Quality and Process Variability in Ti-6Al-4V Powder Bed Electron Beam Additive Manufacturing

Size: px
Start display at page:

Download "Quality and Process Variability in Ti-6Al-4V Powder Bed Electron Beam Additive Manufacturing"

Transcription

1 Quality and Process Variability in Ti-6Al-4V Powder Bed Electron Beam Additive Manufacturing Northrop Grumman Aerospace Systems 2015 Euromold September 25, 2015 Eric Fodran, Ph.D.

2 EBM AM In-Process Surface Finish Optimization: Program Objective Developed and executed comprehensive DOE to evaluate EBM AM process parameters and identify parameters for most refined surface finish Targeted Attributes Layer thickness Powder size\distribution Energy source\beam characteristics Qty of beams Beam size\focus beam offset Beam velocity Preheat duration Quantify surface finish with representative geometric features (pocket depth, fillet radii, etc.) 2 Quantify mechanical performance as a function of process parameters and surface condition

3 Powder Size Distribution Histogram of Powder Size Distribution Normal 40 FMW 30 TIMET 40 A metek Frequency A RC A M V irgin Pow der A RC A M O ld In Process Particle Diameter (μm) 3 Variable N Mean StDev Min Q1 Median Q3 Max FMW TIMET ARCAM Virgin Powder ARCAM Old In Process Ametek

4 Design of Experiment Development and Execution 5 Factor DOE developed with up to 3 levels within each factor Results in 38 unique sets of process parameters 12 experimental builds with 4 coupons within each build to execute all experimental combinations 4

5 Representative Results: DOE Builds 4-6 5

6 Post-AM Processing Surface Finish Enhancement Optimized process parameter static and dynamic performance assessment in work Post- AM surface finish process evaluation Improvement in overall surface finish: Legacy baseline average of μin Achieved <180 μin with DOE optimized process parameters Achiev <50 μin with post-am processing Surface Finish Evaluation Coupons Surface Finish Process As-EBM Built, Timet 50 micron layers Chemically- Assisted Aggregate Chem Mill + Chemically-Assisted Aggregate Engineered Aggregate Supplier None REM Ducommun* + REM MicroTek 6 Example Result (R a ) Min. 173 µin 191 µin 139 µin 27 µin Mean 599 µin 515 µin 271 µin 227 µin * Chem mill did not trade favorably as a stand-alone post-process

7 EBM AM Mechanical Properties Assessment: Tensile Properties Elastic Modulus (Msi) 0.2% Offset Yield Strength (ksi) Ultimate Tensile Strength (ksi) Elongation Increase (%) Reduction of Area (%) Legacy Arcam, machined Legacy Arcam, as-fabricated Optimized AM Processes, machined Optimized AM Processes, as-fabricated

8 8 EBM AM Mechanical Properties Assessment: Fatigue Properties

9 EBM AM Mechanical Properties Assessment: Fatigue Properties 9

10 Variability of Additive Manufacturing for Aerospace Structures: Program Objective Develop a model-informed probabilistic approach to quantify the variability associated with AM materials and processes Framework targeted at extracting the most information out of a series of efficient experiments utilizing prior knowledge to minimize overall test requirements Benchmark process capability of multiple AM processes spanning multiple sectors Satellite Airframe Liquid Rocket Propulsion Quantify risk of using AM for aerospace applications Material integrity, property variability, inspectability, surface finish, etc. Develop a method of analysis to identify future manufacturing practice and equipment enhancements for reduced product quality variability 10

11 Variability Assessment of Additive Manufacturing (AM) for Aerospace Applications Powder Bed Electron Beam (Ti-6Al-4V) Arcam Cross Cutting AM Technology Impact Pervasive DoD / Aerospace Impact Sources of Variability Service Provider Inter-OEM Model Itra-OEM Model Powder Recycling Maintenance Interval Layer Thickness Parts in a Build Part Feature Orientation Thick vs. Thin Features Vicinity to Build Plate Quality Metrics Surface Finish Dimensional Tolerance Mechanical Performance Porosity size/density Probabilistic Framework Multi-Stage Nested Factor DOE Adaptive Bayesian Optimal Design Iterative Updating of Prior Information Test Matrix Validation via Physics-Based Models Adaptive Test Articles TRL Process Product Fundamental AM Material and Process Development Preliminary Machine Parameters Preliminary Feed Stock Parameters Cost Trades Practical Applications / Reliability Supply Chain Management Process Development Variability Studies Efficiency, Performance, and Production Material Specifications Process Specifications NDA and In-Process Monitoring 11

12 Ti-6Al-4V EBM Test Article ID Z-Height (in) Thickness (in) Angle (deg) A A A A A A B C C C C C C

13 Post-Build Material Quality Measured via CT Multiple build sequences completed Begun to characterize anomalies throughout components Size Location Vicinity to free surface Vicinity to other defects Clustering All parts are characterized in pre-hip condition 13 CT has been identified as a limiting factor Attempting to overcome geometry limits of process

14 Conclusions and Recommendations Conclusions Ability To Significantly Impact Surface Finish Achieved Powder size distribution Powder morphology Arcam process parameters Ability to Further Refine Surface Finish via Post Additive Manufacturing Processes can also be achieved Begun quantification of effects of surface finish on mechanical properties Current Variability Assessment Program Indicates Significant Effects Of Process Variability On Component Quality Support structure Build layout\component orientation Ongoing and Further Potential Future Development: Computational Build Design Interrogation Tool Evaluates effects of part geometry and build layout on process parameters Assesses whether process parameters fall within safe operating zone Provides opportunities to modify part and/or build Post-Build Interrogation Tool Evaluates build log file for indications of potential failure Thresholds for part rejection are set by TBD industry specification 14

15

Metal Additive Technology 101 Technology Choices and Applications

Metal Additive Technology 101 Technology Choices and Applications Metal Additive Technology 101 Technology Choices and Applications Jeff Crandall Additive Manufacturing Research & Applications Senior Engineer Connecticut Center for Advanced Technology Advanced Manufacturing

More information

Additive Manufacturing of Carbon Nanotube Metal Matrix Composites

Additive Manufacturing of Carbon Nanotube Metal Matrix Composites Additive Manufacturing of Carbon Nanotube Metal Matrix Composites Presenters: 2018 2018 SHEPRA, SHEPRA, Inc. Inc. Robyn L. Bradford-Vialva --- University of Dayton Fred Herman --- SHEPRA Inc. Fred.Herman@shepra.com

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

EOS Aluminium AlSi10Mg

EOS Aluminium AlSi10Mg is an aluminium alloy in fine powder form which has been specially optimised for processing on EOSINT M systems This document provides information and data for parts built using powder (EOS art.-no. 9011-0024)

More information

Simulate & Optimize the Additive Manufacturing Process with

Simulate & Optimize the Additive Manufacturing Process with Driven by Driven by September 12, 2017 Simulate & Optimize the Additive Manufacturing Process with AlphaSTAR s GENOA 3DP Host: Scott Deutsch, America Makes AmericaMakes.us Driven by Driven by Today s Webinar:

More information

XCT to assess defects in titanium ALM parts

XCT to assess defects in titanium ALM parts XCT to assess defects in titanium ALM parts Effects of geometry and build direction Fabien Léonard 1, Samuel Tammas-Williams 1, Philip Prangnell 1, Iain Todd 2, Philip J. Withers 1 1 Henry Moseley X-ray

More information

Characterizing the Surface Texture of AM Parts Upon Surface Finishing: Alternative Methods of Evaluating the Surface Quality of AM Parts

Characterizing the Surface Texture of AM Parts Upon Surface Finishing: Alternative Methods of Evaluating the Surface Quality of AM Parts Characterizing the Surface Texture of AM Parts Upon Surface Finishing: Alternative Methods of Evaluating the Surface Quality of AM Parts Agustin Diaz, Ph. D. Senior Research Chemist Email: adiaz@remchem.com

More information

ebook How to Capitalize on Industrial Metal 3D Printing with Sciaky s Electron Beam Additive Manufacturing (EBAM ) Technology

ebook How to Capitalize on Industrial Metal 3D Printing with Sciaky s Electron Beam Additive Manufacturing (EBAM ) Technology ebook How to Capitalize on Industrial Metal 3D Printing with Sciaky s Electron Beam Additive Manufacturing (EBAM ) Technology Contents 3-5 How EBAM Works 6 EBAM Part Candidates 7 EBAM Part Scalability

More information

The Production of Titanium and Titanium Alloys Using Electron Beam Cold Hearth Single Melt

The Production of Titanium and Titanium Alloys Using Electron Beam Cold Hearth Single Melt The Production of Titanium and Titanium Alloys Using Electron Beam Cold Hearth Single Melt David W. Tripp Development Manager, EBSM TIMET Morgantown, PA Titanium 2006 San Diego, CA Introduction Electron

More information

Design and fabrication of functionally graded components by selective laser melting. C. N. Sun*#, S. Y. Choy*+, K. F. Leong*+, J.

Design and fabrication of functionally graded components by selective laser melting. C. N. Sun*#, S. Y. Choy*+, K. F. Leong*+, J. Solid Freeform Fabrication 216: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Design and fabrication of functionally graded

More information

Material data sheet. EOS Titanium Ti64. Description

Material data sheet. EOS Titanium Ti64. Description EOS Titanium Ti64 EOS Titanium Ti64 is a titanium alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information and data for parts built using

More information

Fatigue Performance of Additive Manufactured Ti6Al4V in Aerospace Applications

Fatigue Performance of Additive Manufactured Ti6Al4V in Aerospace Applications 1 Fatigue Performance of Additive Manufactured Ti6Al4V in Aerospace Applications IN 5000357-336 Issue 6 Magnus Kahlin Industrial PhD, Saab Supervisors: Johan Moverare Hans Ansell IN 5000357-336 Issue 6

More information

Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference

Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference Anders Such, Tobias Pichler Fraunhofer ILT Christoph Korbmacher MAN Energy Solutions Aachen 26.09.2018 AGENDA 1 2 Short

More information

BENCHMARKING SUMMARY BETWEEN SLM AND EBM RELATED TO POWDER RECYCLING.

BENCHMARKING SUMMARY BETWEEN SLM AND EBM RELATED TO POWDER RECYCLING. BENCHMARKING SUMMARY BETWEEN SLM AND EBM RELATED TO POWDER RECYCLING. In the ManSYS project a method has been specified which examines components for meeting required specifications (qualifying criteria)

More information

Material data sheet. EOS Aluminium AlSi10Mg. Description

Material data sheet. EOS Aluminium AlSi10Mg.   Description https://gpiprototype.com EOS Aluminium AlSi10Mg EOS Aluminium AlSi10Mg is an aluminium alloy in fine powder form which has been specially optimised for processing on EOSINT M systems This document provides

More information

Army Efforts in Metals Additive Manufacturing & Data Management

Army Efforts in Metals Additive Manufacturing & Data Management Army Efforts in Metals Additive Manufacturing & Data Management SmartManufacturingSeries.com 1 Army Efforts in Metals Additive Manufacturing & Data Management Ryan Carpenter U.S. Army ARDEC Presented to:

More information

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Introduction to Electron Beam Melting Arcam AB EBM process

More information

ADDITIVE METALS ERIC MUTCHLER 13 SEPTEMBER IDENTIFYING APPLICATIONS FOR 3D PRINTINGS MOST COVETED MATERIAL 1 STRATASYS DIRECT MANUFACTURING

ADDITIVE METALS ERIC MUTCHLER 13 SEPTEMBER IDENTIFYING APPLICATIONS FOR 3D PRINTINGS MOST COVETED MATERIAL 1 STRATASYS DIRECT MANUFACTURING ADDITIVE METALS IDENTIFYING APPLICATIONS FOR 3D PRINTINGS MOST COVETED MATERIAL ERIC MUTCHLER 13 SEPTEMBER 1 STRATASYS DIRECT MANUFACTURING AGENDA Section One Identifying Applications Section Two Where's

More information

PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGINGS

PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGINGS p 1 of 6 UF-1 UF-12 PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGING the test temperature be higher than 20 F ( 29 C). Certification is required. An ultrasonic examination shall be made

More information

SLS POWDER LIFE STUDY

SLS POWDER LIFE STUDY SLS POWDER LIFE STUDY J. Choren, V. Gervasi, T. Herman, S. Kamara, and J. Mitchell Rapid Prototyping Center, Milwaukee School of Engineering 1025 N. Broadway, Milwaukee, WI 53202 ABSTRACT Producing acceptable

More information

Cold Spray Developments at UTRC

Cold Spray Developments at UTRC Hamilton Sundstrand Sikorsky Pratt & Whitney UTC Fire & Security Otis Elevator UTC Power Carrier Cold Spray Developments at UTRC Aaron Nardi United Technologies Research Center Cold Spray Action Team (CSAT)

More information

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer Designing for DIRECT METAL LASER SINTERING 1 Overview 2 Process Considerations 3 Design Considerations 4 Design Examples 5 Wrap-up

More information

Standard Specification for Steel, Sheet, Hot Rolled, Carbon, Commercial and Structural, Produced by the Twin-Roll Casting Process 1

Standard Specification for Steel, Sheet, Hot Rolled, Carbon, Commercial and Structural, Produced by the Twin-Roll Casting Process 1 : A 1039/A 1039M 04 Standard Specification for Steel, Sheet, Hot Rolled, Carbon, Commercial and Structural, Produced by the Twin-Roll Casting Process 1 This standard is issued under the fixed designation

More information

Capstone C O N S U L T A N T S

Capstone C O N S U L T A N T S Ultrasonic Pulse Velocity Tests These tests are primarily done to establish: the homogeneity of concrete presence of cracks, voids and other imperfections changes in quality of concrete over time this

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working Forging & Rolling Mechanical Working of Metals In this method no machining process is carried out, but it is used to achieve optimum mechanical properties

More information

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS ADDITIVE MANUFACTURING OF TITANIUM ALLOYS F.H. (Sam) Froes Consultant to the Titanium Industry Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23 OUTLINE Cost

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

A LEADER IN ADDITIVE MANUFACTURING. Metal additive manufacturing solutions for the global OEM supply chains

A LEADER IN ADDITIVE MANUFACTURING. Metal additive manufacturing solutions for the global OEM supply chains A LEADER IN ADDITIVE MANUFACTURING Metal additive manufacturing solutions for the global OEM supply chains INTRODUCTION TO SINTAVIA Founded in 2012, Sintavia is an innovator in the design, additive manufacturing

More information

OIL TECH SERVICES, INC.

OIL TECH SERVICES, INC. OIL TECH SERVICES, INC. 800 Wilcrest, Suite 100 Houston, TX 77042-1359 (310)-527-2695 (713) 789-5144 E Mail: mlombard@itmreps.com Website: www.itmreps.com WELDING Weld Procedure Specifications (WPS): Welding

More information

Manufacturing UNBOUND

Manufacturing UNBOUND Welcome to Manufacturing UNBOUND Arcam EBM Disrupting the status quo in production by providing leading-edge metal additive manufacturing solutions. 2 www.arcamebm.com Arcam EBM Your innovative partner

More information

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY ME8109: Casting And Solidification of Material A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY Department of Mechanical & Industrial Engineering Graduate Program in Mechanical Engineering

More information

Hot Isostatic Pressing for AM parts

Hot Isostatic Pressing for AM parts Document no SE037406 Revision 1 Page 1(3) Hot Isostatic Pressing for AM parts Dr. Johan Hjärne and Magnus Ahlfors, Applications Engineer AMD, Quintus Technologies. Västerås, Sweden, May 2016 The QIH9 Hot

More information

LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS

LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS ICAS2 CONGRESS LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS Markus Wallin 1, Olli Saarela 1 and Francesco Pento 2 1 Helsinki University of Technology and 2 Patria Finavicomp Keywords: composite

More information

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference DEPENDENCE of MICROSTRUCTURE and MECHANICAL

More information

Liquid Accelerated Cold Spray

Liquid Accelerated Cold Spray Liquid Accelerated Cold Spray CSAT Meeting Presentation 10/30/12 PI: Tom Butler, Ormond, LLC 253-852-1298 TPOC: Victor Champagne, ARL Phase II SBIR Contract # W911QX-11-C-0002 1 Presentation Summary Introduction

More information

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting T. Scharowsky, A. Bauereiß, R.F. Singer, C. Körner *Department of Materials

More information

EJECTION FORCES AND FRICTION COEFFICIENTS FROM INJECTION MOLDING EXPERIMENTS USING RAPID TOOLED INSERTS. Center. Abstract

EJECTION FORCES AND FRICTION COEFFICIENTS FROM INJECTION MOLDING EXPERIMENTS USING RAPID TOOLED INSERTS. Center. Abstract EJECTION FORCES AND FRICTION COEFFICIENTS FROM INJECTION MOLDING EXPERIMENTS USING RAPID TOOLED INSERTS M. E. Kinsella 1, B. Lilly 2, B. Carpenter 2, K. Cooper 3 1 Air Force Research Laboratory, 2 The

More information

The Arcam EBM process: A walkthrough

The Arcam EBM process: A walkthrough The Arcam EBM process: A walkthrough 2012-06-13 1 Overview Arcam & EBM Process Design for EBM EBM - Core Benefits Validating EBM 2012-06-13 2 Arcam Swedish innovation from the beginning of the 1990 s Arcam

More information

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain A. Cantrell, K. Gangwar, and M. Ramulu University of Washington Dan Sanders The Boeing Company 7th

More information

Utilizing additive manufacturing techniques to fabricate weight optimized components designed using structural optimization methods

Utilizing additive manufacturing techniques to fabricate weight optimized components designed using structural optimization methods Utilizing additive manufacturing techniques to fabricate weight optimized components designed using structural optimization methods C.J. Smith*, I. Todd* and M. Gilbert *Department of Materials Science

More information

Jason Sebastian, Ph.D. Jim Wright, Ph.D. QuesTek Innovations LLC. AeroMat 2008, Austin, TX, 24 June 2008

Jason Sebastian, Ph.D. Jim Wright, Ph.D. QuesTek Innovations LLC. AeroMat 2008, Austin, TX, 24 June 2008 DEVELOPMENT OF A NEW HIGH-PERFORMANCE GAS CARBURIZABLE GEAR STEEL Jason Sebastian, Ph.D. Jim Wright, Ph.D. QuesTek Innovations LLC 1 Problem: Higher performance rotorcraft Improved gear steel for the V-22

More information

Software Verification

Software Verification EXAMPLE 15 Wall Object Behavior - Static Lateral Loads Analysis Problem Description This example analyzes a series of wall configurations to evaluate the behavior of the shell object with wall section

More information

MTC. EBM Adaptronic chamber EBAM 27/04/2016. Riccardo Tosi Research Engineer EngD. Part of AMAZE project FP7

MTC. EBM Adaptronic chamber EBAM 27/04/2016. Riccardo Tosi Research Engineer EngD. Part of AMAZE project FP7 MTC EBM Adaptronic chamber Part of AMAZE project FP7 Riccardo Tosi Research Engineer EngD EBAM 27/04/2016 Riccardo Tosi Engineering Doctorate Ti-6Al-4V EBSM PTA Improve productivity United Kingdom MTC

More information

Subject Index. Broadgoods, 64 Buffer strips, 5

Subject Index. Broadgoods, 64 Buffer strips, 5 STP893-EB/Jan. 1986 Subject Index A Acoustic monitoring (see Monitoring, acoustic) Adhesives BP-907, 211 EC 344, 322 epoxy (see also Composite materials, carbon/epoxy, graphite/epoxy, Kevlar/epoxy, S-glass/epoxy,

More information

NI-BASED SUPERALLOY INCONEL 625 MANUFACTURED BY ELECTRON BEAM MELTING

NI-BASED SUPERALLOY INCONEL 625 MANUFACTURED BY ELECTRON BEAM MELTING NI-BASED SUPERALLOY INCONEL 625 MANUFACTURED BY ELECTRON BEAM MELTING EBAM Conference Nürnberg 2016 Edouard CHAUVET 1, Guilhem MARTIN 1, Rémy DENDIEVEL 1, Jean- Jacques BLANDIN 1, Benjamin VAYRE 2, Stéphane

More information

Hard Alloys for Aerospace Present and Future

Hard Alloys for Aerospace Present and Future Hard Alloys for Aerospace Present and Future Bill Bihlman President American Metal Market & SMR Conferences Chicago, IL Aerolytics LLC, 2013 27 October 2015 This presentation will address the following

More information

CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING

CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING Denis Cormier, Harvey West, Ola Harrysson, and Kyle Knowlson North Carolina State University Department of Industrial

More information

Additive Manufacturing Technology November

Additive Manufacturing Technology November Additive Manufacturing Technology November 2012 www.3trpd.co.uk Phil Kilburn DMLS Sales Manager Agenda About 3T RPD Ltd Overview of Additive Manufacturing Manufacturing directly in metals Arcam - Electron

More information

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOS M systems. This document provides information and data for parts built using powder (EOS

More information

Plastic Laser Sintering Challenges to Real Manufacturing Toshiki NIINO Institute of Industrial Science the University of TOKYO

Plastic Laser Sintering Challenges to Real Manufacturing Toshiki NIINO Institute of Industrial Science the University of TOKYO Plastic Laser Sintering Challenges to Real Manufacturing Toshiki NIINO Institute of Industrial Science the University of TOKYO TRAM 3 Conference 12th, September, 2012 Toshiki NIINO Outline Additive Manufacturing

More information

Design and Manufacturing of Modular Wind Turbine Blades

Design and Manufacturing of Modular Wind Turbine Blades Design and Manufacturing of Modular Wind Turbine Blades Kyle K. Wetzel, Ph.D. Wetzel Engineering, Inc. Austin, Texas USA Wetzel Engineering Engineering Consultancy Clients on 4 continents > 50 custom blade

More information

EOS NickelAlloy IN718 for EOSINT M 270 Systems

EOS NickelAlloy IN718 for EOSINT M 270 Systems EOS NickelAlloy IN718 for EOSINT M 270 Systems A number of different materials are available for use with EOSINT M systems, offering a broad range of e-manufacturing applications. EOS NickelAlloy IN718

More information

An Investigation of Whisker Growth on Tin Coated Wire and Braid

An Investigation of Whisker Growth on Tin Coated Wire and Braid An Investigation of Whisker Growth on Tin Coated Wire and Braid Dave Hillman and Tim Pearson Rockwell Collins Cedar Rapids IA USA ddhillma@rockwellcollins.com Thomas Lesniewski Northrop Grumman Corporation

More information

7. Design for Castability

7. Design for Castability 7. Design for Castability Castability implies ease of producing a casting, minimising cost, defects and lead-time. This is facilitated by high compatibility between product requirements and process capabilities.

More information

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What Is Powder Metallurgy (P.M)? Powder Metallurgy Processes Blending And Mixing Compaction

More information

Properties of Various Malleable Iron Powder Grades François Chagnon, Julie Campbell-Tremblay and Maryam Moravej

Properties of Various Malleable Iron Powder Grades François Chagnon, Julie Campbell-Tremblay and Maryam Moravej Presented at the Euro PM2013 congress held in Gothenburg, Sweden in September 2013 and published in the congress conference proceedings available from the European Powder Metallurgy Association (EPMA).

More information

Welder Level 2 Rev. December, 2016

Welder Level 2 Rev. December, 2016 Welder Level 2 Welder Unit: D2 Quality Assurance Level: Two Duration: 14 hours Theory: Practical: 14 hours 0 hours Overview: This unit is designed to introduce knowledge of quality control measures used

More information

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates 12 Upset forging of a circular disc in open die forging Analysis involves cylindrical coordinates The stresses acting on an elemental volume in a disc are: σ r = radial stress responsible for increase

More information

Chapter 3: Powders Production and Characterization

Chapter 3: Powders Production and Characterization Chapter 3: Powders Production and Characterization Course Objective... To introduce selective powder production processes and characterization methods. This course will help you : To understand properties

More information

POWDER METALLURGY AND SOLID STATE PROCESSING OF ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

POWDER METALLURGY AND SOLID STATE PROCESSING OF ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS POWDER METALLURGY AND SOLID STATE PROCESSING OF ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS William H. Peter (Bill), Craig A. Blue, Jim O. Kiggans, John D.K. Rivard* Oak Ridge National Laboratory, Oak

More information

Building Block Approach

Building Block Approach Design Allowables Building Block Approach $ Fullscale tests Analysis verification Component tests $ $ Sub-component tests Structural elements tests $ Allowable development Material specification development

More information

The Effect of Location on the Structure and Mechanical Properties of Selective Laser Melted 316L Stainless Steel

The Effect of Location on the Structure and Mechanical Properties of Selective Laser Melted 316L Stainless Steel Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper The Effect of Location on the

More information

A Design-Validation-Production Workflow For Aerospace Additive Manufacturing

A Design-Validation-Production Workflow For Aerospace Additive Manufacturing A Design-Validation-Production Workflow For Aerospace Additive Manufacturing Robert Yancey, Sridhar Ravikoti, Leo Jeng, Aaron Leinmiller Altair Engineering Troy, MI Megan Lobdell, Brian Croop, Hubert Lobo

More information

Fillet Profile Optimization for Maximum Bending Strength using Direct Gear Design Approach

Fillet Profile Optimization for Maximum Bending Strength using Direct Gear Design Approach Fillet Profile Optimization for Maximum Bending Strength using Direct Gear Design Approach 1 Balamurugan M, 2 Palani P. K 1 Assistant Professor, 2 Associate Professer Department of Mechanical Engineering

More information

Design of 3D-Printed Titanium Compliant Mechanisms

Design of 3D-Printed Titanium Compliant Mechanisms Design of 3D-Printed Titanium Compliant Mechanisms Ezekiel G. Merriam *, Jonathan E. Jones **, and Larry L. Howell * Abstract This paper describes 3D-printed titanium compliant mechanisms for aerospace

More information

Additive Manufacturing at GE Aviation

Additive Manufacturing at GE Aviation Additive Manufacturing at GE Aviation TRAM 2012 Chicago, Il Definition: ADDITIVE MANUFACTURING (AM), n process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed

More information

Material data sheet. EOS NickelAlloy IN718. Description

Material data sheet. EOS NickelAlloy IN718. Description EOS NickelAlloy IN718 EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY CASTINGS

SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY CASTINGS TECHNICAL LITERATURE: ASME SB-367 [ASTM B367] Company Website: www.metalspiping.com Your Reliable Supplier of Titanium & Nickel Alloys SB-367 SPECIFICATION FOR TITANIUM AND TITANIUM ALLOY CASTINGS SB-367

More information

DIRECT METAL PRINTERS. Metal Additive Manufacturing with the ProX DMP Series

DIRECT METAL PRINTERS. Metal Additive Manufacturing with the ProX DMP Series DIRECT METAL PRINTERS Metal Additive Manufacturing with the ProX DMP Series Go Further with Direct Metal Printing UNLOCK YOUR PRODUCT S POTENTIAL With complete design freedom, direct metal 3D printed parts

More information

Rolling processes. Fig. (5-1)

Rolling processes. Fig. (5-1) Page1 Rolling processes 5-1 introduction: Rolling is the process of reducing the thickness or changing the cross section of a long workpiece by compressive forces applied through a set of rolls, as shown

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

SPECIFICATION FOR PRESSURE VESSEL PLATES, ALLOY STEEL, QUENCHED AND TEMPERED 8 AND 9% NICKEL

SPECIFICATION FOR PRESSURE VESSEL PLATES, ALLOY STEEL, QUENCHED AND TEMPERED 8 AND 9% NICKEL Technical Literature: ASTM A553 [ASME SA-553] Company Website: www.metalspiping.com You Reliable Supplier of Ferrous & Non-Ferrous Piping Materials SPECIFICATION FOR PRESSURE VESSEL PLATES, ALLOY STEEL,

More information

S-200-F Standard Grade Beryllium

S-200-F Standard Grade Beryllium S-200-F Standard Grade Beryllium Effective: November 6 th 2014 Rev. C 1. SCOPE This specification defines the requirements for a standard grade of beryllium designated as S-200-F. This standard grade is

More information

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION T.W. Skszek and M. T. J. Lowney Abstract POM Company, Inc., located in Plymouth, Mich., has successfully commercialized the laser-based,

More information

Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing

Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing Gary Coykendall National Resource Center for Materials Technology Education (MatEdU) www.materialseducation.org

More information

Ontario ENGINEERING STANDARD SPECIFICATION 1/8 REV. SPECIALTY ENGINEERING MATERIALS ENGINEERING QA COPPER CLIFF SMELTER FLUID BED DRYER TUYERES

Ontario ENGINEERING STANDARD SPECIFICATION 1/8 REV. SPECIALTY ENGINEERING MATERIALS ENGINEERING QA COPPER CLIFF SMELTER FLUID BED DRYER TUYERES SPEC-8048 1/8 Rev Description Approved by Reviewed by Issue Date YYYY/MM/DD 1 Document format and number changed. Previous number QA-017 PB 2011/12/24 PB 2011/12/24 2012/04/19 2 Modified sections 6 and

More information

Part HD head control arm

Part HD head control arm Part HD head control arm Quality characteristics Dimension: height, width, wall thickness Mechanical properties of materials: hardness, brittleness, and porosity. Machining Dimension: holes, grooves, and

More information

ESIDEL ESIDEL. (European Steel Industry Data Exchange Language) Product Specification. Inventory switch. Version 1.0. Version 1.0

ESIDEL ESIDEL. (European Steel Industry Data Exchange Language) Product Specification. Inventory switch. Version 1.0. Version 1.0 ESIDEL ESIDEL (European Steel Industry Data Exchange Language) (European Steel Industry Data Exchange Language) Product Specification Inventory switch Version.0 Version.0 by EDIFER «XML Business Group»

More information

Mechanical properties

Mechanical properties Mechanical properties waammat.com Updated 15 th November 2017 www.cranfield.ac.uk WAAM is a registered trademark of Cranfield University The deposition strategies Single pass Oscillation Parallel passes

More information

Material data sheet. EOS NickelAlloy IN625. Description

Material data sheet. EOS NickelAlloy IN625. Description EOS NickelAlloy IN625 EOS NickelAlloy IN625 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

Current and Future Manufacturing Technologies for Fabricating Aerospace Structures With Titanium Alloys

Current and Future Manufacturing Technologies for Fabricating Aerospace Structures With Titanium Alloys Engineering, Test & Technology Boeing Research & Technology Current and Future Manufacturing Technologies for Fabricating Aerospace Structures With Titanium Alloys Dan Sanders Senior Technical Fellow Metals

More information

Review For Final Exam. Review For Final Exam

Review For Final Exam. Review For Final Exam 1. A random error of ±0.11 ft. is estimated for each of 12 length measurements that are added together to get the total length. What is the estimated total error? ETotal E n 0.11ft. 12 0.3811 0.38 A. ±0.38

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management INVESTIGATION OF IMPACT BEHAVIOR OF CORRUGATED POLYMER SANDWICH STRUCTURE M. Nusrathulla * 1 Dr. M. Shantaraja 2 * 1 Research scholar in the Department of Mechanical Engineering, at UVCE, Bangalore. India.

More information

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS J. N. Reddy e-mail: jnreddy@tamu.edu Texas A&M University College Station, TX 77843-3123 USA * This document

More information

Material and Method Material

Material and Method Material Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Implementation of tophat profile

More information

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF TRANSPORTATION BUREAU OF DESIGN

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF TRANSPORTATION BUREAU OF DESIGN GENERAL NOTES DESIGN TABLE NOTES INDEX OF SHEETS 1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE NOTED. U.S. CUSTOMARY UNITS IN ( ) PARENTHESIS.. ALL "DESIGN" METRIC UNITS INDICATED ARE SOFT CONVERTED

More information

With Dura-Bar you will be able to:

With Dura-Bar you will be able to: Dura-Bar Stock List Dura-Bar is an engineered iron designed to meet our customers most critical requirements. It is manufactured to strict process controls that provide world-class quality and uncompromising

More information

Development of an artefact to detect unfused powder in additive manufactured components using X-ray CT

Development of an artefact to detect unfused powder in additive manufactured components using X-ray CT Development of an artefact to detect unfused powder in additive manufactured components using X-ray CT More info about this article: http://www.ndt.net/?id=21915 Ahmed Tawfik 1, Paul Bills 1, Liam Blunt

More information

MSC Solutions for Additive Manufacturing Simufact Additive

MSC Solutions for Additive Manufacturing Simufact Additive MSC Solutions for Additive Manufacturing Simufact Additive 15.01.2018 Simufact Product Portfolio Cold Forming Hot Forging Sheet Metal Forming Mechanical Joining Powder Bed Fusion Arc Welding Laser Beam

More information

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication Materials Science Forum Online: 26-7- ISSN: 1662-9752, Vols. 519-521, pp 1291-1296 doi:1.428/www.scientific.net/msf.519-521.1291 26 Trans Tech Publications, Switzerland Metallurgical Mechanisms Controlling

More information

Characterisation of Ti6Al4V (ELI) Powder Used by the South African Collaborative Program in Additive Manufacturing by

Characterisation of Ti6Al4V (ELI) Powder Used by the South African Collaborative Program in Additive Manufacturing by Characterisation of Powder Used by the South African Collaborative Program in Additive Manufacturing by K. Thejane 1, S. Chikosha 2, W. B. Du. Preez 3 1,3 Department of Mechanical Engineering Central University

More information

The Impact of Forging Residual Stress on Fatigue in Aluminum

The Impact of Forging Residual Stress on Fatigue in Aluminum AIAA SciTech 2015 Kissimmee, Florida The Impact of Forging Residual Stress on Fatigue in Aluminum 05 January, 2015 Aeronautics Company Dale L. Ball Carl F. Popelar Vikram Bhamidipati R. Craig McClung Southwest

More information

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING João Batista FOGAGNOLO 1, Edwin SALLICA-LEVA 1, Eder

More information

Control of connecting rods

Control of connecting rods Control of connecting rods General The connecting rod is one of the most important element of the motor, that requires a very high manufacturing accuracy. It is also one of the most complex parts, since

More information

Lecture 7. Chapter 13. Rolling of Metals. The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking

Lecture 7. Chapter 13. Rolling of Metals. The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking Lecture 7 Chapter 13 Rolling Rolling of Metals The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking Changes microstructure Larger grains small grains

More information

High Modulus Carbon Fibres in Super-Structural Compounds

High Modulus Carbon Fibres in Super-Structural Compounds High Modulus Carbon Fibres in Super-Structural Compounds As a matter of fact, even if composite properties guarantee the best answer to the most severe project requirements, many industrial products can

More information

Material data sheet. EOS StainlessSteel 17-4 for EOSINT M 270. Description, application

Material data sheet. EOS StainlessSteel 17-4 for EOSINT M 270. Description, application EOS StainlessSteel 17-4 for EOSINT M 270 A number of different materials are available for use with EOSINT M systems, offering a broad range of e-manufacturing applications. EOS Stainless Steel 17-4 is

More information

TECHNICAL REQUIREMENTS FOR PRECIPITATION HARDENING (SS 17-4 PH and PH 13-8 MO) STAINLESS STEEL BARS

TECHNICAL REQUIREMENTS FOR PRECIPITATION HARDENING (SS 17-4 PH and PH 13-8 MO) STAINLESS STEEL BARS TECHNICAL REQUIREMENTS FOR PRECIPITATION HARDENING (SS 17-4 PH and PH 13-8 MO) STAINLESS STEEL BARS 1.0 SCOPE This Specification establishes the requirements for manufacture, inspection, testing and supply

More information