There is a plenty of room at the bottom

Size: px
Start display at page:

Download "There is a plenty of room at the bottom"

Transcription

1 NanoBiotechnology

2 Lecture by Richard Feynman (1959) There is a plenty of room at the bottom We could arrange the atoms one-by-one the way we want them High-resolution microscopes would allow a direct look at single molecules in biological systems It is very easy to answer many of these fundamental biological questions; you just look at the thing! Unfortunately, the present microscope sees at a scale which is just a bit too crude. Make the microscope one hundred times more powerful, and many problems of biology would be made very much easier.

3 Nanotechnology Creation of useful materials, devices, and systems through the manipulation of matter on a nanometer scale. - Generally nanotechnology deals with structures sized between 1 to 100 nanometer in at least one dimension. Ability to design systems with defined structure and function on the nanometer scale. Involves developing materials, devices within that size, and analytical tools (methodology), which can be used for analysis and measurement on a molecular scale Interdisciplinary area : Biology, Physics, Chemistry, Material science, Electronics, Chemical Engineering, Information technology

4 Nanotechnology Plays by Different Rules Normal scale Nanoscale

5 Analytical methods and Nano-sized materials Analytical tools : Atomic force microscopy(afm), Electron microscopy (EM) Nano-sized materials Unusual and different property - Semiconductor nanocrystals: Size-dependent optical property - Nanoparticles: Magnetic nanoparticles (Ferromagnetic, superparamagnetic), Gold nanoparticles, Carbon nanotubes, Graphene - Superparamegnetism: In the absence of an external magnetic field, magnetization is in average zero

6 Graphene Allotrope of carbon in the form of a two-dimensional, atomic-scale, hexagonal lattice Extraordinary properties. - About 200 times stronger than steel by weight - Conducts heat and electricity with great efficiency - Nearly transparent Potential applications: -semiconductor, electronics, battery energy, and composites Andre Geim and Konstantin Novoselov at the Univ Manchester won the Nob el Prize in Physics in Groundbreaking experiments regarding the two-dimensional material graphene

7 Scanning probe microscopy image Graphene-Based Nanomaterials

8 Examples of nano-sized materials

9 Future implications of nanotechnology Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, biomaterials, electronics, and energy production. Nanotechnology raises many of the same issues as with any introduction of new technology, including concerns about the toxicity and environmental impact of nano-sized materials, and their potential effects on global economics.

10 Nano-Biotechnology Integration of nano-sized/structured materials, nano-scale analytical tools, and nano-devices with biological sciences for development of new biomaterials and analytical tool-box as well as for understanding life science Use of bio-inspired molecules or materials Typical characteristics of Biological events/materials - Self assembly - Highly efficient : high energy yield - Very specific : extremely precise Bio-molecules Proteins, DNA, RNA, Aptamers, Peptides, Antibody, Virus

11 Nano-Bio Convergence Bio-inspired device and system Bio-Technology Nano-Technol Molecular Imaging Molecular Switch DNA barcode Biochip / Biosensor Nanotherapy / Delivery Bionano-machine / Nano-Robot

12 Applications and Perspectives of Nanobiotechnology Development of new tools and methods - More sensitive - More specific - Multiplexed - More efficient and economic Implementation - Diagnosis and treatment of diseases - Rapid and sensitive detection (Biomarkers, Imaging) - Targeted delivery of therapeutics (higher therapeutic efficacy, low side-effects - Drug development - Drug target discovery - Understanding of biology

13 Examples Nano-Biodevices Nano-Biosensors Drug and gene delivery using nanoparticles Imaging with nanoparticles Analysis of a single molecule/ a single cell

14 Issues to be considered Synthesis or selection of nano-sized/ structured materials: bottom-up or top-down Functionalization with biomolecules or for biocompatibility Integration with devices and/or analytical tools Assessment : Reproducibility, Toxicity Mass production and practical implementation

15 The size of things

16 NanoBiotech was initiated by the development of SPM(Scanning Probe Microscopy) that enables imaging at atomic level in 1980 Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM)

17 Scanning Tunneling Microscopy (STM) Instrument for imaging surfaces at the atomic level. Developed in 1981 by Gerd Binnig and Heinrich Rohrer (at IBM Zürich) Nobel Prize in Physics in Resolution : 0.1 nm lateral resolution and 0.01 nm (10 pm) depth resolution. Used not only in ultra-high vacuum but also in air, water, and various other liquid or gas ambients, and at temperatures ranging from near zero kelvin to over 1000 C. Operating principle: Concept of quantum tunneling. - When a conducting tip is brought very near to the surface to be examined, a bias (voltage difference) applied between the two can allow electrons to tunnel through the vacuum between them. - The resulting tunneling current is a function of tip position, applied voltage, and the local density of states (LDOS) of the sample. - Information is acquired by monitoring the current as the tip's position scans across the surface, and is usually displayed in image form. - Needs extremely clean and stable surfaces, sharp tips, excellent vibration control, and sophisticated electronics

18

19 AFM (Atomic Force Microscope) One of the foremost tools for imaging, measuring, and manipulating matters at the nanoscale. A cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface When the tip is brought into a close proximity of a sample surface, force between the tip and sample leads to a deflection of the cantilever according to the Hooke s law (F= -kx) Deflection is measured using a laser spot reflected from the top surface of the cantilever into an array of photodiode

20 Principle and mode of AFM Non-contact mode: The probe is connected to a resonator, usually a silicon cantilever or a quartz crystal resonator. Sensor is driven so that it oscillates. - The force interactions are measured either by measuring the change in amplitude of the oscillation at a constant frequency just off resonance (amplitude modulation) or by measuring the change in resonant frequency directly using a feedback circuit (frequency modulation).

21

22

23 VEECO TESPA VEECO TESPA-HAR NANOWORLD SuperSharpSilicon Tip length : 10 m Radius : 15~20 nm Tip length :10 m (last 2 m 7:1) Radius : 4~10 nm Tip length :10 m Radius : 2 nm

24 Resolution of protein structure by AFM Image of ATP synthase composed of 14 subunits

25 Molecular imaging Biomedical & Biological Sciences : - Ultra-sensitive imaging of biological targets under non-invasive in-vivo conditions - Fluorescence, positron emission tomography, Magnetic resonance imaging Ultra-sensitive imaging - Cancer detection, cell migration, gene expression, localization of proteins, angiogenesis, apotosis - MRI : Powerful imaging tool as a result of non-invasive nature, high spatial resolution and tomographic capability Resolution is highly dependent on the molecular imaging agents Signal enhancement by using contrast agents : iron oxide nanoparticles

26 Semiconductor Nanocrystals Quantum Dots Properties and Biological Applications

27 Synthesis of CdSe/ZnS (Core/Shell) QDs CdSe/ZnS 5.5 nm (red) Step 1 CdO + Se CdSe Step 2 ZnEt 2 + S(TMS) 2 Solvent : TOPO, HAD, TOP Surfactant : TDPA, dioctylamine Growth temperature 140 (green) 200 (red) ZnS CdSe 20 nm Bawendi et al. J. Am. Chem. Soc. (1994)

28 Optical Properties of Quantum Dots a) Multiple colors with size b) Photostability c) Wide absorption and narrow emission d) High quantum yield Quantum Yield 60 ~ 70 % Single source excitation

29 Coating of QD Surface for Biocompatibility Encapsulation with the hydrophobic core of a micelle NH 2 NH 2 + N NH 2 P O CdSe O P O P O P O P O P O P Coating with PC Coating of the outer Shell with ZnS P O ZnS CdSe O P O P O P O P O P O P P O O P ZnS O P NH 2 CdSe O P O P + N O P O P + N + N + N NH 2 NH 2 NH 2 CdSe QDs CdSe/ZnS core-shell Quantum Dots encapsulated in phospholipid micelles NH 2 PEG-PE (n-poly(ethylenglycol) phosphatidylethanolamine): micelle-forming hydrophilic polymer-grafted lipids comparable to natural lipoproteins PEG : low immunogenic and antigenic, low non-specific protein binding PC : Phosphatidylcholine Dubertret et al. Science (2002)

30 In vitro imaging Y QD QD-Antibody conjugates + Organelle Antigen Y QD 3T3 cell nucleus stained with red QDs and microtubules with green QDs Organelle - Multiple Color Imaging - Stronger Signals Wu et al. Nature Biotech

31 In vivo imaging Live Cell Imaging Quantum Dot Injection Cell Motility Imaging Red Quantum Dot locating a tumor in a live mouse 10um Green QD filled vesicles move toward to nucleus (yellow arrow) in breast tumor cell Alivisatos et al., Adv. Mater.,

32 Bio-inspired systems Inherent capabilities of molecular recognition and self-assembly Attractive template for constructing and organizing the nano-structures Proteins, toxin, coat proteins of virus etc.

33 α -Hemolysin: Self-assembling transmembrane pore A self-assembling bacterial exo-toxin produced by some pathogens like Staphylococcus aureus as a way to obtain nutrients lysis of red blood cells α-hemolysin monomers bind to the outer membrane of the cells. Monomers oligomerize to form a water-filled heptameric transmembrane channel that facilitates uncontrolled permeation of water, ions, and small organic molecules. Rapid discharge of vital molecules, such as ATP, dissipation of the membrane potential and ionic gradients, and irreversible osmotic swelling leading to the cell wall rupture (lysis), can cause death of the host cell.

34 - Mushroom-like shape with a 50 A beta-barrel stem - Narrowest part (1.4 nm in diameter) of channel at the base of stem

35 Biotechnological applications :Stochastic sensors A molecular adaptor is placed inside its engineered stem, influencing the transmembrane ionic current induced by an applied voltage Reversible binding of analytes to the molecular adaptor transiently reduces the ionic current - Magnitude of the current reduction : type of analyte - Frequency of current reduction intervals: Analyte concentration Stochastic system: systems that are unpredictable due to the influence of a random variable

36 Construction of stochastic sensors

37 a : Histidine captured metal ions (Zn+2, Co+2, mixture ) b: CD captures anions (promethazine, imipramine, mixture) c : biotin ligand

38 Cyclodextrins Family of compounds made up of sugar molecules bound together in a ring : cyclic oligosaccharides). Comprising hydrophobic inside and hydrophilic outside, they can form complexes with hydrophobic compounds. Enhance the solubility and bioavailability of such compounds. Useful for pharmaceutical as well as dietary supplement applications in which hydrophobic compounds shall be delivered.

39 DNA sequencing Transmembrane pore can conduct big (tens of kda) linear macromolecules like DNA or RNA Eelectrophoretically-driven translocation of a 58-nucleotide DNA strand through the transmembrane pore of alpha-hemolysin Changes in the ionic current by the chemical structure of individual strands Nucleotide sequence directly from a DNA or RNA strand A single nucleotide resolution

40 DNA sequencing by nanopore

41

42 Understanding Cancer and Related Topics Understanding Nanodevices Developed by: Jennifer Michalowski, M.S. Donna Kerrigan, M.S. Jeanne Kelly Brian Hollen Explains nanotechnology and its potential to improve cancer detection, diagnosis, and treatment. Illustrates several nanotechnology tools in development, including nanopores, quantum dots, and dendrimers. These PowerPoint slides are not locked files. You can mix and match slides from different tutorials as you prepare your own lectures. In the Notes section, you will find explanations of the graphics. The art in this tutorial is copyrighted and may not be reused for commercial gain. Please do not remove the NCI logo or the copyright mark from any slide. These tutorials may be copied only if they are distributed free of charge for educational purposes.

43 What Is NanoBiotechnology? Water molecule Nanodevices Nanopores Dendrimers Nanotubes Quantum dots Nanoshells White blood cell A period Tennis ball

44 Designing Nano-devices for Use in the Body Too Small Too Big

45 Manufacturing Nanodevices Top-down approach: Molding or etching materials into smaller components Bottom-up approach :Assembling structures atom-by-atom or molecule-by-molecule, useful in manufacturing devices used in medicine. X-ray beam Crystal Scattered X-rays Detector Atoms in crystal Crystal Nanodevices White blood cell

46 Nanodevices Are Small Enough to Enter Cells Cell (10,000~ 20,000 nm) Nanodevices Nanodevices Water molecule White blood cell

47 Nano-devices can improve cancer detection and diagnosis at early stages NanoBiotechnology Imaging Physical Exam, Symptoms

48 Nanodevices can improve sensitivity Normal cells Precancerous cells Nanodevices could potentially enter cells Normal cells and determine which cells are cancerous or precancerous. Precancerous cells

49 Nanodevices can preserve patients samples Traditional Tests Cells from patient Cells altered Active state lost Nanotechnology Tests Cells from patient Cells preserved Active state preserved Additional tests

50 Nanodevices can make cancer tests faster and more efficient Patient A Patient B Many diagnostic tests simultanelusly

51 Cantilevers can make cancer tests faster and moreefficient Cancer cell Antibodies with proteins Antibodies Bent cantilever Water molecule White blood cell Nanodevices Cantilevers

52 Nanopores Single-stranded DNA molecule Nanopore A T C G Nanopore A Singlestranded DNA molecule T Nanopore Single-stranded DNA molecule Water molecule Nanodevices Nanopores White blood cell

53 Quantum Dots Ultraviolet light off Ultraviolet light on Quantum dot bead Quantum dots Quantum dots emit light Water molecule Nanodevices Quantum dots White blood cell

54 Quantum dots can find cancer signatures Cancer cells Quantum dot beads Healthy cells Cancer cells Quantum dot beads Healthy cells

55 Improving cancer treatment Traditional Treatment Nanotechnology Treatment Drugs Toxins Nanodevices Cancer cells Cancer cells Toxins Noncancerous cells Noncancerous cells Dead cancer cells Dead cancer cells Dead noncancerous cells Intact noncancerous cells

56 Nanoshells Near-infrared light off Near-infrared light on Nanoshell Gold Nanoshell absorbs heat Water molecule Nanodevices Nanoshells White blood cell

57 Nanoshells as cancer therapy Nanoshells Nanoshells Cancer cells Cancer cells Healthy cells Healthy cells Near-infrared light Dead cancer cells Intact healthy cells

58 Nanodevices as a link between detection, diagnosis, and treatment Traditional Cancer Treatment NanoBiotechnology Cancer Treatment Cancer cell Cancer cell Drug Nanodevice Imaging Reporting Detection Targeting

59 Dendrimers Cancer cell Dendrimer Water molecule Nanodevices Dendrimer White blood cell

60 Dendrimers : Highly Branched Dendritic Macromolecules

61 Poly (amido amine) Dendrimers Characteristics Monodisperse macromolecule Globular (Spherical) Facile surface bio-functionalization Similar molecular size to biomolecules (Glucose oxidase nm) Applications 4.5 nm G4 Poly(amidoamine) Dendrimer Vehicles for delivery of genes and drugs Biomimetic catalysts (Peptides-, Glycodendrimers) Medical applications (MRI contrast enhancer) Molecular carriers for chemical catalysts (Core, Peripheral)

62 Dendrimers as cancer therapy Manipulate dendrimers to release their contents only in the presence of certain trigger (molecules or light) caged molecules Therapeutic agent Cancer detector Reporter Cell death monitor Water molecule Nanodevices Dendrimer White blood cell

63 NanoBiotechnology in Diagnosis and Patient Care Today 2020

There is a plenty of room at the bottom

There is a plenty of room at the bottom NanoBiotechnology Lecture by Richard Feynman (1959) There is a plenty of room at the bottom We could arrange the atoms one-by-one the way we want them High-resolution microscopes would allow a direct look

More information

Nanotechnology. Interdisciplinary area : Biology, Physics, Chemistry, Material science, Electronics, Chemical Engineering, Information technology

Nanotechnology. Interdisciplinary area : Biology, Physics, Chemistry, Material science, Electronics, Chemical Engineering, Information technology Nanotechnology Creation of useful materials, devices, and systems through the manipulation of matter on nanometer scale. - Generally nanotechnology deals with structures sized between 1 to 100 nanometer

More information

Lecture by Richard Feynman (1959) There is a plenty of room at the bottom

Lecture by Richard Feynman (1959) There is a plenty of room at the bottom NanoBiotechnology Lecture by Richard Feynman (1959) There is a plenty of room at the bottom We could arrange the atoms one-by-one in a way we want them High-resolution microscopes would allow a direct

More information

Nanotechnology. Interdisciplinary area :

Nanotechnology. Interdisciplinary area : Nanotechnology Study of the controlling of matter on an atomic and molecular scale. Generally nanotechnology deals with structures sized between 1 to 100 nanometer in at least one dimension. The ability

More information

Curbing Carcinoma using Nanotechnology

Curbing Carcinoma using Nanotechnology e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 266-273(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Curbing Carcinoma using Nanotechnology Rahul

More information

2.3 Quantum Dots (QDs)

2.3 Quantum Dots (QDs) 2.3 Quantum Dots (QDs) QDs are inorganic nanocrystals, approximately 1 10 nm in size, with unique optical properties of broad excitation, narrow size-tunable emission spectra, high photochemical stability,

More information

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa Single cell molecular profiling using Quantum Dots Technical Journal Club 01.10.2013 Rahel Gerosa Molecular Profiling Powerful technique to study complex molecular networks underlying physiological and

More information

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Andrew M. Smith and Shuming Nie Georgia Tech and Emory University Department of Biomedical Engineering 2011 NSF Nanoscale Science and Engineering

More information

Quantum Dots and Carbon Nanotubes in Cancer diagnose EE453 Project Report submitted by Makram Abd El Qader

Quantum Dots and Carbon Nanotubes in Cancer diagnose EE453 Project Report submitted by Makram Abd El Qader Quantum Dots and Carbon Nanotubes in Cancer diagnose EE453 Project Report submitted by Makram Abd El Qader abdelqad@unlv.nevada.edu, Fall 2008 Abstract On the basis of research and cancer medical treatment,

More information

The Application of DNA Nanotechnology for Guided Drug Delivery

The Application of DNA Nanotechnology for Guided Drug Delivery Tony Wang Professor Scarlatos HON 301 October 19th, 2014 Introduction: The Application of DNA Nanotechnology for Guided Drug Delivery A major problem that exists in drug-based disease treatments is the

More information

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning

More information

The strategy. using Atomic Force Microscope; Biomolecules and Neutraceuticals examples

The strategy. using Atomic Force Microscope; Biomolecules and Neutraceuticals examples The strategy for Bionanomolecules Characterizations using Atomic Force Microscope; Biomolecules and Neutraceuticals examples Dr. NagibAli Elmarzugi, PhD Head of Nanotechnology Research gp., Biotechnology

More information

EE 45X Biomedical Nanotechnology. Course Proposal

EE 45X Biomedical Nanotechnology. Course Proposal EE 45X Biomedical Nanotechnology 1 Introduction Jie Chen ECERF W6-019 492-9820 jchen@ece.ualberta.ca Oct. 15, 2008 The purpose of this document is to propose a new course in the area of Biomedical Nanotechnology

More information

UNIVERSITY OF ROME LA SAPIENZA NANOTECHNOLOGIES ENGINEERING NANOPARTICLES IN BIOMEDICINE

UNIVERSITY OF ROME LA SAPIENZA NANOTECHNOLOGIES ENGINEERING NANOPARTICLES IN BIOMEDICINE UNIVERSITY OF ROME LA SAPIENZA NANOTECHNOLOGIES ENGINEERING NANOPARTICLES IN BIOMEDICINE Challenges The challenges are: in-situ analysis and in vivo at micro level recognize biomolecules functionality

More information

Applications of Nanotechnology in Medical Device Design James Marti, Ph.D. Minnesota Nano Center

Applications of Nanotechnology in Medical Device Design James Marti, Ph.D. Minnesota Nano Center Applications of Nanotechnology in Medical Device Design James Marti, Ph.D. Minnesota Nano Center November 4, 2015 The University of Minnesota Nano Center An open-use nanotechnology lab with tools for fabricating

More information

Nanomaterials for Healthcare. Hans Hofstraat. hilips Research Laboratories, Eindhoven, The Netherlands

Nanomaterials for Healthcare. Hans Hofstraat. hilips Research Laboratories, Eindhoven, The Netherlands Nanomaterials for Healthcare Hans Hofstraat hilips Research Laboratories, Eindhoven, The Netherlands utline Introduction Promises of nanotechnology Nanotechnology at Philips Using nanotechnology for real

More information

Directed Assembly of Nanoparticles for Biosensing Applications

Directed Assembly of Nanoparticles for Biosensing Applications NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) www.nano.neu.edu Directed Assembly of Nanoparticles for Biosensing Applications Ahmed Busnaina, Director, NSF Nanoscale

More information

BIOSENOSRS BIO 580. Nanobiosensors WEEK-13 Fall Semester. Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University

BIOSENOSRS BIO 580. Nanobiosensors WEEK-13 Fall Semester. Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University BIOSENOSRS BIO 580 Nanobiosensors WEEK-13 Fall Semester Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University Topics that will be covered in the course History of

More information

Nanotechnology in the Treatment of Cancer

Nanotechnology in the Treatment of Cancer Page 1 of 11 Nanotechnology in the Treatment of Cancer What is Nanotechnology The term Nanotechnology originates from the Greek word meaning dwarf. The scale of nanotechnology puts into perspective how

More information

Nanosensors. Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D.

Nanosensors. Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D. Nanosensors Rachel Heil 12/7/07 Wentworth Institute of Technology Department of Electronics and Mechanical Professor Khabari Ph.D. There are many advances in nanotechnology that if perfected could help

More information

8. Bionanoscience. - But conventional biochemistry of course deals with the same kind of size scale, so defining bionano is quite difficult...

8. Bionanoscience. - But conventional biochemistry of course deals with the same kind of size scale, so defining bionano is quite difficult... 8. Bionanoscience [Poole-Owens 12; Niemeyer, Mirkin: Nanobiotechnology] The controlled design of biological molecules on the nanometer scale to achieve desired structures or functionalities can be called

More information

Future Areas of Technology Convergence

Future Areas of Technology Convergence Future Areas of Technology Convergence Dr J Malcolm Wilkinson Managing Director Technology For Industry Ltd Cambridgeshire, UK Medilink Yorkshire & Humberside, 8 December 2005 1 Technology For Industry

More information

So What Is Nanotechnology

So What Is Nanotechnology So What Is Nanotechnology Science of Technology 2011 Project Lead The Way, Inc. What Is Nanotechnology? Nanotechnology allows the manipulation of atoms or molecules to create or modify materials at the

More information

(General principles and applications)

(General principles and applications) BIOSENSOR (General principles and applications) Jayanti Tokas, PhD 1 ; Rubina Begum PhD 1 ; Shalini Jain, PhD 2 and Hariom Yadav, PhD 2* 1 Department of Biotechnology, JMIT, Radaur, India; 2 NIDDK, National

More information

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 50% midterm, 50% final. Nanobiotechnology Place: IOP 1 st Meeting Room Time: 9:30-12:00 Reference: Review Papers Grade: 50% midterm, 50% final Midterm: 5/15 History Atom Earth, Air, Water Fire SEM: 20-40 nm Silver 66.2% Gold

More information

Study Guide Imaging Physics and Biophysics for the Master-Study Programmes

Study Guide Imaging Physics and Biophysics for the Master-Study Programmes Study Guide Imaging Physics and Biophysics for the Master-Study Programmes Imaging Physics is one of the main areas of research of the Faculty for Physics and Astronomy at the Julius-Maximilians-University

More information

CHEMISTRY. Paper :14, Organic Chemistry IV(Advance Organic Synthesis and Supramolecular Chemistry and carbocyclic rings) Module : 24, Dendrimers

CHEMISTRY. Paper :14, Organic Chemistry IV(Advance Organic Synthesis and Supramolecular Chemistry and carbocyclic rings) Module : 24, Dendrimers Subject Chemistry Paper No and Title Module No and Title Module Tag 14: Organic Chemistry- IV (Advanced Organic Synthesis, supramolecular chemistry and carbocyclic rings) 24: Dendrimers CHE_P14_M24 TABLE

More information

Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University

Nanotechnology Principles, Applications, Careers, and Education. Copyright 2011 The Pennsylvania State University Nanotechnology Principles, Applications, Careers, and Education Copyright 2011 The Pennsylvania State University Outline What are the principles of nanotechnology? What are some applications? What kind

More information

Nanomaterials for Imaging Technology. Nadeem A. Kizilbash, Ph.D. Assistant Professor Department of Chemistry Quaid-i-Azam University Islamabad

Nanomaterials for Imaging Technology. Nadeem A. Kizilbash, Ph.D. Assistant Professor Department of Chemistry Quaid-i-Azam University Islamabad Nanomaterials for Imaging Technology Nadeem A. Kizilbash, Ph.D. Assistant Professor Department of Chemistry Quaid-i-Azam University Islamabad Introduction Nanotechnology, most basically put, is the molecular

More information

Contents. Foreword... (vii) Prologue... (ix) Preface... (xi) Acknowledgements... (xiii)

Contents. Foreword... (vii) Prologue... (ix) Preface... (xi) Acknowledgements... (xiii) Contents Foreword... (vii) Prologue... (ix) Preface... (xi) Acknowledgements... (xiii) Chapter 1: Nano Science and Technologies 1.1 Concepts of Nano Science and Nanotechnologies... 1 1.1.1 Introduction...

More information

Nanotechnology: A Brief History and Its Convergence with Medicine. Weston Daniel, PhD Director of Program Management

Nanotechnology: A Brief History and Its Convergence with Medicine. Weston Daniel, PhD Director of Program Management Nanotechnology: A Brief History and Its Convergence with Medicine Weston Daniel, PhD Director of Program Management Outline Introduction The Nanoscale Applications Realization of a Vision There s Plenty

More information

STUDY OF NANO DEVICE FOR EFFECTIVE DETECTION, DIAGNOSIS AND TREATMENT OF CANCER

STUDY OF NANO DEVICE FOR EFFECTIVE DETECTION, DIAGNOSIS AND TREATMENT OF CANCER STUDY OF NANO DEVICE FOR EFFECTIVE DETECTION, DIAGNOSIS AND TREATMENT OF CANCER 1 E.N.Ganesh, 2 R.Kaushik Ragavan, 3 Bandyopadhyay Arka Prava 4 M. Krishna Kumar 1 Professor, Rajalakshmi Engineering College,

More information

Biosensors. DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses)

Biosensors. DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses) Biosensors DNA Microarrays (for chemical analysis) Protein Sensors (for identifying viruses) DNA Microarrays 40 000 detectors in parallel, each detecting a specific DNA sequence. Combinatorial Chemistry

More information

Nanotechnology in Human And Veterinary Medicine. By Phoebe Parker

Nanotechnology in Human And Veterinary Medicine. By Phoebe Parker Nanotechnology in Human And Veterinary Medicine By Phoebe Parker Paper Based On Pathology Lectures Vetsix 2004 The background to this paper comes from the pathology lectures held at the Vetsix Conference

More information

Lecture 13. Motor Proteins I

Lecture 13. Motor Proteins I Lecture 13 Motor Proteins I Introduction: The study of motor proteins has become a major focus in cell and molecular biology. Motor proteins are very interesting because they do what no man-made engines

More information

Material Technologies for Mini- and Nanosensing

Material Technologies for Mini- and Nanosensing Material Technologies for Mini- and Nanosensing Thierry Ferrus, Hitachi Cambridge Laboratory, UK Vladimir Privman, Clarkson University, USA Victor Ovchinnikov, Aalto University, Finland Material concept

More information

Introduction to Micro and Nanotechnologies

Introduction to Micro and Nanotechnologies Micro & Nanobioengineering Lab Biomedical Engineering Department McGill University Introduction to Micro and Nanotechnologies David Juncker david.juncker@mcgill.ca www.bmed.mcgill.ca/nanomed McGill, Nov

More information

Your Name: MID TERM ANSWER SHEET SIN: ( )

Your Name: MID TERM ANSWER SHEET SIN: ( ) MIDTERM EXAMINATION (October 23, 2008) BIOE150. Introduction to Bio-Nanoscience & Bio-Nanotechnology Professor Seung-Wuk Lee Fall Semester, 2008 0. Write down your name and the last digit of your SIN in

More information

1 Micro-electro-mechanical (MEMS) sensor device

1 Micro-electro-mechanical (MEMS) sensor device 1 Micro-electro-mechanical (MEMS) sensor device Quote Ref: KT050804 Keywords: Micro-Electro-Mechanical System (MEMS) sensor device, cyclically symmetrical microfabricated resonator, self-compensating,

More information

FIRST World Festival Nanotechnology Workshop. Don Eigler IBM Fellow IBM Almaden Research Center San Jose, California

FIRST World Festival Nanotechnology Workshop. Don Eigler IBM Fellow IBM Almaden Research Center San Jose, California FIRST World Festival Nanotechnology Workshop Don Eigler IBM Fellow IBM Almaden Research Center San Jose, California FIRST WORLD FESTIVAL: April 12, 2007 What Do We Mean By Nano? Nano = 1 1,000,000,000

More information

Exam MOL3007 Functional Genomics

Exam MOL3007 Functional Genomics Faculty of Medicine Department of Cancer Research and Molecular Medicine Exam MOL3007 Functional Genomics Tuesday May 29 th 9.00-13.00 ECTS credits: 7.5 Number of pages (included front-page): 5 Supporting

More information

cancer NANOTECHNOLOGY

cancer NANOTECHNOLOGY cancer NANOTECHNOLOGY Going Small for Big Advances Using Nanotechnology to Advance Cancer Diagnosis, Prevention and Treatment U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

More information

cancer NANOTECHNOLOGY

cancer NANOTECHNOLOGY cancer NANOTECHNOLOGY Going Small for Big Advances Using Nanotechnology to Advance Cancer Diagnosis, Prevention and Treatment U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

More information

Nanotechnology for Molecular and Cellular Manipulation

Nanotechnology for Molecular and Cellular Manipulation Nanotechnology for Molecular and Cellular Manipulation Logan Liu Micro and Nano Technology Lab Department of Electrical & Computer Engineering University of Illinois Physical Systems Nano vs. Bio Micro

More information

Detection of local protein structures along DNA using solid-state nanopores

Detection of local protein structures along DNA using solid-state nanopores Detection of local protein structures along DNA using solid-state nanopores nanopore Stefan Kowalczyk Adam Hall Cees Dekker RecA-DNA filament (Nano Letters cover September 2009) Bremen 29-06-2009 Main

More information

Introduction of Biosensors

Introduction of Biosensors Introduction of Biosensors Lecture April 17 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) What s is a biosensor? Target 4.22 Signal Signal Analtye

More information

DNA Biosensors. Anand Jagota 16 November 2015

DNA Biosensors. Anand Jagota 16 November 2015 DNA Biosensors Anand Jagota 16 November 2015 1 Market, Unmet Needs Worldwide In-vitro diagnostics ~$ 50 Billion and growing Nucleic Acid diagnostics ~$9 Billion Health, Security, Pathogen Detection, etc.

More information

ATOMIC FORCE MICROSCOPY FOR NANOTECHNOLOGY. Gunjan Agarwal

ATOMIC FORCE MICROSCOPY FOR NANOTECHNOLOGY. Gunjan Agarwal ATOMIC FORCE MICROSCOPY FOR NANOTECHNOLOGY Gunjan Agarwal Biomedical Engineering Center, Center for Affordable Nanoengineering of Polymer Biomedical Devices (NSEC), the Ohio State University, Columbus,

More information

Cancer Nanotechnology and Nanotoxicology: Response to NIH RFAs

Cancer Nanotechnology and Nanotoxicology: Response to NIH RFAs Cancer Nanotechnology and Nanotoxicology: Response to NIH RFAs Oct 13, 2015 nanoutah 2015 M.M. Janát-Amsbury, MD, PhD and H. Ghandehari, PhD Obstetrics and Gynecology/Gynecologic Oncology Pharmaceutics

More information

PROTEINS. *Adapted from Biotechnology: Science for the New Millennium by Ellyn Daugherty.

PROTEINS. *Adapted from Biotechnology: Science for the New Millennium by Ellyn Daugherty. PROTEINS Most biotech products have something to do with proteins either containing amino acids or entire proteins. To manufacture protein products, researchers must understand protein structure and function.

More information

Lecture 5. Biomolecular Self-assembly (and Detection)

Lecture 5. Biomolecular Self-assembly (and Detection) 10.524 Lecture 5. Biomolecular Self-assembly (and Detection) Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 6: Biomolecular Self-assembly Table of Contents

More information

What is Nano-Bio? Non-Covalent Interactions

What is Nano-Bio? Non-Covalent Interactions - - What is Nano-Bio? Physicist: Biotech: Biologists: -study of molecular interactions -application of nano-tools to study biological systems. -application of nano-tools to detect, treat, and prevent disease

More information

Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů

Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů Worshop v rámci semináře: Cholinesterasy a jejich využití v konstrukci biosenzorů Ing. Kudr NANOPORE pátek 18. října 2013, od 10.00 hod v přednáškové posluchárně Ústavu chemie a biochemie (budova D, učebna

More information

Qdots technology for biodetection available at LLNL

Qdots technology for biodetection available at LLNL Qdots technology for biodetection available at LLNL Daniele Gerion Physics and Advanced Technology, L-415 gerion1@llnl.gov In the following note, I will present the qdots technology available at LLNL with

More information

Approaches to Nanoparticle Targeting. Mahmoud R. Jaafari, PhD Prof. of Pharmaceutics and Pharmaceutical Nanotechnology

Approaches to Nanoparticle Targeting. Mahmoud R. Jaafari, PhD Prof. of Pharmaceutics and Pharmaceutical Nanotechnology Approaches to Nanoparticle Targeting Mahmoud R. Jaafari, PhD Prof. of Pharmaceutics and Pharmaceutical Nanotechnology Principles of drug targeting Drug targeting is the systemic or local administration

More information

Visualisation, Sizing and Counting of Fluorescent and Fluorescently-Labelled Nanoparticles

Visualisation, Sizing and Counting of Fluorescent and Fluorescently-Labelled Nanoparticles Visualisation, Sizing and Counting of Fluorescent and Fluorescently-Labelled Nanoparticles Introduction Fluorescent molecules have long been used to specifically label particular structures and features

More information

DNA Microarray Technology

DNA Microarray Technology 2 DNA Microarray Technology 2.1 Overview DNA microarrays are assays for quantifying the types and amounts of mrna transcripts present in a collection of cells. The number of mrna molecules derived from

More information

Lecture FO7 Affinity biosensors

Lecture FO7 Affinity biosensors Lecture FO7 Affinity biosensors Dr. MAK Wing Cheung (Martin) Biosensors & Bioelectronic Centre, IFM Email: mamak@ifm.liu.se Phone: +4613286921 (21 Feb 2014) Affinity biosensors Affinity biosensors: devices

More information

KILLING THROMBUS WITH

KILLING THROMBUS WITH KILLING THROMBUS WITH D. Dash Department of Biochemistry Institute of Medical Sciences Banaras Hindu University Thrombus has two components: (1) Protein Component composed of Insoluble Fibrin Clot (2)

More information

The Golden Opportunities Of Small Science: Nanotechnology At Mintek

The Golden Opportunities Of Small Science: Nanotechnology At Mintek Council for Mineral Technology The Golden Opportunities Of Small Science: Nanotechnology At Mintek 05 June, 2009 Robert Tshikhudo Head: Nanotech / Dr Outline Nano-Introduction Mintek Nano Overview Au Nanotech

More information

Computational methods in bioinformatics: Lecture 1

Computational methods in bioinformatics: Lecture 1 Computational methods in bioinformatics: Lecture 1 Graham J.L. Kemp 2 November 2015 What is biology? Ecosystem Rain forest, desert, fresh water lake, digestive tract of an animal Community All species

More information

nanoprecipitation mpeg-pla 2 nd Emulsion mpeg-pla in DCM

nanoprecipitation mpeg-pla 2 nd Emulsion mpeg-pla in DCM THERAPEUTIC NANOTECHNOLOGY LAB MODULE Location: BioNano Lab, 3119 Micro and Nanotechnology Laboratory (MNTL) Instructor: Jianjun Cheng, Assistant Professor of Materials Science and Engineering Lab Assistants:

More information

Unit title: Nanotechnology

Unit title: Nanotechnology Unit title: Nanotechnology Unit code: K/601/0311 QCF level: 4 Credit value: 15 Aim This unit examines the role of nanotechnology at the interface of Chemistry, Biology, Physics and Engineering, especially

More information

3.1.4 DNA Microarray Technology

3.1.4 DNA Microarray Technology 3.1.4 DNA Microarray Technology Scientists have discovered that one of the differences between healthy and cancer is which genes are turned on in each. Scientists can compare the gene expression patterns

More information

Exploring metallic nanoparticles in Biophotonics

Exploring metallic nanoparticles in Biophotonics Exploring metallic nanoparticles in Biophotonics Renato E. de Araujo Laboratório de Óptica Biomédica e Imagem, Universidade Federal de Pernambuco Recife, PE, Brazil. renato.earaujo@ufpe.br LABORATÓRIO

More information

Microelectromechanical Drug Delivery Systems. Sarah Smith & Jurek Smolen

Microelectromechanical Drug Delivery Systems. Sarah Smith & Jurek Smolen Microelectromechanical Drug Delivery Systems Sarah Smith & Jurek Smolen Current Drug Delivery Systems Common Administration Methods Problems Oral Intravenous Intramuscular Transdermal Difficult to control

More information

NANOTECHNOLOGY. I. Basic concept of Nanotechnology

NANOTECHNOLOGY. I. Basic concept of Nanotechnology NANOTECHNOLOGY Girish N. Chaple Tushar P.Upalanchiwar 6 th Semister B.E 6 th SemisterB.E Department Of Electronics Engineering Department Of Electronics Engineering B.D.C.O.E Sevagram,Wardha B.D.C.O.E

More information

NANOPARTICLES IN BIOTECHNOLOGY, DRUG DEVELOPMENT AND DRUG DELIVERY

NANOPARTICLES IN BIOTECHNOLOGY, DRUG DEVELOPMENT AND DRUG DELIVERY NANOPARTICLES IN BIOTECHNOLOGY, DRUG DEVELOPMENT AND DRUG DELIVERY BIO113B August 2014 Jackson Highsmith Project Analyst ISBN: 1-56965-904-4 BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481

More information

Biomarker Discovery using Surface Plasmon Resonance Imaging

Biomarker Discovery using Surface Plasmon Resonance Imaging F e a t u r e A r t i c l e Feature Article Biomarker Discovery using Surface Plasmon Resonance Imaging Elodie LY-MORIN, Sophie BELLON, Géraldine MÉLIZZI, Chiraz FRYDMAN Surface Plasmon Resonance (SPR)

More information

Bioengineering (BIOE)

Bioengineering (BIOE) Bioengineering (BIOE) 1 Bioengineering (BIOE) Courses BIOE 5301. Biosignals. 3 Credit Hours. This course offers a deep overview of the signals in the Biomedical fields. Signals are studied in several modalities,

More information

What is an Aptamer? smallest unit of repeating structure

What is an Aptamer? smallest unit of repeating structure What is an Aptamer? apto: mer: to fit smallest unit of repeating structure Aptamers are single stranded folded oligonucleotides that bind to molecular (protein) targets with high affinity and specificity

More information

Bio MEMS Class -1 st week

Bio MEMS Class -1 st week Bio MEMS Class -1 st week Jang, Jaesung Ref: Bashir ADDR Review paper, 2004. 1 Introduction Bio-MEMS: devices or systems, constructed using techniques inspired from micro/nano-scale fabrication, that are

More information

TARGETED IMAGING. Maureen Chan and Ruwani Mahathantila

TARGETED IMAGING. Maureen Chan and Ruwani Mahathantila TARGETED IMAGING Maureen Chan and Ruwani Mahathantila Overview 2 Introduction to fluorescent imaging Fluorescent agents Quantum Dots Physical properties How QDs work In Vivo QD imaging Future Video What

More information

If you were sick, say with cancer, would you not want a drug that has a way

If you were sick, say with cancer, would you not want a drug that has a way Stith 1 If you were sick, say with cancer, would you not want a drug that has a way of specifically targeting the cancer sell then releasing the medicine without harming the healthy cells? Of course you

More information

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow.

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow. Abstract Evaporation driven particle packing has been investigated to reveal interesting patterns at micrometer to millimeter scale. While the microscopic structures of these patterns are well characterized,

More information

Properties of nanofabricated biosensors based on DNA aptamers

Properties of nanofabricated biosensors based on DNA aptamers Properties of nanofabricated biosensors based on DNA aptamers Tibor Hianik Faculty of Mathematics, Physics and Computer Sci., Comenius University, Bratislava, Slovakia Content of presentation Introduction

More information

Web Based Photonic Crystal Biosensors for Drug Discovery & Diagnostics

Web Based Photonic Crystal Biosensors for Drug Discovery & Diagnostics Web Based Photonic Crystal Biosensors for Drug Discovery & Diagnostics Stephen C. Schulz Introduction SRU Biosystems Inc., Woburn MA Biosensors, Instruments, Software, and Applications Drug Discovery and

More information

NANO-TECHNOLOGY FOR HEALTH

NANO-TECHNOLOGY FOR HEALTH NANO-TECHNOLOGY FOR HEALTH Alfred Cuschieri Institute for Medical Science and Technology Division of Surgery and Cancer University of Dundee & School of medical sciences Scuola Superiore S Anna, Pisa NANOTECHNOLOGY

More information

Nanotechnology in Medicine

Nanotechnology in Medicine 25 Prajnan O Sadhona Nanotechnology in Medicine Prajnamoy Pal * Nanomedicine involves utilization of nanotechnology for the benefit of human health and well-being. The use of nanotechnology in various

More information

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging

Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Quantum Dot applications in Fluorescence Imaging for Calibration and Molecular Imaging Introduction In this application note, we will discuss the application of quantum dots in fluorescence imaging, both

More information

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Research at the nanoscale is more effective, when research teams can quickly and easily observe and characterize a wide

More information

PROTEINS & NUCLEIC ACIDS

PROTEINS & NUCLEIC ACIDS Chapter 3 Part 2 The Molecules of Cells PROTEINS & NUCLEIC ACIDS Lecture by Dr. Fernando Prince 3.11 Nucleic Acids are the blueprints of life Proteins are the machines of life We have already learned that

More information

UAMS ADVANCED DIAGNOSTICS FOR ADVANCING CURE

UAMS ADVANCED DIAGNOSTICS FOR ADVANCING CURE UAMS ADVANCED DIAGNOSTICS FOR ADVANCING CURE advanced diagnostics for advancing cure Multiple myeloma (myeloma) is a complex cancer that can be diffcult to diagnose and challenging to treat. Every case

More information

Nanotechnology Program Elements. Nanoelectronics and Computing. Sensors. - Structural Materials. Structural Materials

Nanotechnology Program Elements. Nanoelectronics and Computing. Sensors. - Structural Materials. Structural Materials Nanotechnology Program Elements - Nanoelectronics and Computing - Sensors - Structural Materials Nanoelectronics and Computing Molecular electronics & photonics Computing architecture Assembly Sensors

More information

Applications of self-assembling peptides in controlled drug delivery

Applications of self-assembling peptides in controlled drug delivery Applications of self-assembling peptides in controlled drug delivery Sotirios Koutsopoulos, Ph.D. Problems associated with drug administration Drug concentration in blood C toxic C effective Time 1 The

More information

Nanoscience: A historical perspective R. Díez Muiño and P. M. Echenique Lecture Notes Fall 2007

Nanoscience: A historical perspective R. Díez Muiño and P. M. Echenique Lecture Notes Fall 2007 Nanoscience: A historical perspective R. Díez Muiño and P. M. Echenique Lecture Notes Fall 2007 THE SCALE OF THINGS THE SCALE OF THINGS 1 nano = 10-9 1 nanometer = 10-9 meters The root comes from the Greek

More information

Single-Molecule Biophysics. Physical Cell Biology Guest lecture

Single-Molecule Biophysics. Physical Cell Biology Guest lecture Single-Molecule Biophysics Physical Cell Biology Guest lecture Liviu Movileanu Syracuse University lmovilea@syr.edu Web: http://movileanulab.syr.edu Single-molecule versus bulk-phase measurements Bulk-phase

More information

METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008

METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008 NAME KEY METHODS IN CELL BIOLOGY EXAM II, MARCH 26, 2008 1. DEFINITIONS (30 points). Briefly (1-3 sentences, phrases, word, etc.) define the following terms or answer question. A. depot effect refers to

More information

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave Biophotonics - Imaging: X-ray, OCT, polarimetry, DOT, TIRF, photon migration, endoscopy, confocal microscopy, multiphoton microscopy, multispectral imaging - Biosensing: IR spectroscopy, fluorescence,

More information

Nano Computers through Nanotechnology

Nano Computers through Nanotechnology International Journal of Education and Science Research Review E-ISSN 2348-6457 Volume-2, Issue-1 February- 2015 P-ISSN 2348-1817 Nano Computers through Nanotechnology Laith R.Fleih, Taghreed M. Younis

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Nanobiosensor. Chennai, Tamil Nadu, India. Mumbai, Maharashtra, India. Abstract

Nanobiosensor. Chennai, Tamil Nadu, India. Mumbai, Maharashtra, India. Abstract Advance in Electronic and Electric Engineering ISSN 2231-1297, Volume 3, Number 3 (2013), pp. 321-326 Research India Publications http://www.ripublication.com/aeee.htm Nanobiosensor M. Naveen Kumar Reddy

More information

SGN-6106 Computational Systems Biology I

SGN-6106 Computational Systems Biology I SGN-6106 Computational Systems Biology I A View of Modern Measurement Systems in Cell Biology Kaisa-Leena Taattola 21.2.2007 1 The cell a complex system (Source: Lehninger Principles of Biochemistry 4th

More information

Nanobiosystems are non-existing in nature, but

Nanobiosystems are non-existing in nature, but Mary-Margaret Seale-Goldsmith 1 and James F. Leary 2 is a relatively new term describing objects in the size range below 150 nm and having structures or functions that link to biological functions. Key

More information

Spectra Chacracterizations of Optical Nanoparticles

Spectra Chacracterizations of Optical Nanoparticles THAI NGUYEN UNIVERSITY OF EDUCATION Spectra Chacracterizations of Optical Nanoparticles Chu Viet Ha Department of Physics 18/2018 1 THAI NGUYEN UNIVERSITY OF EDUCATION Address 20 Luong Ngoc Quyen Street,

More information

Engineering Nanomedical Systems

Engineering Nanomedical Systems BME 626 September 4, 2014 Engineering Nanomedical Systems Lecture 3 Theranostic Nanomedical Devices and Molecular Imaging James F. Leary, Ph.D. SVM Endowed Professor of Nanomedicine Professor of Basic

More information

Course Code: BMEG5100 Course Title: Advanced Medical Robotics Course Code: BMEG5110 Course Title: Advanced Medical Devices and Sensor Networks

Course Code: BMEG5100 Course Title: Advanced Medical Robotics Course Code: BMEG5110 Course Title: Advanced Medical Devices and Sensor Networks Course Code: BMEG5100 Course Title: Advanced Medical Robotics Review of medical robotics fundamentals; introduction to robotics enabled endoscopic and laparoscopic surgeries; concepts of robotics based

More information

"Milk detector nano-sensor"

Milk detector nano-sensor "Milk detector nano-sensor" 1 Table of Contents Abstract... 3 Introduction... 3 Literature review... 5 Project description... 5 Conclusions and recommendations... 9 References... 10 2 Abstract Approximately

More information

Surface Plasmon Resonance Analyzer

Surface Plasmon Resonance Analyzer Surface Plasmon Resonance Analyzer 5 6 SPR System Based on Microfluidics Wide Dynamic Range Kinetic Analysis by Detection of Association /Dissociation of Bio-Molecules Measuring of Mass Change below

More information

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water

Chapter 1 -- Life. Chapter 2 -- Atoms, Molecules and Bonds. Chapter 3 -- Water Chapter 1 -- Life In the beginning... Molecular evolution Heirarchy and organization levels of organization Form follows function Language in science Cell and Molecular Biology -- Biology 20A Chapter Outlines

More information