagnosis of Genetic Disorders Detection of genetics disorders-

More information

Optimization of Agrobacterium tumefaciens mediated genetic transformation protocol for aromatic rice

Optimization of Agrobacterium tumefaciens mediated genetic transformation protocol for aromatic rice J. Bangladesh Agril. Univ. 7(2): 235 240, 2009 ISSN 1810-3030 Optimization of Agrobacterium tumefaciens mediated genetic transformation protocol for aromatic rice M. R. Hossain, L. Hassan, A. K. Patwary

More information

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology?

More information

Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~

Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~ Highly efficient genome engineering in flowering plants ~ Development of a rapid method to knockout genes in Arabidopsis thaliana ~ December 5, 2016 Plant biologists at ITbM, Nagoya University have developed

More information

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

A Genetic Screen to Identify Mammalian Chromatin Modifiers In Vivo.

A Genetic Screen to Identify Mammalian Chromatin Modifiers In Vivo. Gus Frangou, Stephanie Palmer & Mark Groudine Fred Hutchinson Cancer Research Center, Seattle- USA A Genetic Screen to Identify Mammalian Chromatin Modifiers In Vivo. During mammalian development and differentiation

More information

The following are answers to frequently asked questions

The following are answers to frequently asked questions Genetically Medified Organisms Production, Regulation, and Maricoting The following are answers to frequently asked questions about what constitutes genetically modified organisms and foods, and how these

More information

Received: 13 th Oct-2011 Revised: 16 th Oct-2012 Accepted: 29 th Oct-2012 Research article

Received: 13 th Oct-2011 Revised: 16 th Oct-2012 Accepted: 29 th Oct-2012 Research article Received: 1 th Oct-11 Revised: 1 th Oct-12 Accepted: 29 th Oct-12 Research article STUDIES ON THE EFFECT OF VARIOUS STERILANTS AND CULTURE CONDITIONS ON IN-VITRO SEED GERMINATION IN TOMATO (SOLANUM LYCOPERSICUM)

More information

Genetically Modified Crops

Genetically Modified Crops page 1/7 Scientific Facts on Genetically Modified Crops Source document: FAO (2004) Summary & Details: GreenFacts Context - We are regularly confronted with genetically modified foods, be it in the news

More information

Crop Science Society of America

Crop Science Society of America Crop Science Society of America Grand Challenge Statements Crop science is a highly integrative science employing the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology,

More information