PEMFC System s design and components

Size: px
Start display at page:

Download "PEMFC System s design and components"

Transcription

1 PEMFC System s design and components Thomas Nietsch

2 Overview Part 0: Introduction FC in general Part 1: PEMFC systems and components Part 1a: Summary part 1 Part 2: IV curve modelling Part 3: Performance trade off between stack and compressor Part 4: Example for the dimensioning of a simple PEMFC system Part 5: Compressors for PEMFC Part 6: Humidification technologies for PEMFC Part 1b: Summary part 2 to 6 (in preparation) Part 7: Hydrogen production Part 8: Related subjects Diagnostics (in preparation)

3 Content Introduction AREVA / Helion Fuel cell systems PEMFC components, auxiliaries and sub systems Examples: PEMFC stacks PEMFC Systems

4

5

6

7

8

9 PEMFC system H H G F E D C B EMS Vibrations Vent Pluie Température etc. Ventilation Gaz inertes Puissance électrique AiR Carburant Eau Informations Système pile à combustible Puissance électrique Chaleur Effluents Eau Informations EMS Bruit Vibrations etc. G F E D C B A PROJET Système pile à combustible Dessiné Vérifié Description des Indices Date A REFERENCE Ce document est la propriété d et ne peut être reproduit sans autorisation TNI TNi A Emission Initiale Nov 2003

10 Stationary fuel cell power systems Draft technical specifications IEC TS second edition 2008, fuel cell technologies - part 1: terminology

11 Portable and micro fuel cell power systems Draft technical specifications IEC TS second edition 2008, fuel cell technologies - part 1: terminology

12 Fuel cell vehicles Draft technical specifications IEC TS second edition 2008, fuel cell technologies - part 1: terminology

13 Hydrogen generator and PEMFC stack H H G G F E D C B AiR Carburant Eau Informations Puissance électrique Générateur H 2 Puissance électrique H 2 O Déchets AiR Gaz Informations Module à pile à combustible Puissance électrique Déchets PàC Chaleur de la PàC Informations Chaleur de reformeur Déchets générateur H 2 F E D C B A PROJET Interfaces générateur d hydrogène et pile à combustible REFERENCE Dessiné Vérifié Description des Indices Date A Ce document est la propriété d et ne peut être reproduit sans autorisation TNI TNi A Emission Initiale Nov 2003

14 Example: steam reformer for hydrogen production

15 Hydrogen production and conversion chain renewable Non renewable Primery energy Bio plants Organic wasts Sun, wind, watter Wood Natural gas Uranium Coal Crude oil CO 2 from athmospher Transformation Vermentation Vergärung Electrolysis Gasification Reformation Gasification Refinery Secondary Energy Transformation Secondary Energy Transformation Electricity productiobn Ethanol Bio gas Hydrogen Natural gas Methanol Gas / diesel Reformer Reformer Reformer Reformer Reformer Combustion Fuel cell / ICE Hydrogen IC / turbine Synthesis / electrolysis Usful Energy Heat Heat and power Heat and power

16 Hydrogen production Petroleum Transportation Fuel 40% Byproduct Hydrogen 57 Mtoe Coal Power Generation 60% Heating Fuel 35% 2236 Mtoe Miscellaneous 8% Power Generation 10% 3504 Mt Chemical Feedstock 7% (Olefins, Aromatics) Steam Reforming Gasification Petroleum 7% WORLD HYDROGEN PRODUCTION VS ENERGY PRODUCTION «On-purpose» Hydrogen Coal 4% Electrolysis 4% Merchant Hydrogen 2.6 Mtoe 85% from natural gas Iron & Steel 20% Miscellaneous 18% Chemical Feedstock 2% (Tar, Aromatics, CO-H 2 ) Gasification Electrolysis 73 Mtoe/10,000 Mtoe = 0.8 % of world energy consumption Electricity: 12% of world energy consumption Steam Reforming Heating Fuel 73% Chemical Feedstock 7% NH3, CH3OH Refineries Sources: IEA, IGU; 2002 data Power Generation 20% Hydropower 230 Mtoe Electrolysis 0,5% Renewables 64 Mtoe 593 Mtoe Nuclear Natural Gas 2135 Mtoe

17 PEMFC module H G Informations Système de surveillance, de contrôle et détection de conditions de fonctionnement Informations H G F E D C B H AiR Système de post traitement d hydrogène Système de post traitement d air Fluide de refroidissement Stacks Système de gestion thermique Conditionnement des rejets Système de conditionnement de puissance Combustible / échappement AiR / échappement Eau de réaction Puissance électrique Fluide de refroidissement F E D C B A PROJET Système pile à combustible Dessiné Vérifié Description des Indices Date A REFERENCE Ce document est la propriété d et ne peut être reproduit sans autorisation TNI TNi A Emission Initiale Nov 2003

18 Sketch of a PEMFC stack with some auxiliaries and controls

19 Définitions de base Rendement électrique η η = U U 0 P = P g (T) f 237, 2 U0 = = = 1, 229V 2F 2 * Rendement thermique η th η th = 1 - η _ Rendement électrique max η max gf hf T s (2) T s ηmax = = = 1 _ h f h f h f Constant de Faraday F F = J/(mol V) = As/mol (3) Energie libre de Gibbs (4) g f (T) g f ( 25 C) = 237, 2kJ / mol nsommation d hydrogène voir équation (1) Consommation spécifique d hydrogène U= U( h U= U 0 H2 ) U ohm U i+ i (i in )r Aln i0 activation 0 U concentration i+ i + Bln 1 il 0 * n H 2 * n H 2 _ Pel = η h el chem H2 el = * n H2 H2 * nh2 Pel 1 P el = η h P P = η h el h 2 H2 (1) (5) (6)

20 Components, auxiliaries and sub systems Auxiliaries Compressors Humidification Controls Power conditioning Heat exchangers Valves etc Components Stacks Bipolar plates, separator plates, interconector plates, current collectors MEAs Membranes Electrodes Anodes Cathodes GDLs, GDM Joints Others (screws, end plates, )

21 Comparaison piles à combustible

22 Principe PEMFC

23 Le fonctionnement électrochimique du cœur de pile 2e - 2e- + H 2 2H + = H 2 Catalyseur 2H + 2e - Membrane + 2H + + O 2 = H 2 O Catalyseur O 2 H 2 O 2H2 + O2 2H2O

24 Principe d EME ou AME H 2 O 2e - 2H + O 2 O 2 m* => 0 H + m* => 2H + H 2 2e - Cathode Electrolyte Anode

25 This is what we are talking about... Cooling water transport on backside of the cathode bipolar plate Bipolar plates assist the transport of H 2 & O 2 and water & collect current Typical PEM cell assembly MEmbrane Assembly (MEA) Source: FACE10, 2004, AAU IET Source: Spiegel, 2007 Mads Pagh Nielsen, Aalborg University, 2008

26 PEMFC stack

27 Fuel Cell Stacks Source: FACE10, 2004, AAU IET Mads Pagh Nielsen, Aalborg University, 2008

28 Electron conduction via BPP in a PEMFC Anode 2H 2 => 4 H e - Electrolyte 4H + H 2 O Cathode Bipolar plate O 2 + 4e - + 4H + => 2H 2 O O 2 H 4 e - 2 H 2 O Anode 2H 2 => 4 H e - Electrolyte Cathode Bipolar plate O 2 + 4e - + 4H+ => 2H 2 O O 2 H 4 e - 2 4H + Anode 2H 2 => 4 H e - Electrolyte 4H + Cathode O 2 + 4e - + 4H + => 2H 2 O e -

29 Bipolar plates BPP Separator plates, current collector plates, gas distribution plates Distribute Hydrogen Oxygen Extract Water vapour non consumed gases and inerts Conduct / collect electrons Conduct / distribute heat Separate gases / Be gas tide Be inert

30 Gas- and water distribution in bipolar plates: Source: FACE10, 2004, AAU IET Mads Pagh Nielsen, Aalborg University, 2008

31 Design of planar PEM-stacks: Source: FACE10, 2004, AAU IET Mads Pagh Nielsen, Aalborg University, 2008

32 Fonction de la membrane Conduction des protons Séparateur de gaz (H2 / O2) Isolant électrique (électrons)

33 Illustration from Gore Conduct protons Separate gases (H2 / O2) Insolate electrons

34 Structure de Nafion

35 Conduction des Protons dans le Nafion

36 Nafion Electrolyte PCE (Proton Conductive Electrolyte If Humidified That Is!) - Hydration important (ionic conductivity is a function of the RH%). - Typical properties of Nafion (vary with type, thickness and water content): Density (dry): 2g/cm 3 Operating temperature: ~60-80 C (Figure Eric Stuve, 2000) Mads Pagh Nielsen, Aalborg University, 2008

37 Chemical structures of some membrane materials PSSA Nafion, TM Membrane C PESA α,β,β-trifluorostyrene grafted onto poly(tetrafluoro-ethylene) with post-sulfonation) Dow

38 Examples: PEMFC stacks ZSW Ballard

39 Example IV and PI curve of a PEMFC stack Illustration from Gore

40

41

42

43

44 Integration of the fuel cell system into the rear of the bus Installation of Siemens fuel cell system and electric drive in the A21 low-floor bus Water/water heat exchanger Water pump Water trap Air filter (standard in A21) Fuel cell air compressor Fuel cell modules (4x30kW) Traction motors with summation gearbox (2x75 kw) Air trap

45 Integration of all the components of a fuel cell drive into a low floor city bus Low floor bus with Siemens fuel cell Power electronic for onboard power supply Braking resistor Air filter Air compressor Fuel cell stacks cooling system Compressed hydrogen storage (250 bar) Deioniser for water Heat exchanger

46 Apollo FC

47 GEMINI FUEL CELL SECTION

48 APOLLO FUEL CELL SECTION

49 Space Shuttle Fuel Cell UTC

50

51

52

53

54

55 Station H2 Aéroport Munich

56 Voiture à DMFC

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

Hydrogen & Renewable Energy

Hydrogen & Renewable Energy HELION HELION HYDROGEN POWER Hydrogen & Renewable Energy DERBI 2009 Conference, Perpignan, June 11th 2009 Jean-Christophe HOGUET HELION HELION Subsidiary of AREVA R, renewable energy Business Unit Wind

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University Alternatives to Alternative Energy - FUEL CELLS C.J. Kobus Oakland University Take Home Lesson Fuel cells can help us generate cleaner power from conventional sources more efficiently and can be conveniently

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

Current Status of Fuel Cell Technology

Current Status of Fuel Cell Technology Hydrogen, Carbon-Free-Fuel Democratizing the Energy Current Status of Fuel Cell Technology By Dr.-Ing. Syed Mushahid Hussain Hashmi Professor / Chairman Dept. of Automotive & Marine Engineering, NED University

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g FUEL CELL ENERGY POWERS THE CAR! Electrical Current ELECTRONS The movement of electrons generates electricity to power the motor. OXYGEN

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell.

Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell. Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell. 1 2 Outline of Presentation Fuel Cell & PEM Fuel Cell MEA & Membrane for PEMFC Membrane

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

Fuel Cell Stack Design

Fuel Cell Stack Design Mech 549 Fuel Cell Technology Oct. 30, 2007 Fuel Cell Stack Design Fuel Cells are stacked to place bipolar cells in series and increase voltage and power Major stack issues: Volume and weight Cooling methods

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology TFRF05 Docent Jinliang Yuan October 30, 2008 Department of Energy Sciences, Lund University, Sweden Lectures: Docent Jinliang Yuan Home Works/Design Tasks: Dr. Jinliang Yuan Emails:

More information

FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION

FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION DR. SEBASTIAN KIRSCH, DR. MAREN RAMONA KIRCHHOFF 13TH INT. AVL SYMPOSIUM ON PROPULSION DIAGNOSTICS BADEN-BADEN 26.06.2018 ZOOMING INTO A FUEL CELL SYSTEM

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems

Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems Influence of Pressure Drop in PEM Fuel Cell Stack on the Heat and Mass Balances in 100 kw Systems Outline Introduction Motivation Methodof Analysis Results and Discussion Conclusions PEM Fuel Cell Introduction

More information

Fuel cells From the material to the finished product

Fuel cells From the material to the finished product FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Fuel cells From the material to the finished product Partner for research, service provider for industry. Are you interested in fuel cells and looking

More information

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE Bernd KOHLSTRUCK ALSTOM BALLARD GmbH ABSTRACT: The electric utility is in a period of rapid change. The deregulation

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

Fuel cell: from principle to application to the electric vehicle. Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS

Fuel cell: from principle to application to the electric vehicle. Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS Fuel cell: from principle to application to the electric vehicle Yann BULTEL, GINP Marian Chatenet, GINP Laurent Antoni, CEA Jean-Paul Yonnet, CNRS PLAN 1. Fuel Cell Introduction 2. Fuel Cell Principle

More information

Codes and Standards. Hydrogen Workshop for APEC Economies May 16, 2005

Codes and Standards. Hydrogen Workshop for APEC Economies May 16, 2005 Thailand Economy Presentation on Hydrogen Demonstrations By Pipon Boonchanta Codes and Standards Hydrogen Workshop for APEC Economies May 16, 2005 THAILAND Target of new renewable energy in 2011 1200 1000

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

GENERAL CLASSIFICATION

GENERAL CLASSIFICATION GENERAL CLASSIFICATION M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 GENERAL CLASSIFICATION Type Electrolyte PEMFC DMFC DEFC PAFC AFC MCFC SOFC Proton exchange membrane fuel cell Direct methanol fuel

More information

Hydrogen as an energy carrier: production and utilisation

Hydrogen as an energy carrier: production and utilisation Hydrogen as an energy carrier: production and utilisation Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau Vita Dr.-Ing. Roland Hamelmann TU Clausthal, chemical engineering (PhD on continous production

More information

Performance Optimization of Direct Methanol Fuel Cell

Performance Optimization of Direct Methanol Fuel Cell Performance Optimization of Direct Methanol Fuel Cell Abstract Direct Methanol Fuel Cells (DMFCs) sustain an electrochemical reaction which converts the chemical energy stored in methanol directly into

More information

Fuel Cells. any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology

Fuel Cells. any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology Fuel Cells any challenges left? Anna Martinelli Applied Surface Chemistry Chalmers University of Technology anna.martinelli@chalmers.se Outline Technical aspects Developments in PEM materials Current future

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved.

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved. P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM Copyright 2006 P21 GmbH. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Trevor Davies, University of Chester FCH2 2015, 21 st May 2015 PEM Fuel Cell Market Predictions Outline Conventional PEM fuel cells

More information

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions

Experimental Analyses of Cell Voltages for a Two-cell PEM Stack Under Various Operating Conditions Journal of the Korean Society of Marine Engineering, Vol. 35, No. 7, pp. 88~890, 0(ISSN 6-9549) http://dx.doi.org/0.596/jkosme.0.35.7.88 Experimental Analyses of Cell Voltages for a Two-cell PEM Stack

More information

U.S Department of Energy Fuel Cell Technologies Office Overview

U.S Department of Energy Fuel Cell Technologies Office Overview U.S Department of Energy Fuel Cell Technologies Office Overview Fuel Cell Technologies Office 1 IEA Electrolysis Meeting Herten, Germany April 21-22, 2015 Bryan Pivovar National Renewable Energy Lab Hydrogen

More information

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg Danish Power Systems Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep. 2013 Hans Aage Hjuler and Thomas Steenberg Outline Introduction MEA performance Durability Summary The two Danish test windmills

More information

Energy - What are the Technical, Economic, and Political Implications of Meeting our Basic Energy. Needs?

Energy - What are the Technical, Economic, and Political Implications of Meeting our Basic Energy. Needs? Energy - What are the Technical, Economic, and Political Implications of Meeting our Basic Energy Eric M. Stuve Needs? Department of Chemical Engineering University of Washington http://faculty.washington.edu/stuve/

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Teaching About Hydrogen Fuel Cells

Teaching About Hydrogen Fuel Cells Teaching About Hydrogen Fuel Cells NSTA - March 12, 2011 Chris Keller Curriculum Developer SEPUP The Lawrence Hall of Science UC Berkeley 2011 The Regents of the University of California 1 For More Information

More information

Appendix A: Parameters that Used to Model PEM Fuel Cells

Appendix A: Parameters that Used to Model PEM Fuel Cells Appendix A: Parameters that Used to Model PEM Fuel Cells Name Value Description L 0.06[m] Cell 1ength H_ch 1e-3[m] Channel height W_ch 9.474e-3[m] Channel width W_rib 9.0932e-3[m] Rib width H_gdl 640e-6[m]

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Towards the development of low cost non-platinum based catalysts for catalytic water splitting

Towards the development of low cost non-platinum based catalysts for catalytic water splitting Towards the development of low cost non-platinum based catalysts for catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Dr. Usman Ali Rana What

More information

Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar Plates

Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar Plates International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-9, September 2014 Development of a 10kW PEM Fuel Cell System Equipped with Polymer Composite Bipolar

More information

I. Khazaee & M. Ghazikhani

I. Khazaee & M. Ghazikhani Experimental Characterization and Correlation of a Triangular Channel Geometry PEM Fuel Cell at Different Operating Conditions I. Khazaee & M. Ghazikhani Arabian Journal for Science and Engineering ISSN

More information

CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS

CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS Dietmar Gerteisen, Ulf Groos, Stefan Keller, Nada Zamel Fraunhofer-Institut für Solare Energiesysteme ISE October 7th, 2014 F-Cell 2014, Stuttgart www.h2-ise.de

More information

Degradation of a Polymer Electrolyte Membrane Fuel Cell Under Freeze Start-up Operation

Degradation of a Polymer Electrolyte Membrane Fuel Cell Under Freeze Start-up Operation Degradation of a Polymer Electrolyte Membrane Fuel Cell Under Freeze Start-up Operation by Christopher Rea A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for

More information

The rise of hydrogen technology requires a new generation of skilled researchers and innovators.

The rise of hydrogen technology requires a new generation of skilled researchers and innovators. The rise of hydrogen technology requires a new generation of skilled researchers and innovators. -TEC supports these visionaries at every level of their development with low-cost kits for schools and intricate

More information

The rise of hydrogen technology requires a new generation of skilled researchers and innovators.

The rise of hydrogen technology requires a new generation of skilled researchers and innovators. The rise of hydrogen technology requires a new generation of skilled researchers and innovators. -TEC supports these visionaries at every level of their development with low-cost kits for schools and intricate

More information

Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles.

Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles. UNIVERSITÀ DEL SALENTO FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE CORSO DI GESTIONE E PIANIFICAZIONE DELLE INFRASTRUTTURE ENERGETICHE Life cycle comparison of fuel cell vehicles and

More information

Parametric Study of the Hydrogen Fuel Cell Electrochemical Model

Parametric Study of the Hydrogen Fuel Cell Electrochemical Model 1 Parametric Study of the Hydrogen Fuel Cell Electrochemical Model EnePro Conference June 3rd, 29 Department of Process and Environmental Engineering 2 Background Hydrogen production for fuel cells by

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS

DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS R. A. Rabbani 1 and M. Rokni 2 1. Technical University of Denmark, Kgs. Lyngby, Denmark; email: raar@mek.dtu.dk

More information

MECA0500: FUEL CELLS - Part 1: Fuel Cell

MECA0500: FUEL CELLS - Part 1: Fuel Cell MECA0500: FUEL CELLS - Part 1: Fuel Cell Pierre Duysinx LTAS-Automotive Engineering University of Liege Academic year 2018-2019 1 References C.C. Chan & K.T. Chau. Modern Electric Vehicle Technology. Oxford

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Review day 2011 Brussels, 22 November

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information

Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217.

Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217. Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217. Modeling and Analysis of a PEM Fuel cell for Electrical

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

Premium Act (n ) First periodic report. Publishable summary. Improvement of of stationary PEFC PEFC systems durability (40000h 80% % Load

Premium Act (n ) First periodic report. Publishable summary. Improvement of of stationary PEFC PEFC systems durability (40000h 80% % Load Premium Act (n 56776) First periodic report Publishable summary! Premium Act PREMIUM ACT Improvement of of stationary PEFC PEFC systems durability (4h (4h required!) required!) A A reliable reliable method

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Programme Review Day 2012 Brussels,

More information

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems First International Renewable Energy Storage Conference (IRES I) Gelsenkirchen, October, 30

More information

Energy, Environment, Hydrogen: A Case For Fuel Cells

Energy, Environment, Hydrogen: A Case For Fuel Cells Energy, Environment, Hydrogen: A Case For Fuel Cells Why Do We Need Energy? Heating/Cooking Transportation Manufacturing What Energy Sources Have We Used Over Time? Why Do We Care About Finding New Sources

More information

Towards a Commercial Fuel Cells and Hydrogen Market in Europe. by André Martin FCHInStruct.

Towards a Commercial Fuel Cells and Hydrogen Market in Europe. by André Martin FCHInStruct. Towards a Commercial Fuel Cells and Hydrogen Market in Europe by André Martin FCHInStruct VISION Hydrogen Energy And Fuel Cells (2003) STRATEGY Strategic Research Agenda Deployment Strategy Strategic Overview

More information

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ;

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ; IV.H Electrolysis IV.H.1 Low-Cost, High-Pressure Hydrogen Generator Cecelia Cropley (Primary Contact), Tim Norman Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0506;

More information

A Novel Concept for Modular High Pressure Water Electrolyser Systems

A Novel Concept for Modular High Pressure Water Electrolyser Systems A Novel Concept for Modular High Pressure Water Electrolyser Systems for Generation of Hydrogen from Excess Energy by Renewables U. Rost, J. Roth, M. Brodmann Westphalian Energy Institute Department: Hydrogen

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

High Efficiency Large PEM Electrolyzers

High Efficiency Large PEM Electrolyzers High Efficiency Large PEM Electrolyzers Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 Outline Giner, Inc. Overview Advancements in Efficiency New Membranes Coming

More information

A system model of proton exchange membrane fuel cell for the study of the water/thermal management

A system model of proton exchange membrane fuel cell for the study of the water/thermal management A system model of proton exchange membrane fuel cell for the study of the water/thermal management 4 th U.S. KOREA NanoForum April 26, 27 Sangseok Yu Environment and Energy Research Division Korea Institute

More information

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions I J C T A, 9(37) 2016, pp. 577-581 International Science Press Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions Deepti Suresh * and R. Bakiyalakshmi

More information

Hydrogen production including using plasmas

Hydrogen production including using plasmas Hydrogen production including using plasmas Dr. I. Aleknaviciute and Professor T. G. Karayiannis School of Engineering and Design Brunel University, London, UK Inno Week, Patras Greece 9 th July 2013 Diatomic

More information

Demonstration of Technology Options for Storage of Renewable Energy

Demonstration of Technology Options for Storage of Renewable Energy Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.v. (IASS)

More information

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets By Everett Anderson Symposium on Water Electrolysis and Hydrogen as Part of the Future Renewable Energy System 10-11

More information

Récupération et Stockage d énergie Energétique 5A

Récupération et Stockage d énergie Energétique 5A Récupération et Stockage d énergie Energétique 5A TP Evaluation théorique d un système pile à combustible Daniela CHRENKO 1. Introduction A fuel cell uses hydrogen and oxygen to create electricity by an

More information

Alternative Energy for the Chemical Processing Industry

Alternative Energy for the Chemical Processing Industry Alternative Energy for the Chemical Processing Industry Edward A. Murphree, The Dow Chemical Company ABSTRACT Dow Chemical has a stated goal for sustainable development, and feels that it is part of the

More information

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System 2 nd European Conference on Polygeneration 30 th March-1 st April, 2011 Tarragona, Spain Rajpurohit,Venkatarathnam,Srinivasa Murthy An Analysis of Coupled PEM Fuel Cell-Metal Hydride Hydrogen Storage System

More information

Polymer Electrolyte Membrane Fuel Cell as a Hydrogen. Flow Rate Monitoring Device. S. Giddey* and S.P.S. Badwal. CSIRO Energy Technology

Polymer Electrolyte Membrane Fuel Cell as a Hydrogen. Flow Rate Monitoring Device. S. Giddey* and S.P.S. Badwal. CSIRO Energy Technology The final definitive version of this manuscript was published in Ionics. The final publication is available at www.springerlink.com http://dx.doi.org/10.1007/s11581-012-0757-1 Ionics short communication

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time W H I T E P A P E R - 1 2 0 FABSTRACT Fuel cells offer the means for the conversion of chemical energy in hydrogen rich fuels (fossil and renewable) directly to electricity without having to generate thermal

More information

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis Yong Yang Austin Power David Hart E4tech November 10, 2014 Austin Power Engineering LLC 1 Cameron ST Wellesley, MA 02482 USA www.austinpowereng.com

More information

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL Proceedings of FUELCELL2005 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 2005, Ypsilanti, Michigan FUELCELL2005-74113 VISUALIZATION STUDY OF CATHODE FLOODING

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

EU P2G platform Copenhagen Electrolyzer technology of the BioCat project

EU P2G platform Copenhagen Electrolyzer technology of the BioCat project EU P2G platform Copenhagen 22.06.2016 Electrolyzer technology of the BioCat project By Denis Thomas, Hydrogenics EU Regulatory Affairs & Business Development Manager Renewable Hydrogen Hydrogenics in Brief

More information

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions Progress in the Understanding of PEFC Degradation related to Liquid Water interactions K. Andreas Friedrich, German Aerospace Center (DLR), Institute of Technical Thermodynamics Outline Introduction to

More information

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

Production and use of low grade hydrogen for fuel cell telecom applications

Production and use of low grade hydrogen for fuel cell telecom applications Production and use of low grade hydrogen for fuel cell telecom applications Fuel cells and hydrogen in transportation applications 9.10.2017, Espoo, Finland Pauli Koski, VTT Outline 1. On-site hydrogen

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

Supporting information

Supporting information Supporting information Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers P. Lettenmeier 1, R. Wang 2, R. Abouatallah 2, B. Saruhan 3, O. Freitag 3, P. Gazdzicki 1, T. Morawietz

More information

Storskala-elektrolyse til energilagring

Storskala-elektrolyse til energilagring Storskala-elektrolyse til energilagring April, 2018 Dr. Uffe Borup Public Number one by nature About Nel Hydrogen World s largest pure-play hydrogen company with a market cap of 300 million +200 employees

More information

ESSENCE - International Journal for Environmental Rehabilitation and Conservation

ESSENCE - International Journal for Environmental Rehabilitation and Conservation ESSENCE - International Journal for Environmental Rehabilitation and Conservation Volume VIII: No. 1 2017 [108 119] [ISSN 0975-6272] [www.essence-journal.com] Hydrogen Fuel Cell Saini, Richa Received:

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003)

Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003) Abstract Process Economics Program Report 32B SMALL-SCALE HYDROGEN PLANTS (July 2003) A great deal of enthusiasm is currently noticeable for so-called environmentally clean and alternate fuels. These fuels

More information

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY I. INTRODUCTION. Chemical pollution is a serious problem that demands the attention of the scientific community in the early 21 st century. The consequences of pollution are numerous: heating of the atmosphere

More information

RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL

RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL RENEWABLE OPTIONS OF FUTURE MOBILITY: BEYOND OIL Dr. Sanjay Kaul Professor Fitchburg State University Fitchburg, MA Conventional Oil reserves are concentrated in OPEC areas (>70%). The production maximum

More information

Workshop on Fuel Cells for Automotive Applications

Workshop on Fuel Cells for Automotive Applications Workshop on Fuel Cells for Automotive Applications A.M. Kannan (amk@asu.edu) Arizona State University Chulalongkorn University December 8, 2016 Thermal Electricity Electrocatalysis for Water Electrolyzer,

More information