MULTITEMPORAL ERS AND ENVISAT IMAGERY FOR THE ESTIMATION OF THE REFORESTATION PROCESS OF BURNED AREAS

Size: px
Start display at page:

Download "MULTITEMPORAL ERS AND ENVISAT IMAGERY FOR THE ESTIMATION OF THE REFORESTATION PROCESS OF BURNED AREAS"

Transcription

1 MULTITEMPORAL ERS AND ENVISAT IMAGERY FOR THE ESTIMATION OF THE REFORESTATION PROCESS OF BURNED AREAS F. Catalucci (1), F. Del Frate (1), A. Minchella (1), M.Paganini F (2) (1) Tor Vergata University - Dipartimento di Informatica Sistemi e Produzione Via del Politecnico, 1 I Rome, Italy - delfrate@disp.uniroma2.it (2): ESA/ESRIN Via G. Galilei, I Rome, Italy, marc.paganini@esa.int ABSTRACT In this study the potentialities of ERS/ENVISAT-SAR multitemporal data for the analysis of the reforestation process over burned areas are investigated. The summer 2000 fire devastating a large part of the Castel Fusano pinewood (near Rome) is the selected test case. A first objective is to evaluate the capability of detecting the boundaries of the burned area only using SAR imagery and considering optical data (Landsat) as ground truth. A second one is to retrieve information on the stage of the reforestation process from multitemporal backscattering signature. To this purpose both areas within and out of the fire scar have been considered and their SAR returns have been examined over several passes of the satellites before and after the event. 1. INTRODUCTION According to personnel working in environmental agencies and state institutions the rate of biomass regrowth over burned areas can be a crucial factor for the damage assessment related to a forest fire event. In some cases the reforestation process is very fast and after two years the burned areas will be completely repopulated. In other cases such a process can take even decades so that the environmental and economic impact of the fire event is much stronger. The knowledge on the repopulation capability over burned areas of different types of vegetation is so far sparse and limited to local experiences. Satellite data can alternatively offer the possibility of a more sistematic investigation on the topic. Indeed, previous studies have shown how measurements from spaceborne payloads may be used either for the fire impact assessment or for the characterization of the forest recovery from the fire [1] [5]. As far as SAR measurements are concerned, different factors stemming from a fire event may be potential causes of backscattering intensity variations, even at C band. For example changes in the dihedral scattering between tree trunks and the ground surface, variations of the influence of the soil moisture and soil roughness in the backscattering, variations of the water content and of the biomass characterizing the canopy and the understory. Moreover, significant information can also be provided by the measured level of coherence [6]. Indeed, over burned areas, volume backscattering significantly decreases and is replaced by surface backscattering which allows a much better correlation, resulting in greater coherence, between the two SAR images taken over the considered area. In this work we considered the very dramatic fire event which occurred in the Castel Fusano pinewood, located few kilometers away from Rome main urban area, on July 2000 [7],[8]. More than 250 ha went burned during the fire, modifying impressively the forest local environment. The investigation presented here focuses on the potentialities of multitemporal ERS-SAR images, eventually enhanced by new Envisat-ASAR imagery, either for the detection of fire scar or to derive some index significant for the monitoring of the recovery processing. 2. THE TEST AREA The Castel Fusano pinewood belongs to the state natural reserve of the Roman Coast, which is located to the south-west of the delta of the River Tevere, few kilometres away from the main Rome urban center. The whole park extends over an area of approximately ha and is characterized by the presence of different types of surroundings, typical of the coastal area of the Mediterranean. The arboreal vegetation is dominated by pines and oaks. Moreover, a large part of the Park is covered by the tall Mediterranean bush. The pinewood occupies about 6% (1000 ha) of the entire reserve and its first species were introduced by the coast starting from 18 th century. A view of the pinewood is reported in Fig. 1. Until the 3 rd of July, 2000, the pinewood was only slightly damaged by not Proc. of the 2004 Envisat & ERS Symposium, Salzburg, Austria 6-10 September 2004 (ESA SP-572, April 2005)

2 Fig. 1: A view of Castel Fusano pinewood before the fire event particularly serious frequent fires. Nevertheless on 3rd and 4th of July 2000, the pinewood went severely burned because of some fires that ruined about 350 ha of the wood, about 250 ha of wood were destroyed by the fire, while other 100 ha were seriously damaged (Fig. 2). Particularly devastating was the 4th of July fire, which had more than one fire point in the South- West part of the pinewood, where it borders the Castelporziano Presidential Estate. Soon after the fire, Municipality of Rome has decided a plan for the reclamation of the area and for restoring the local ecosystem. In the manner provided for by the plan some main actions consist in the cutting and removal of arboreus vegetation irremediably damaged (Fig. 3), in the singling out the domestic pines for which spontaneous recovery was still possible, in the replantation of the domestic pines and of the other most ecologically relevant types of vegetation. Moreover, experimental areas particularly dedicated to the monitoring of the only spontaneous regrowth processes have been identified. Fig.2: An area of the pinewood devasted by the fire 3. METHODOLOGY A significant set of ERS-SAR images has been collected before and after the fire event consisting in an overall number of 32 satellite passes. The images have been chosen according to some criteria. We remind that the fire event occurred on 4 July The considered time window goes from May 1999 to October 2003 so it comprises one year before the fire event and three years after. Most of the images belong to the same frame and track to facilitate coregistration operations. Fig. 3: Cutting of arboreus irremediably damaged vegetation As an example, in Fig. 4 the full image taken on 8/7/2001is illustrated, the square box indicates the area of interest, the city of Rome is clearly visible on the north-east direction. For each pass, investigation on meteorological condition have been carried out. These latter are indicated in the rightmost two columns of Table 1 where the complete list of the considered images is reported. In particular the UP column shows

3 the number of days occurring between the last rainy day and the day of the measurement ( - means that such number was greater than 7). One Landsat image, taken on 25/09/2000, has been also analysed for a comparison of the results on the detection of the fire scar. The images have been processed by means of BEST, the sotware tool released by ESA. Main processing consisted in the extraction of the regions of interest, calibration, coregistration and georeferencing. This last step was necessary for drawing in the images the edges, originally on land maps, characterizing the different types of intervention scheduled by the municipality plan. For the purpose of our study we decided to consider 4 different regions of interest: A region belonging to an area of the pinewood which was not damaged by the fire event (about 37 ha) A region within the area struck by the fire but essentially consisting of bare soil (about 6.1 ha) A region destroyed by the fire where the regrowth process started completely spontaneous with no man-made actions (about 5.8 ha) A region which underwent artificial interventions of reclaiming and replantation (about 16.8 ha) Localization of the described regions on a SAR image is shown in Fig. 5 with different colors. Fig. 4: ERS-SAR image taken on 8/7/2001 Fig. 5: The 4 analyzed sub-areas of interest: not burned pinewood (green), bare soil (orange), burned with artificial interventions (red), burned with only spontaneous regrowth (light-blue) Table 1: List of the images considered for the study Date Days from fire event Satell. Orbit Frame Weather condition 01/05/ ERS Cloudy 4 04/07/ ERS Clear 3 16/10/ ERS Misty 1 17/10/ ERS Cloudy 2 26/11/ ERS /11/ ERS /01/ ERS Cloudy 0 05/02/ ERS /04/00-80 ERS Clear 0 14/05/00-51 ERS Cloudy 5 18/06/00-16 ERS Cloudy 2 07/07/00 +3 ERS Clear - 01/10/ ERS Cloudy 0 05/11/ ERS Cloudy 2 10/12/ ERS Cloudy 7 14/01/ ERS Cloudy 5 18/02/ ERS Cloudy - 29/04/ ERS Clear 2 08/07/ ERS Cloudy 6 16/09/ ERS Cloudy 2 25/11/ ERS Cloudy 6 05/01/ ERS Clear 5 14/04/ ERS Rainy 1 23/06/ ERS Clear - 28/07/ ERS Clear - 01/09/ ERS Cloudy 1 10/11/ ERS Clear 2 19/01/ ERS Clear 1 30/03/ ERS Mist - 08/06/ ERS Cloudy - 17/08/ ERS Clear - 26/10/ ERS Clear 3 UP

4 4. RESULTS 4.1 Fire scar detection To analyse the capability of detecting the fire scar with the SAR data we considered the image taken by Landsat (25/9/2000) as ground truth. Indeed, Fig. 6 shows how the scar is easily detectable by using Landsat 7, 4 and 3 bands. By chance, the first ERS pass after the fire event was very early, on July the 7 th. Though a general lower value of backscattering can be visible in the burned area, this is not clearly discernible in the SAR image which is reported in Fig. 7. For sake of comparison, in Fig. 8 a SAR image obtained by averaging all the available passes preceding the event is also shown. The lower value of the backscattering should be given to the fact that the return is dominated by the soil contribution. In summer season this is characterized by low values of moisture and, in turn, of backscattering. The same type of hypothesis may be considered for a comment of figures 9 and 10, given by averaging on two different sets of multitemporal images. Fig. 8: Average image obtained considering only available images before the fire event SAR Fig. 9: Average image obtained considering only wintertime images after the fire event Fig. 6: Landsat image of the test area (bands 7, 4, 3) Fig. 7: SAR image taken on 7/7/2000 Fig. 10: Average image obtained considering only summertime images after the fire event

5 The image of Fig. 9 derives from the averaging of the first summertime dates available after the fire event, conversely, Fig. 10 is the result of the average of the first wintertime images taken after the event. In both figures, we again can observe the significant effect of the soil moisture on the return corresponding to the burned area. In summertime soil moisture values are lower and, as seen before for a single image, this provokes a lower value of the backscattering (about 2 db) with the respect to the surrounding not-burned area, where the volume scattering of the trees dominates. The behaviour is opposite during wintertime, when an higher soil moisture makes the backscattering of the pixels corresponding to the fire scar higher (more than 1 db) than that of those belonging to the surrounding areas. 4.2 Regrowth process monitoring The influence of the soil moisture on the backscattering seems to be significant also for understanding how the regrowth process may be monitored by multitemporal measurements. In fact, as the reforestation goes on in the burned area, the corresponding backscattering tends to be less affected by the surface scattering effects typical of the soil, becoming more similar the volume scattering typical of the parts of the pinewood not affected by the fire. This can be noted in Fig. 11 where four different lines, corresponding to the areas of interest described in section 3, are plotted. Different comments are suggested by the figure. The first one is on the behaviour of the bare soil field. It is clear how the seasonal cycle of the soil moisture drives the behaviour of the backscattering in the five considered years. Particularly, it is interesting to observe the 5 peaks of low values, regularly occurring in the summer season, when the dieletric characteristics of the soil are described by low values of the soil moisture and, hence, of the dielectric constant. On the other hand, the backscattering time sequence of the pinewood region not affected by the fire event is much more stable with smaller fluctuations which may be scarcely correlated to the soil moisture values. The time behaviour of the other two regions is rather similar. In fact, for both of them, we can separate among three different phases. Before the fire event they tend to be closer to the unburnt pinewood. Right after the event closer to the bare soil. In the period corresponding to the last two years, the similarity to bare soil seems to decrease. The previous results suggest a possibility for monitoring the pinewood regrowth in the burned regions. This might consist in tracking how much the -6-7,5 Backscattering coefficient -9-10, , , /11/03 01/08/03 01/05/03 01/02/03 01/11/02 01/08/02 01/05/02 01/02/02 01/11/01 01/08/01 01/05/01 01/02/01 01/11/00 01/08/00 01/05/00 01/02/00 01/11/99 01/08/99 01/05/99 Unburnt Burnt artificial Bare soil Burnt spontaneus Fig. 11: Time behaviour of backscattering corresponding to the 4 types of considered areas

6 backscattering behaviour of the regions is similar to the backscattering of the bare soil. In particular, a measure of this similarity could be represented by the evaluation, in the region to be monitored, of the backscattering excursion from the positive peak (taken during the winter season) to the negative peak (taken during the summer season) and comparing it to the one corresponding to the bare soil area. An exercised like that has been applied to our data set. Four annual peak-to-peak transitions (occurring in a time window from November 1999 to June 2003) of backscattering have been considered. The backscattering difference for each transition has been also calculated for bare soil, for not burned region and for the average of the two burned region. The results are shown in table 2 where the values of the first line correspond to the only transition considered before the fire event, the second line to the transition right after the fire event, the third and the fourth line to the transitions occurring in the following two years. We see that the values corresponding to the bare soil transitions are the greatest. The values of the not burned surface are lower and seem to be rather uncorrelated with those of the bare soil. As far as the burned areas are concerned we see that, before the fire event, the difference with the bare soil is rather high (4 db), soon after the fire event is small (0.4 db), but it starts progressively to increase (0.9 and 1.4 db) in the following two years. Table 2: Peak-to-peak annual transitions for different types of region of interest soil unburnt burnt Trans. 1 (db) Trans. 2 (db) Trans. 3 (db) Trans. 4 (db) CONCLUSIONS In this study a multitemporal analysis of the backscattering coefficient measured over the Castel Fusano pinewood, partially destroyed in a fire event of July 2000, has been carried out. The retrieval of the fire scar does not seem to be feasible with one look ERS SAR imagery. However, due to the increased influence of soil moisture in the backscattering, the fire scar might be detected with multitemporal measurements taken on the same season. Moreover, the measurement, taken throughout at least one year, of the similarity between the backscattering of the burned area and the backscattering of a bare soil around or inside the burnted area, may provide an index of the reforestation process. The presented results are still preliminary. In fact, other significant features still need to be investigated. First of all, the cross-polarized backscattering return which is available with the Envisat-ASAR. The coherence level derived by SAR interferometry may also be very significant and it is worthy to be considered, although tandem mission stopped few months before event. Finally, textural feautures calculated over the regions of interest can also provide additional information. A scattering electromagnetic model, developed and made available by University of Tor Vergata, Rome, will be also used for the understanding and the validation of the results that will be obtained. ACKNOWLEDGEMENTS Prof. P. Ferrazzoli of Tor Vergata University, Rome, and the research group coordinated by Prof. L. Manes of La Sapienza University, Rome, are gratefully ackoweledged for their helpful comments and suggestions. 6. REFERENCES [1] Viedma O., Meliá J., Segarra D., García-Haro J., Modeling rates of ecosystem recovery after fires by using Landsat TM data, Remote Sensing of Environment, 61, pp , 1997 [2] Díaz-Delgado R., Lloret F., Pons X., Influence of fire severity on plant regeneration by means of remote sensing imagery, International Journal of Remote Sensing, 24 (8), pp , 2003 [3] Sun G., Rocchio L., Masek J., Williams D., Ranson K.J., Characterization of Forest Recovery From Fire Using Landsat and SAR Data, Proceedings of Geoscience and Remote Sensing Symposium 2002, vol. 2, pp , 2002 [4] Bourgeau-Chavez L.L., Harrell P.A., Kasischke E.S., French N.H.F., The detection and mapping of Alaskan wildfires using a spaceborne imaging radar system, International Journal of Remote Sensing, 18 (2), pp , 1997 [5] Kasischke E. S., Bourgeau-Chavez L.L., French N.H.F., Observations of variations in ERS-1 SAR image intensity associated with forest fires in Alaska, IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 1, 1994 [6] Antikidis E., Arino O., Laur H., Arnaud A., ERS SAR Coherence & ATSR Hot Spots: a sinergy for mapping deforested areas. The special case of the 1997 fire event in Indonesia, Proceedings of the 2 nd International Workshop on Retrieval of Bio- & Geophysiacal Parameters from SAR data for Land Applications, ESTEC, Noordwijk, The Netherlands, 1998 [7] D. Monaco, The Castelfusano pinewood: a case study, Proceedings International Workshop on "Improving dispatching for forest fire control", Creete, 6-8 December, 2001 [8]

Deforestation evaluation by synergetic use of ERS SAR coherence and ATSR hot spots: The Indonesian fire event of 1997

Deforestation evaluation by synergetic use of ERS SAR coherence and ATSR hot spots: The Indonesian fire event of 1997 sar/atsr synergy 34 Deforestation evaluation by synergetic use of ERS SAR coherence and ATSR hot spots: The Indonesian fire event of 1997 E. Antikidis, O. Arino, H. Laur & A. Arnaud ESA Directorate of

More information

REFORESTATION OF BURNED AREAS MONITORED BY SAR DATA AND A SCATTERING MODEL

REFORESTATION OF BURNED AREAS MONITORED BY SAR DATA AND A SCATTERING MODEL REFORESTATION OF BURNED AREAS MONITORED BY SAR DATA AND A SCATTERING MODEL Fabio DEL FRATE, Andrea MINCHELLA 2, Domenico SOLIMINI 2 GEO-K s.r.l., Via del Politecnico, I-33 Rome, Ital 2- Tor Vergata Uniersit,

More information

Remote Sensing of Environment

Remote Sensing of Environment RSE-07910; No of Pages 11 Remote Sensing of Environment xxx (2011) xxx xxx Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Sensitivity

More information

SAR Tomographic imaging of tropical forests: P and L-band

SAR Tomographic imaging of tropical forests: P and L-band SAR Tomographic imaging of tropical forests: P and L-band Dinh Ho Tong Minh 1, Thuy Le Toan 1, Stefano Tebaldini 2, Fabio Rocca 2 (1) Centre d Ėtudes Spatiales de la Biosphère (CESBIO), Toulouse, France

More information

Forest Changes and Biomass Estimation

Forest Changes and Biomass Estimation Forest Changes and Biomass Estimation Project Title: Comparative Studies on Carbon Dynamics in Disturbed Forest Ecosystems: Eastern Russia and Northeastern China Supported by NASA Carbon Cycle Science

More information

Science I EARTH EXPLORER 7 USER CONSULTATION MEETING. An Earth Explorer to observe forest biomass

Science I EARTH EXPLORER 7 USER CONSULTATION MEETING. An Earth Explorer to observe forest biomass Science I EARTH EXPLORER 7 USER CONSULTATION MEETING An Earth Explorer to observe forest biomass Primary Mission Objectives 1. Reducing the major uncertainties in carbon fluxes linked to Land Use Change,

More information

K&C Initiative, Extension Phase : Mapping and monitoring of forests in Sweden using ALOS PALSAR data

K&C Initiative, Extension Phase : Mapping and monitoring of forests in Sweden using ALOS PALSAR data K&C Initiative, Extension Phase 2009-2011: Mapping and monitoring of forests in Sweden using ALOS PALSAR data Johan Fransson and Håkan Olsson Swedish University of Agricultural Sciences, Sweden Leif Eriksson

More information

ERS COHERENCE AND SLC IMAGES IN FOREST CHARACTERISATION

ERS COHERENCE AND SLC IMAGES IN FOREST CHARACTERISATION ERS COHERENCE AND SLC IMAGES IN FOREST CHARACTERISATION Manninen, T. (1), Parmes, E. (1), Häme, T. (1), Sephton, A. (1), Bach, H. (2) and Borgeaud, M. (3) (1) VTT Automation, Remote Sensing P.O. Box, 134,

More information

3/1/18 USING RADAR FOR WETLAND MAPPING IMPORTANCE OF SOIL MOISTURE TRADITIONAL METHODS TO MEASURE SOIL MOISTURE. Feel method Electrical resistance

3/1/18 USING RADAR FOR WETLAND MAPPING IMPORTANCE OF SOIL MOISTURE TRADITIONAL METHODS TO MEASURE SOIL MOISTURE. Feel method Electrical resistance 3/1/18 USING RADAR FOR WETLAND MAPPING SOIL MOISTURE AND WETLAND CLASSIFICATION Slides modified from a presentation by Charlotte Gabrielsen for this class. Southeast Arizona: Winter wet period From C.

More information

European Forest Fire Information System (EFFIS) - Rapid Damage Assessment: Appraisal of burnt area maps with MODIS data

European Forest Fire Information System (EFFIS) - Rapid Damage Assessment: Appraisal of burnt area maps with MODIS data European Forest Fire Information System (EFFIS) - Rapid Damage Assessment: Appraisal of burnt area maps with MODIS data Paulo Barbosa European Commission, Joint Research Centre, Institute for Environment

More information

K&C Phase 4 Status report. Retrieval of forest biomass and biomass change with spaceborne SAR

K&C Phase 4 Status report. Retrieval of forest biomass and biomass change with spaceborne SAR K&C Phase 4 Status report Retrieval of forest biomass and biomass change with spaceborne SAR Johan Fransson 1, Jonas Fridman 1, Ivan Huuva, Håkan Olsson 1, Henrik J. Persson 1, Jörgen Wallerman 1, Maurizio

More information

Hydrological analysis of high resolution multifrequent, multipolarimetric and interferometric airborne SAR data

Hydrological analysis of high resolution multifrequent, multipolarimetric and interferometric airborne SAR data Hydrological analysis of high resolution multifrequent, multipolarimetric and interferometric airborne SAR data VOLKER HOCHSCHILD, MARTIN HEROLD Institute for Geography, Department of Geoinformatics, Hydrology

More information

SENSITIVITY OF ASAR AP DATA TO WHEAT CROP PARAMETERS

SENSITIVITY OF ASAR AP DATA TO WHEAT CROP PARAMETERS SENSITIVITY OF ASAR AP DATA TO WHEAT CROP PARAMETERS Francesco Mattia, Laura Dente, Giuseppe Satalino, and Thuy Le Toan Istituto di Studi sui Sistemi Intelligenti per l Automazione, ISSIA-CNR, via Amendola

More information

Report on Kyoto & Carbon Initiative Project Change detection in Swedish forest

Report on Kyoto & Carbon Initiative Project Change detection in Swedish forest Report on Kyoto & Carbon Initiative Project Change detection in Swedish forest Johan Fransson, Anders Krantz, Mattias Magnusson and Håkan Olsson Swedish University of Agricultural Sciences, Sweden Leif

More information

Tropical Forest Mapping using Multiband Polarimetric and Interferometric SAR Data

Tropical Forest Mapping using Multiband Polarimetric and Interferometric SAR Data Tropical Forest Mapping using Multiband Polarimetric and Interferometric SAR Data Kemal Unggul Prakoso Wageningen University, Nieuwe Kanaal 11, 6709 PA Wageningen, The Netherlands tel:+31-317-483576, fax:+31-317-484885,

More information

Remote Sensing of Mangrove Structure and Biomass

Remote Sensing of Mangrove Structure and Biomass Remote Sensing of Mangrove Structure and Biomass Temilola Fatoyinbo 1, Marc Simard 2 1 NASA Goddard Space Flight Center, Greenbelt, MD USA 2 NASA Jet Propulsion Laboratory, Pasadena, CA USA Introdution

More information

Eric S. Kasischke a,, Laura L. Bourgeau-Chavez b, Jill F. Johnstone c,1

Eric S. Kasischke a,, Laura L. Bourgeau-Chavez b, Jill F. Johnstone c,1 Remote Sensing of Environment 108 (2007) 42 58 www.elsevier.com/locate/rse Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using

More information

Forest Applications. Chris Schmullius, Oliver Cartus, Maurizio Santoro. 5 September 2007, D3PB

Forest Applications. Chris Schmullius, Oliver Cartus, Maurizio Santoro. 5 September 2007, D3PB Forest Applications Chris Schmullius, Oliver Cartus, Maurizio Santoro 5 September 2007, D3PB 4 September 2007 D3PB-2 Forest practicals Christiane Schmullius 2 Einführung mit C/X-Äthna-Beispielen MFFU Sommerschule

More information

GROUND WATER MANAGEMENT AND ITS CONSEQUENCES IN DELFT, THE NETHERLANDS AS OBSERVED BY PERSISTENT SCATTERER INTERFEROMETRY

GROUND WATER MANAGEMENT AND ITS CONSEQUENCES IN DELFT, THE NETHERLANDS AS OBSERVED BY PERSISTENT SCATTERER INTERFEROMETRY GROUND WATER MANAGEMENT AND ITS CONSEQUENCES IN DELFT, THE NETHERLANDS AS OBSERVED BY PERSISTENT SCATTERER INTERFEROMETRY Freek J. van Leijen and Ramon F. Hanssen Delft University of Technology, Delft

More information

K&C Phase 4 Status report. Retrieval of forest biomass and biomass change with spaceborne SAR

K&C Phase 4 Status report. Retrieval of forest biomass and biomass change with spaceborne SAR K&C Phase 4 Status report Retrieval of forest biomass and biomass change with spaceborne SAR Johan Fransson 1, Jonas Fridman 1, Ivan Huuva 1 Håkan Olsson 1, Henrik Persson 1, Jörgen Wallerman 1, Maurizio

More information

The NISAR Mission. Paul Siqueira Emerging Technologies and Methods in Earth Observation for Agriculture Monitoring College Park, 2018

The NISAR Mission. Paul Siqueira Emerging Technologies and Methods in Earth Observation for Agriculture Monitoring College Park, 2018 The NISAR Mission Paul Siqueira Emerging Technologies and Methods in Earth Observation for Agriculture Monitoring College Park, 2018 Flyer A one-page paper-flyer is available with more information NISAR

More information

RADAR for Biomass Mapping

RADAR for Biomass Mapping RADAR for Biomass Mapping Josef Kellndorfer Wayne Walker, Katie Kirsch, Greg Fiske The Woods Hole Research Center GOFC-GOLD Biomass Workshop Missoula, 15-June-2009 Outline Some Radar principles Measurements

More information

Assessment of tropical forest biomass: A challenging objective for the Biomass mission

Assessment of tropical forest biomass: A challenging objective for the Biomass mission Assessment of tropical forest biomass: A challenging objective for the Biomass mission Thuy Le Toan, Ludovic Villard, Ho Tong M. D., Thierry Koleck, CESBIO, Toulouse, France Pascale Dubois Fernandez, ONERA,

More information

Role and importance of Satellite data in the implementation of the COMIFAC Convergence Plan

Role and importance of Satellite data in the implementation of the COMIFAC Convergence Plan Plenary Meeting of the Congo Basin Forest Partnership (CBFP) Palais des Congrès, Yaoundé. Cameroon 11-12 November, 2009 Role and importance of Satellite data in the implementation of the COMIFAC Convergence

More information

FOREST DRAGON 2: LARGE-AREA FOREST GROWING STOCK VOLUME MAPPING IN CHINA, USING SPACEBORNE RADAR

FOREST DRAGON 2: LARGE-AREA FOREST GROWING STOCK VOLUME MAPPING IN CHINA, USING SPACEBORNE RADAR FOREST DRAGON 2: LARGE-AREA FOREST GROWING STOCK VOLUME MAPPING IN CHINA, USING SPACEBORNE RADAR Johannes Reiche (1), Reik Leiterer (1), Oliver Cartus (1), Maurizio Santoro (2), Christiane Schmullius (1),

More information

the wheat fields is small, and as for fields of puddling and leveling in winter and other fields in similar, the difference is small. It is conclude t

the wheat fields is small, and as for fields of puddling and leveling in winter and other fields in similar, the difference is small. It is conclude t OBSERVATION OF JAPANESE PADDY RICE FIELDS USING MULTI TEMPORAL AND POLARIMETRIC PALSAR DATA PI No.365 Naoki ISHITSUKA 1, Genya SAITO 2, Fan YANG 3, Chinatsu YONEZAWA 4 and Shigeo OGAWA 5 1 National Institute

More information

The Biomass mission How it works, what it measures? Thuy Le Toan, CESBIO, Toulouse, France & The Biomass Mission Advisory Group

The Biomass mission How it works, what it measures? Thuy Le Toan, CESBIO, Toulouse, France & The Biomass Mission Advisory Group The Biomass mission How it works, what it measures? Thuy Le Toan, CESBIO, Toulouse, France & The Biomass Mission Advisory Group Why Synthetic Aperture Radars to observe the world forests? Transmit and

More information

Forest Dragon 3 Project Id

Forest Dragon 3 Project Id Forest Dragon 3 Project Id. 10666 Principle Investigator: Co-Investigator: Young Scientists: Prof. Li, Academy of Forest Sciences Prof. Schmullius, University of Jena Prof. Pang, Dr. Feilong, Dr. Santoro

More information

ALOS K&C Project updated

ALOS K&C Project updated ALOS K&C Project updated Thuy Le Toan CESBIO, France 1. Forest products: forest and biomass maps 2. Wetlands products: rice maps inundation maps Forest and forest biomass maps K&C product(s): Algorithms

More information

Fire Scar Detection in the Canadian Boreal Forest. Plummer, S.E., Gerard, F.F., Iliffe, L. and Wyatt, B.K.

Fire Scar Detection in the Canadian Boreal Forest. Plummer, S.E., Gerard, F.F., Iliffe, L. and Wyatt, B.K. Fire Scar Detection in the Canadian Boreal Forest Plummer, S.E., Gerard, F.F., Iliffe, L. and Wyatt, B.K. Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Cambs, PE17 2LS, UK Tel: +44 1487

More information

Earth Observation for Sustainable Development of Forests (EOSD) - A National Project

Earth Observation for Sustainable Development of Forests (EOSD) - A National Project Earth Observation for Sustainable Development of Forests (EOSD) - A National Project D. G. Goodenough 1,5, A. S. Bhogal 1, A. Dyk 1, R. Fournier 2, R. J. Hall 3, J. Iisaka 1, D. Leckie 1, J. E. Luther

More information

Remote sensing as a tool to detect and quantify vegetation properties in tropical forest-savanna transitions Edward Mitchard (University of Edinburgh)

Remote sensing as a tool to detect and quantify vegetation properties in tropical forest-savanna transitions Edward Mitchard (University of Edinburgh) Remote sensing as a tool to detect and quantify vegetation properties in tropical forest-savanna transitions Edward Mitchard (University of Edinburgh) Presentation to Geography EUBAP 10 th Oct 2008 Supervisor:

More information

Jo rg Haarpaintner Norut, N-9294 Tromsø, Norway

Jo rg Haarpaintner Norut, N-9294 Tromsø, Norway Validation of SAR-based forest land cover and forest change maps and detectability of slash-and-burn activities in the Kwamouth region, Mai-Ndombe District, DRC. Jo rg Haarpaintner Norut, N-9294 Tromsø,

More information

The application of texture measures to classifying the rain forest CHRIS OLIVER

The application of texture measures to classifying the rain forest CHRIS OLIVER The application of texture measures to classifying the rain forest CHRIS OLIVER DERA, St Andrew s Road, Malvern, Worcs., WR14 3PS, UK. chris@sar.dera.gov.uk Abstract. This paper describes the application

More information

Radar Polarimetry for Forestry Applications: ALOS and Radarsat-2 studies in Canada

Radar Polarimetry for Forestry Applications: ALOS and Radarsat-2 studies in Canada Radar Polarimetry for Forestry Applications: ALOS and Radarsat-2 studies in Canada by S. R. Cloude (1), A. Marino (2), D. Goodenough (3), H Chen (3), A. Richardson (3), B. Moa (4) (1) AEL Consultants,

More information

The BIOMASS Mission. Klaus Scipal 24/01/2019. ESA UNCLASSIFIED - For Official Use

The BIOMASS Mission. Klaus Scipal 24/01/2019. ESA UNCLASSIFIED - For Official Use The BIOMASS Mission Klaus Scipal 24/01/2019 ESA UNCLASSIFIED - For Official Use The BIOMASS Mission 1. ESA s 7 th Earth Explorer Mission 2. An interferometric, polarimetric P-band SAR 3. To be deployed

More information

Gazing at Grass: Estimating surface deformation over fast decorrelating pasture using InSAR

Gazing at Grass: Estimating surface deformation over fast decorrelating pasture using InSAR Gazing at Grass: Estimating surface deformation over fast decorrelating pasture using InSAR Yu Morishita and Ramon Hanssen 1 60% below the highwater levels of the sea, river, and lakes: Flood risk is the

More information

Taikichiro Mori Memorial Research Grants Graduate Student Researcher Development Grant Report

Taikichiro Mori Memorial Research Grants Graduate Student Researcher Development Grant Report Taikichiro Mori Memorial Research Grants Graduate Student Researcher Development Grant Report February 2016 Research Project: Detection and delineation of water bodies using Synthetic Aperture Radar data

More information

PALSAR Full-Polarimetric Observation for Peatland

PALSAR Full-Polarimetric Observation for Peatland PALSAR Full-Polarimetric Observation for Peatland M. Watanabe 1*, K. Kushida 2, C. Yonezawa 3, M. Sato 1 and M. Fukuda 4 1 Center for North East Asian Studies, Tohoku University, Kawauchi 41, Aoba-ku,

More information

INTEGRATING POLARIMETRIC SYNTHETIC APERATURE RADAR AND IMAGING SPECTROMETRY FOR WILDLAND FUEL MAPPING IN SOUTHERN CALIFORNIA

INTEGRATING POLARIMETRIC SYNTHETIC APERATURE RADAR AND IMAGING SPECTROMETRY FOR WILDLAND FUEL MAPPING IN SOUTHERN CALIFORNIA INTEGRATING POLARIMETRIC SYNTHETIC APERATURE RADAR AND IMAGING SPECTROMETRY FOR WILDLAND FUEL MAPPING IN SOUTHERN CALIFORNIA Philip E. Dennison Department of Geography, University of California, Santa

More information

Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia

Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia Remote Sens. 2013, 5, 3611-3636; doi:10.3390/rs5073611 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR,

More information

Forest accounts standard tables

Forest accounts standard tables LG/15/13 15 th Meeting of the London Group on Environmental Accounting Wiesbaden, 30 November 4 December 2009 Forest accounts standard tables Jukka Muukkonen 1(11) Forest accounts standard tables Contents

More information

Fire Occurrence in Borneo s Peatlands Between 1997 and 2005 and it s Impacts

Fire Occurrence in Borneo s Peatlands Between 1997 and 2005 and it s Impacts Workshop on Vulnerability of Carbon Pools of Tropical Peatlands in Asia Pekanbaru, Riau, Sumatra, Indonesia 24-26 January 2006 Fire Occurrence in Borneo s Peatlands Between 1997 and 2005 and it s Impacts

More information

Monitoring Forest Dynamics in Northeastern China in Support of GOFC

Monitoring Forest Dynamics in Northeastern China in Support of GOFC Monitoring Forest Dynamics in Northeastern China in Support of GOFC Principal Investigator: Dr. Guoqing Sun, University of Maryland Co-Principal Investigator: Dr. Darrel L. Williams, NASA s Goddard Space

More information

GIS ALOS PALSAR. Db2. GIS

GIS ALOS PALSAR. Db2.   GIS Vol.6, No. 2, Summer 2014 Iranian Remote Sensing & * ALOS PALSAR Db2 * Email: sahebi@kntu.ac.ir Houghton, 1991 (Lu, 2005; Nelson et al., 2000; Foody et al., 2001; Steininger, 2000; Lucas et al., 1998;

More information

Forest Structural Classification and Above Ground Biomass Estimation for Australia

Forest Structural Classification and Above Ground Biomass Estimation for Australia Forest Structural Classification and Above Ground Biomass Estimation for Australia Professor Richard Lucas 1 Jingyi Sun 2 Centre for Ecosystem Sciences (CES) School of Biological, Earth and Environmental

More information

Classification of arable land using multitemporal

Classification of arable land using multitemporal Mr. Anser Mehmood Classification of arable land using multitemporal TerraSAR-X data Duration of the Thesis: 6 months Completion: April 2013 Tutor: Dipl.- Geogr. René Pasternak Examiner: Prof. Dr.-Ing.

More information

Polar Space Task Group Permafrost Review of Requirements, Achievements and Expected Data

Polar Space Task Group Permafrost Review of Requirements, Achievements and Expected Data Polar Permafrost Review of Requirements, Achievements and Expected Data Annett Bartsch Central Institute for Meteorology and Geodynamics, Vienna, Austria PSTG 6, ESTEC, Sept., 2016 Developments since last

More information

Integration of SAR multi-frequency and optical data for the retrieval of soil moisture and vegetation water content

Integration of SAR multi-frequency and optical data for the retrieval of soil moisture and vegetation water content Integration of SAR multi-frequency and optical data for the retrieval of soil moisture and vegetation water content A. Padovano 1,2, F. Greifeneder 1, R. Colombo 2, G. Cuozzo 1, C. Notarnicola 1 1 - Eurac

More information

Integration of Alos PalSAR and LIDAR IceSAT data in a multistep approach for wide area biomass mapping

Integration of Alos PalSAR and LIDAR IceSAT data in a multistep approach for wide area biomass mapping Integration of Alos PalSAR and LIDAR IceSAT data in a multistep approach for wide area biomass mapping. Above Ground Biomass (carbon) mapping and monitoring: Importance Supporting UNFCC KP, REDD+, Monitoring

More information

Remote Sensing (C) Team Name: Student Name(s):

Remote Sensing (C) Team Name: Student Name(s): Team Name: Student Name(s): Remote Sensing (C) Nebraska Science Olympiad Regional Competition Henry Doorly Zoo Saturday, February 27 th 2010 96 points total Please answer all questions with complete sentences

More information

Use of multi-temporal PalSAR ScanSAR data for soil moisture retrieval

Use of multi-temporal PalSAR ScanSAR data for soil moisture retrieval Use of multi-temporal PalSAR ScanSAR data for soil moisture retrieval Francesco Mattia (1), Giuseppe Satalino (1), Anna Balenzano (1) and Michele Rinaldi () (1) Consiglio Nazionale delle Ricerche (CNR)

More information

ASSESSMENT OF A MANGROVE REHABILITATION PROGRAMME USING REMOTE SENSING AND GIS: A CASE STUDY OF AMPHUR KHLUNG, CHANTABURI PROVINCE, EASTERN THAILAND

ASSESSMENT OF A MANGROVE REHABILITATION PROGRAMME USING REMOTE SENSING AND GIS: A CASE STUDY OF AMPHUR KHLUNG, CHANTABURI PROVINCE, EASTERN THAILAND ASSESSMENT OF A MANGROVE REHABILITATION PROGRAMME USING REMOTE SENSING AND GIS: A CASE STUDY OF AMPHUR KHLUNG, CHANTABURI PROVINCE, EASTERN THAILAND Korn Manassrisuksi 1 Michael Weir 2 Yousif Ali Hussin

More information

I. SOIL MOISTURE, CROP AND VEGETATION STUDY USING AIRSAR DATA

I. SOIL MOISTURE, CROP AND VEGETATION STUDY USING AIRSAR DATA I. SOIL MOISTURE, CROP AND VEGETATION STUDY USING AIRSAR DATA Dr. Flaviana Hilario (1) and Dr. Juliet Mangera (2) (1) PAGASA (Weather Bureau), ATB 1424 Quezon Ave, Quezon City, Philippines, 1100, Philippines

More information

Product Delivery Report for K&C Phase 3. Francesco Holecz sarmap

Product Delivery Report for K&C Phase 3. Francesco Holecz sarmap Product Delivery Report for K&C Phase 3 Francesco Holecz sarmap Science Team meeting #21 Phase 3 Result Presentations Kyoto Research Park, Kyoto, Japan, December 3-4, 2014 Project objectives The objective

More information

UK NCEO work on Global Forest. SDCG-10: Reading, 7-9 September, 2016

UK NCEO work on Global Forest. SDCG-10: Reading, 7-9 September, 2016 UK NCEO work on Global Forest SDCG-: Reading, 7- September, 26 Examples from NCEO-University of Leicester Pedro Rodriguez-Veiga, Heiko Balzter, Kevin Tansey, Ciaran Robb, Ana Maria Pacheco, Ramesh Ningthoujam

More information

Integration methods for forest degradation assessment and change monitoring

Integration methods for forest degradation assessment and change monitoring VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Joint GFOI / GOFC-GOLD / CONABIO / SilvaCarbon R&D Expert and Capacity Building workshop on: Regional solutions to forest type stratification and characterising

More information

Crop type mapping and growth monitoring thanks to a synergistic use of SAR and optical remote sensing

Crop type mapping and growth monitoring thanks to a synergistic use of SAR and optical remote sensing Crop type mapping and growth monitoring thanks to a synergistic use of SAR and optical remote sensing Pierre Defourny(1), Xavier Blaes(1), Moira Callens (2), Vincent Guissard (1), Valerie Janssens (2),

More information

Mapping Coastal Great Lakes Wetlands and Adjacent Land use Through Hybrid Optical-Infrared and Radar Image Classification Techniques

Mapping Coastal Great Lakes Wetlands and Adjacent Land use Through Hybrid Optical-Infrared and Radar Image Classification Techniques Mapping Coastal Great Lakes Wetlands and Adjacent Land use Through Hybrid Optical-Infrared and Radar Image Classification Techniques Laura L. Bourgeau-Chavez, Kirk Scarbrough, Mary Ellen Miller, Zach Laubach,

More information

Product Delivery Report for K&C Phase 3. Christian Thiel et al. Friedrich-Schiller-University Jena, Germany

Product Delivery Report for K&C Phase 3. Christian Thiel et al. Friedrich-Schiller-University Jena, Germany Product Delivery Report for K&C Phase 3 Christian Thiel et al. Friedrich-Schiller-University Jena, Germany Science Team meeting #21 Phase 3 Result Presentations Kyoto Research Park, Kyoto, Japan, December

More information

Forest Applications. Christiana Schmullius. 2 July 2009

Forest Applications. Christiana Schmullius. 2 July 2009 Forest Applications Christiana Schmullius 2 July 29 Contents Motivation Need for Biomass Mapping Biomass Components Physical Background Wavelength Polarisation Coherence Mapping Results Siberia: Coherence

More information

ESTIMATION OF THE RICE YIELD IN THE MEKONG DELTA USING SAR DUAL POLARISATION DATA

ESTIMATION OF THE RICE YIELD IN THE MEKONG DELTA USING SAR DUAL POLARISATION DATA ESTIMATION OF THE RICE YIELD IN THE MEKONG DELTA USING SAR DUAL POLARISATION DATA Nguyen Lam-Dao *a, Phung Hoang-Phi a, Juliane Huth b and Phung Cao-Van c a GIS and Remote Sensing Research Center, HCMC

More information

FOREST AND FOREST CHANGE MAPPING WITH C- AND L-BAND SAR IN LIWALE, TANZANIA

FOREST AND FOREST CHANGE MAPPING WITH C- AND L-BAND SAR IN LIWALE, TANZANIA FOREST AND FOREST CHANGE MAPPING WITH C- AND L-BAND SAR IN LIWALE, TANZANIA J. Haarpaintner a, C. Davids a, H. Hindberg a, E. Zahabu b, R.E. Malimbwi b a Norut, P.O. Box 6434, Tromsø Science Park, N-9294

More information

Introducing the Moors for the Future Pilot, Peak District National Park

Introducing the Moors for the Future Pilot, Peak District National Park Introducing the Moors for the Future Pilot, Peak District National Park Winner of The Copernicus Masters Sustainable Living Challenge 2016 Gail Millin-Chalabi Ioanna Tantanasi Adam Johnston Team based

More information

PACRIM-2 Clear-fell Mapping Studies in New Zealand

PACRIM-2 Clear-fell Mapping Studies in New Zealand PACRIM-2 Clear-fell Mapping Studies in New Zealand D. Pairman, S.J. McNeill, D. McNab* and S.E. Belliss Landcare Research PO Box 69, Lincoln 8152, New Zealand. *Fletcher Challenge Forests. Email: pairmand@landcareresearch.co.nz

More information

REDD+ for the Guiana Shield. Terms of Reference SAR Technical Training for Forest Mapping

REDD+ for the Guiana Shield. Terms of Reference SAR Technical Training for Forest Mapping REDD+ for the Guiana Shield Technical and Regional Platform for the Development of REDD+ in the Guiana Shield Terms of Reference SAR Technical Training for Forest Mapping Project Owner: Office National

More information

European Space Activities - Benefits for the Society

European Space Activities - Benefits for the Society European Space Activities - Benefits for the Society European Interparliamentary Space Conference Bucharest, 25/26 October 2010 Dr. Reinhard Schulte-Braucks Head of Space Research and Development European

More information

FIRE AND FUEL MAPPING SHOALWATER BAY TRAINING AREA. Brian Tunstall, Neil Powell and Alan Marks

FIRE AND FUEL MAPPING SHOALWATER BAY TRAINING AREA. Brian Tunstall, Neil Powell and Alan Marks FIRE AND FUEL MAPPING SHOALWATER BAY TRAINING AREA Brian Tunstall, Neil Powell and Alan Marks Technical Report 10/98 March 1998 FIRE AND FUEL MAPPING SHOALWATER BAY TRAINING AREA Brian Tunstall 1, Neil

More information

Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX

Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX Sol Cooperdock GEO386G Final Project Purpose and Introduction: In the falls of 2011 and

More information

On SEBI-SEBS validation in France, Italy, Spain, USA and China

On SEBI-SEBS validation in France, Italy, Spain, USA and China On SEBI-SEBS validation in France, Italy, Spain, USA and China Massimo Menenti Li Jia 2 and ZongBo Su 2 - Laboratoire des Sciences de l Image, de l Informatique et de la Télédétection (LSIIT), Strasbourg,

More information

Overview of new MODIS and Landsat data derived products to characterise land cover and change over Russia. Sergey BARTALEV

Overview of new MODIS and Landsat data derived products to characterise land cover and change over Russia. Sergey BARTALEV Russian Academy of Sciences Space Research Institute (IKI) Overview of new MODIS and Landsat data derived products to characterise land cover and change over Russia Sergey BARTALEV 15 Aprile 2013, GOFC-GOLD

More information

COSMO-SkyMed data for detection of forest boundaries on steep terrain

COSMO-SkyMed data for detection of forest boundaries on steep terrain Photo Credit: Peter Morley COSMO-SkyMed data for detection of forest boundaries on steep terrain Peter Morley 1, Sophie Davison 3, Alistair Jump 1, Daniel Donoghue 2 Why mountain forests? 23% earths forested

More information

Satellite observations of fire-induced albedo changes and the associated radiative forcing: A comparison of boreal forest and tropical savanna

Satellite observations of fire-induced albedo changes and the associated radiative forcing: A comparison of boreal forest and tropical savanna Satellite observations of fire-induced albedo changes and the associated radiative forcing: A comparison of boreal forest and tropical savanna 1 Yufang Jin, 1 James T. Randerson, 2 David P. Roy, 1 Evan

More information

Satellite Earth Observation

Satellite Earth Observation Satellite Earth Observation Services for Ecosystem valuation Prof Nick Veck Head of the CEO s Office Satellite Applications Catapult 17 March 2017 Outline Introduction to Earth observation and ecosystem

More information

Biomass Level-2 DATE: ISSUE: AUTHOR: Wednesday, 30 May 2018 Issue 1.0. Francesco Banda

Biomass Level-2 DATE: ISSUE: AUTHOR: Wednesday, 30 May 2018 Issue 1.0. Francesco Banda Biomass Level-2 DATE: ISSUE: AUTHOR: Wednesday, 30 May 2018 1.0 Francesco Banda 2 Level-2 implementation study 3 BIOMASS mission ESAs 7th Earth Explorer studying the forested areas of our planet launch

More information

ESA DUE INNOVATOR III: EO4Urban

ESA DUE INNOVATOR III: EO4Urban KTH ROYAL INSTITUTE OF TECHNOLOGY ESA DUE INNOVATOR III: EO4Urban Multitemporal Sentinel-1A SAR & Sentinel-2A MSI Data for Global Urban Services Yifang Ban 1 and Paolo Gamba 2 1 KTH Royal Institute of

More information

Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations

Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations Christophe Proisy, Eric Mougin Centre d Etudes Spatiales de la Biosphère CNES / CNRS / UPS Bpi 2801 18 avenue E. Belin

More information

ESTIMATING TROPICAL DEFORESTATION IN THE CONGO BASIN BY SYSTEMATIC SAMPLING OF HIGH RESOLUTION IMAGERY

ESTIMATING TROPICAL DEFORESTATION IN THE CONGO BASIN BY SYSTEMATIC SAMPLING OF HIGH RESOLUTION IMAGERY Proceedings of the 2 nd Workshop of the EARSeL SIG on Land Use and Land Cover ESTIMATING TROPICAL DEFORESTATION IN THE CONGO BASIN BY SYSTEMATIC SAMPLING OF HIGH RESOLUTION IMAGERY Gregory Duveiller 1,

More information

Guiana Shield Activities Radar Point of view

Guiana Shield Activities Radar Point of view Guiana Shield Activities Radar Point of view SAR Technical Workshop for Forest Mapping Session 2 Applications - April 2015 Cédric Lardeux Jean-Paul Rudant Pierre-Louis Frison cedric.lardeux@onfinternational.com

More information

SAR time series in forest research Biomass

SAR time series in forest research Biomass SAR time series in forest research Biomass Thuy Le Toan Centre D Etudes Spatiales de la Biosphere (CESBIO) Toulouse, France Thuy.Letoan@cesbio.cnes.fr The research question on the global Carbon budget

More information

Developing spatial information database for the targeted areas

Developing spatial information database for the targeted areas Developing spatial information database for the targeted areas 1 Table of Contents Jericho and Al- Auja (Palestine) 1 Background... 3 2 Monitoring the plant biomass using NDVI in Jericho and Al Auja...

More information

CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN

CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN U.S.- Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods Perugia (Italy), November 1995 CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN

More information

WHEN SPACE MEETS AGRICULTURE

WHEN SPACE MEETS AGRICULTURE WHEN SPACE MEETS AGRICULTURE Image from ESA Sentinel 14-15 November 2016 Matera, Italy Join the conversation #WSMA16 What can Copernicus do for farmers and for the European Agricultural Policy Catharina

More information

Performance Modeling for Space-based Observations of Forest Fires using Microbolometers

Performance Modeling for Space-based Observations of Forest Fires using Microbolometers Performance Modeling for Space-based Observations of Forest Fires using Microbolometers Peyman Rahnama 1, Linda Marchese 2, François Chateauneuf 3, John Hackett 4, Tim Lynham 5 and Martin Wooster 6 1 Peyman

More information

AGRICULTURAL PERFORMANCE MONITORING WITH POLARIMETRIC SAR AND OPTICAL IMAGERY

AGRICULTURAL PERFORMANCE MONITORING WITH POLARIMETRIC SAR AND OPTICAL IMAGERY AGRICULTURAL PERFORMANCE MONITORING WITH POLARIMETRIC SAR AND OPTICAL IMAGERY Tishampati Dhar [1][2], Doug Gray [1], Carl Menges [2] [1] Dept of Electrical and Electronic Engineering, University of Adelaide,

More information

Google Earth Engine: A cloud infrastructure for Earth observation applications

Google Earth Engine: A cloud infrastructure for Earth observation applications Google Earth Engine: A cloud infrastructure for Earth observation applications Swisstopo Colloquium, Wabern 23 March 2018 Dr. Philip Jörg, NPOC @ RSL npoc@geo.uzh.ch Changing focus: from single satellites

More information

Mapping Forest Fire Burn Severity to Predict Vegetation Change and Carbon Dioxide Emissions: A Case Study from Alaska

Mapping Forest Fire Burn Severity to Predict Vegetation Change and Carbon Dioxide Emissions: A Case Study from Alaska Mapping Forest Fire Burn Severity to Predict Vegetation Change and Carbon Dioxide Emissions: A Case Study from Alaska This lesson plan was developed by David Jakim and Dr. Jeffrey Bird from Queens College

More information

Overview of Land Surface Parameters From Earth Observation

Overview of Land Surface Parameters From Earth Observation Overview of Land Surface Parameters From Earth Observation Prof. Dr. Christiane Schmullius Friedrich Schiller University Jena, Germany Department of Geoinformatics and Remote Sensing FSU Jena Institut

More information

PALSAR TROPICAL FOREST COVER MAPPING, MOSAICING AND VALIDATION, CASE STUDY BORNEO

PALSAR TROPICAL FOREST COVER MAPPING, MOSAICING AND VALIDATION, CASE STUDY BORNEO PALSAR TROPICAL FOREST COVER MAPPING, MOSAICING AND VALIDATION, CASE STUDY BORNEO Dirk H. Hoekman 1), M.J. Quiñones 2), R. Verhoeven 2), M.A.M. Vissers 2), V. Schut 2) and N. Wielaard 2) 1) Wageningen

More information

ESTIMATION OF FOREST STRUCTURAL PARAMETERS FROM LIDAR AND SAR DATA

ESTIMATION OF FOREST STRUCTURAL PARAMETERS FROM LIDAR AND SAR DATA ESTIMATION OF FOREST STRUCTURAL PARAMETERS FROM LIDAR AND SAR DATA Z. Zhang a, b,*, W. Ni b, A. Fu b, Z. Guo b, Guoqing Sun c, and D. Wang b a Remote Sensing and GIS Research Center, Beijing Normal University,

More information

Detecting deforestation with multitemporal L-band SAR imagery: a case study in western Brazilian Amazônia

Detecting deforestation with multitemporal L-band SAR imagery: a case study in western Brazilian Amazônia INT. J. REMOTE SENSING INPE eprint: sid.inpe.br/eprint@80/2006/12.08.13.17 v1 2006-12-09 2006, 1 8, PrEview article Detecting deforestation with multitemporal L-band SAR imagery: a case study in western

More information

Development of a National Forest Resources Database under the Kyoto Protocol

Development of a National Forest Resources Database under the Kyoto Protocol Development of a National Forest Resources Database under the Kyoto Protocol Research Institute Forestry and Forest Products Research Institute Background and Purpose In order to mitigate global warming,

More information

Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter

Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter International Journal of Remote Sensing Vol. 27, No. 16, 20 August 2006, 3425 3454 Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter M. SANTORO 1 {, L.

More information

Forestry Department Food and Agriculture Organization of the United Nations

Forestry Department Food and Agriculture Organization of the United Nations Forestry Department Food and Agriculture Organization of the United Nations GLOBAL FOREST RESOURCES ASSESSMENT 2010 COUNTRY REPORTS ANDORRA FRA2010/005 Rome, 2010 The Forest Resources Assessment Programme

More information

K&C Phase 3 Brief project essentials. Wide area forest monitoring of Insular SE Asia and Guiana Shield. Dirk Hoekman Wageningen University

K&C Phase 3 Brief project essentials. Wide area forest monitoring of Insular SE Asia and Guiana Shield. Dirk Hoekman Wageningen University K&C Phase 3 Brief project essentials Wide area forest monitoring of Insular SE Asia and Guiana Shield Dirk Hoekman Wageningen University Science Team meeting #16 Phase 3 Kick-off JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo,

More information

RESULTS & RECOMMENDATIONS from. The Dragon Forest Projects

RESULTS & RECOMMENDATIONS from. The Dragon Forest Projects RESULTS & RECOMMENDATIONS from The Dragon Forest Projects Forest Fire Id. 10350 Forest Change Monitoring Id. 10549 PolInSAR Id. 10609 The Forest Dragon 3 Id. 10666 Forest Resources Research Id. 10667 Forest

More information

Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka- 1000, Bangladesh. 2

Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka- 1000, Bangladesh. 2 ID: EE 024 TEMPORAL VARIATION OF BIOMASS CONCENTRATION IN THE BANGLADESH SUNDARBANS USING REMOTE SENSING TECHNIQUES Ahsan Azhar Shopan 1*, G.M. Tarekul Islam 1, A.K.M. Saiful Islam 1, Md. Munsur Rahman

More information

FIRE MANAGEMENT OF CONSERVATION RESERVES IN THE KIMBERLEY

FIRE MANAGEMENT OF CONSERVATION RESERVES IN THE KIMBERLEY FIRE MANAGEMENT OF CONSERVATION RESERVES IN THE KIMBERLEY On 4 October 2000 our speaker was Chris Done, Regional Manager in Kimberley for the Department of Conservation and Land Management WA. Chris generously

More information

Country Report: Major points

Country Report: Major points COST ACTION FP 0703 Echoes: Expected Climate Change and Options for European Silviculture Country Report: Major points CYPRUS 22-24 January 2009, Florence - Italy Savvas Andrea & Erodotos Kakouris savvasandrea@hotmail.com

More information

ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA

ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA Muna R. Al Kaabi, Jacinto Estima and Hosni Ghedira Ocean Color Group - Earth

More information