Marine Primary Productivity: Measurements and Variability

Size: px
Start display at page:

Download "Marine Primary Productivity: Measurements and Variability"

Transcription

1 Why should we care about productivity? Marine Primary Productivity: Measurements and Variability Photosynthetic activity in oceans created current O 2 -rich atmosphere Plankton form ocean sediments & fossil fuels Plankton are a critical part of carbon pump that influences atmospheric CO 2 Phytoplankton form the base of food webs and associated biological diversity Limits to productivity may limit the amount of harvestable biomass from ocean ecosystems. Productivity is the amount of living tissue produced per unit time. It is often estimated in terms of carbon contained in living material and expressed as grams of carbon (g C) produced per day, in a column of water intersecting one square meter of sea surface (g C m -2 d -1 ), from the surface to the seabed. Primary productivity is the amount of plant tissue build up by photosynthesis over time. It is so called because photosynthetic production is the basis of most of marine production. It is worth to mention here that there are other types of primary production that are carried out by bacteria capable of building organic materials through chemosynthetic mechanisms, but these are of minor importance in the oceans as a whole. Gross primary productivity is the total amount of organic carbon manufactured by primary producers. Primary producers however, immediately respire some of the organic matter they make to meet their own energy needs, so it is not available as food to other organisms. We are more interested, however, in Net primary production, which is the organic matter that is left over or the carbon that is available to higher trophic levels. Net primary production is also defined as the energy remaining after respiratory needs have been met. Net primary production = Gross Primary Production - Respiration Net primary production by photosynthesis can be estimated by measuring either the amount of raw material used up (CO 2 ) or the amount of end products given off (O 2 ) by photosynthetic organisms in the sunlight. Marine ecologists have attempted to develop accurate and relatively simple methods to estimate primary production. Secondary productivity refers to production by the organisms that consume the phytoplankton; and those that consume the organisms responsible for secondary production are said to be engaged in tertiary productivity. Standing stock or standing crop refers to the number of organisms per unit area or per unit volume of water at the moment of sampling. For phytoplankton, this can be measured by microscopic cell counts of preserved phytoplankton filtered from seawater samples, and the standing stock is given in number of cells per volume of water. However, because phytoplankton vary greatly in size, total numbers are not as ecologically meaningful as estimates of their biomass. ٤٢

2 Biomass is defined as the total weight (total numbers average weight) of all organisms in a given area or volume. It is possible to count numbers and measure volumes of phytoplankton electronically to provide an estimate of phytoplankton biomass, although cell volume may not always accurately reflect cell weight. Biomass is then expressed as the total volume (total numbers volumes = mm 3 ) of phytoplankton cells per unit volume of water. The distinction between standing stock and biomass is not always made evident, however, and often the terms are used synonymously. Measuring Primary Productivity Oxygen Technique The oxygen technique relies upon the fact that oxygen is released in proportion to the amount of photosynthesis. Because oxygen is released during photosynthesis, changes in oxygen concentration can be used to estimate primary productivity. A water sample is first collected and the zooplankton are strained from it, using a µm plankton net. The remaining water is divided into two biological oxygen demand (BOD) bottles and the dissolved oxygen is determined. One bottle is covered with dark paper while the other is left uncovered (Figure 1.a). Both bottles are incubated in the light for several hours. Dissolved oxygen is measured at the end of the experiment. Fig. 1.a Measurement of primary production in seawater samples by using light and dark bottles Fig. 1.b Measurement of photosynthesis with light and dark bottles at various depths. The clear bottle allows light to enter, so both photosynthesis and respiration take place, whereas the dark bottle provides data on respiration only. Thus, the amount of oxygen produced in clear bottles reflects the net primary production. ٤٣

3 To calculate the total or gross primary production of organic matter by photosynthesis the amount of respiration must be known. This can be measured from the amount of oxygen used up in the dark bottle, where only respiration occurs because the light is blocked (gross primary production = net primary production + respiration). This light-dark bottle technique can be also applied by incubating in various levels of artificial light, or by actually dropping a string of bottles over the side and incubating them in natural light (Figure 1.b). With the artificial light technique, it is necessary to measure the light intensity as a function of depth, so that the measurements can be used to calculate the amount of photosynthesis in the natural environment. Practically speaking, respiration is often not actually measured, but is usually taken to be a value that corresponds to 10 percent of the total oxygen increase. Chlorophyll extraction method A known volume of water is filtered, and plant pigments are extracted in acetone (or other organic solvent) from the organisms retained on the filter. The concentration of chlorophyll a is then estimated by placing the sample in a spectrophotometer to measures the extinction of different wavelengths in a beam of light shining through the sample. Fluorometer technique Instead spectrophotometer an instrument called a fluorometer can be used for measuring chlorophyll concentration in acetone extract from its fluorescence. A fluorometer produces a certain wavelength of ultraviolet light which will cause chlorophyll to emit a red fluorescence, and this device can then estimate the amount of chlorophyll in a volume of water. Compared to spectrophotometer, fluorometer is more sensitive, it requires less sample, which may make it a better choice for chlorophyll analysis in less productive, ultra-oligotrophic systems. The Pump and Probe Fluorometer PumpProbe Fluorometer is a submersible double-flash pulse fluorometer for continuous measurement of chlorophyll concentration and photosynthesis rate in situ. The method is very sensitive, and a fluorometer towed from a research vessel can rapidly record changes in chlorophyll concentration over large distances of sea surface Radiocarbon Technique The most popular method of measuring productivity in the sea is the 14 C method. In this method, bicarbonate ion is labeled with the radioactive isotope of carbon, 14 C (The common nonradioactive isotope is 12 C.) A small measured amount of radioactive bicarbonate (HCO - 3 ) is added to two bottles of seawater containing phytoplankton. One bottle is exposed to light and permits photosynthesis and respiration; the other is shielded from all light so that only respiration takes place. The amount of radioactive carbon taken up per unit time is later measured on the phytoplankton when they are filtered out of the original samples. This radioactivity is measured in an instrument known as a scintillation counter, and primary productivity (in mg C m -3 h -1 ) is calculated from: ( R L RD ) W rate of production = R t ٤٤

4 where R is the total radioactivity added to a sample, t is the number of hours of incubation, R L is the radioactive count in the 'light' bottle sample, and R D is the count of the 'dark' sample. W is the total weight of all forms of carbon dioxide in the sample (in mg C m-3), and this is determined independently, by, for example titration. The productivity is expressed as the amount (in mg) of carbon fixed in new organic material per volume of water (m -3 ) per unit time (h -1 ). The radiocarbon technique is preferable in waters of low productivity, because of the very low changes in oxygen concentration during photosynthesis. Satellite Color Scanning Another method commonly used by scientists is satellite imagery which provides even broader spatial coverage of phytoplankton abundance and thus productivity. This technique is based on the fact that the radiance reflected from the sea surface in the visible spectrum ( nm) is related to the concentration of chlorophyll. Satellites equipped with special cameras take color pictures of the sea surface and beam the images to earth. Using computers, scientists carefully analyze the photos, paying special attention to the characteristic green color of chlorophyll. Because water colour changes from blue to green as chlorophyll concentration increases, the relative colour differences can be used as a measure of chlorophyll concentration. FIG. 3 Color detectors in a satellite measure the radiance of the ocean, or the light that is reradiated after the sun s light encounters and partially penetrates the ocean (the light that reaches the ocean is called the irradiance). Satellite measurements are not as sensitive as others and have restrictions of limited depth penetration, but they provide useful patterns of relative plant production on a global scale. Phytoplankton abundance can be estimated over vast areas of the sea surface by applying various correction factors, taking account of the weather at the time the photo was taken, and relating the results to actual chlorophyll measurements made from ships. Satellites are the only means for assessing the large-scale distribution of phytoplankton. ٤٥

5 FIG. 4 Worldwide, year-round integrated estimate of chlorophyll concentration derived from data collected by the SeaWiFS satellite. False colors are used to represent the data, according to the accompanying scale. Regional Variation in Productivity In the ocean the amount of primary production varies dramatically from one region to other (the table below). Some marine environments are as productive as any on the earth. Others are biological deserts, with production as low as any desert on land. Table Typical rates of primary production in various marine environments Rate of production Environment (grams of carbon fixed/m 2 /yr) Pelagic Environments Arctic Ocean Southern Ocean (Antarctica) Subpolar seas Temperate seas (oceanic) Temperate seas (coastal) Central ocean gyres 4-40 Equatorial upwelling areas** Coastal upwelling areas Benthic Environments ٤٦

6 Salt marshes Mangrove forests Seagrass beds 550-1,100 Kelp beds 640-1,800 Coral reefs 1,500-3,700 Terrestrial Environments Extreme deserts 0-4 Temperate farmlands Tropical rain forests 460-1,600 Figure 5 shows the overall pattern of productivity in the ocean. Productivity in the ocean depends largely on the physical characteristics of the environment, in particular on the amount of light and nutrient that are available. Different oceans have different overall levels of primary productivity, which are determined by latitude, ocean basin shape, wind-driven surface currents, and the influence of surrounding continents. average primary productivity in the oceans is ~50 g C/m 2 /yr 300 g C/m 2 /yr considered relatively high rate of primary productivity low rates of primary productivity typically 20 to 30 g C/m 2 /yr FIG. 5 Distribution of primary production in the oceans. (After Koblentz-Mishke et al., 1970.) ٤٧

7 Productivity in the Eastern Mediterranean Sea The Eastern Mediterranean Sea is considered as one of the most oligotrophic regions in the world, both in terms of primary productivity and chlorophyll a concentrations. The primary productivity of the Eastern Mediterranean Sea is ranging from 50 to 150 mg C/m 2 /y, with a net decrease towards the eastern basin. The extremely low organic production, or oligotrophy, of the offshore waters of the Levantine Basin is manifested in the extreme transparency of the water, measured by the disappearance of a Secchi disc at a world-record depth of 53 meters. The construction of the High Dam had great impact on the fertility of the coastal waters. Before the construction of the dam, the Nile flood used to annually provide the Egyptian coast with large amounts of nutrients (see table 1). Table 1 Summary of pre-dam Conditions of Nile outflow. This nutrient-rich flood water, or Nile Stream, was detected off the Palestine coast (see the next satellite image). The fertilizing effect of the inflow of the nutrient-rich water during the flood season once resulted in exceptionally dense blooms of phytoplankton off the Nile Delta. This "Nile bloom" provided sustenance to sardines and other pelagic fishes. It also constituted a large source of detrital material, which forms a vital source of food for commercially valuable organisms such as shrimp. The decrease in fertility of the southeastern Mediterranean waters caused by the High Dam has had a catastrophic effect on marine fisheries. The average fish catch declined from nearly 35,000 tons in 1962 and 1963 to less than one-fourth of this catch in Hardest hit was the sardine fishery, primarily composed of sardine (Sardinella aurita), which is heavily dependent on increased phytoplankton during the flood season. Thus, from a total of 18,000 tons in 1962, a mere 460 and 600 tons of sardine were landed in 1968 and 1969, respectively. The shrimp fishery also took a heavy toll as the catch decreased from 8,300 tons in 1963 to 1,128 tons in ٤٨

4/28/2013. Transmission of Light in Seawater. Color in the Ocean Color of ocean ranges from deep blue to yellow-green Factors Turbidity from runoff

4/28/2013. Transmission of Light in Seawater. Color in the Ocean Color of ocean ranges from deep blue to yellow-green Factors Turbidity from runoff 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 13 Biological Productivity and Energy Transfer Chapter summary in haiku form Primary produce Sunlight and phytoplankton Ocean is garden Chapter Overview Productivity

More information

Production and Life OCEA 101

Production and Life OCEA 101 Production and Life OCEA 101 Overview Photosynthesis Primary production Phytoplankton biomass Controls on primary production and biomass Food webs Photosynthesis Photosynthesis requires: (i) sunlight (ii)

More information

Lesson Overview 4.5 Aquatic Ecosystems

Lesson Overview 4.5 Aquatic Ecosystems Lesson Overview 4.5 Conditions Underwater What factors affect life in aquatic ecosystems? Aquatic organisms are affected primarily by the water s depth, temperature, flow, and amount of dissolved nutrients.

More information

Productivity and fisheries. Energy flow. Biological pyramids. Why study production processes?

Productivity and fisheries. Energy flow. Biological pyramids. Why study production processes? Productivity and fisheries Why study production processes? Fisheries strongly tied to spatial and temporal variation in primary productivity Better understanding of distribution of fishery resources Interpret

More information

Marine Primary Productivity: Measurements and Variability. Matt Church Department of Oceanography MSB 612

Marine Primary Productivity: Measurements and Variability. Matt Church Department of Oceanography MSB 612 Marine Primary Productivity: Measurements and Variability Matt Church Department of Oceanography MSB 612 Sunlight CO 2 + 2H 2 O CH 2 O + O 2 + H 2 O + heat Gross Primary Production (GPP): The rate of organic

More information

Continued from Lecture 20a

Continued from Lecture 20a IV. Primary Production (p.p.) Continued from Lecture 20a C. Biomass & Productivity 1. Biomass = mass of organic matter (in grams) a. Gross primary production = total amount of organic material synthesized

More information

Biological Oceanography

Biological Oceanography Biological Oceanography What controls production in the sea? The BIG 2: 1) Light (energy) 2) Nutrients (matter) Secondarily 3) Temperature 4) Stratification (coupled to 2 & 3) 5) Grazing/predation The

More information

Gas Guzzlers. Biological Pump

Gas Guzzlers. Biological Pump Gas Guzzlers Biological Pump Aquatic Biodiversity Chapter 8 Coral Reefs Open Ocean Deep Sea Marine equivalent of tropical rain forests Habitats for one-fourth of all marine species Coral polyps, which

More information

biology Slide 1 of 39 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 39 End Show Copyright Pearson Prentice Hall biology 1 of 39 2 of 39 4-4 Aquatic Ecosystems Nearly three-fourths of the Earth s surface is covered with water. Almost all bodies of water contain a wide variety of communities governed by biotic and

More information

4-4 Aquatic Ecosystems

4-4 Aquatic Ecosystems biology 1 of 39 2 of 39 Nearly three-fourths of the Earth s surface is covered with water. Almost all bodies of water contain a wide variety of communities governed by biotic and abiotic factors including

More information

10 Productivity and Food Webs in the Sea. Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton

10 Productivity and Food Webs in the Sea. Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton 10 Productivity and Food Webs in the Sea Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton Microbial Loop 2 Larger consumers Microbial loop DOC & POC Viruses Bacteria Herbivores

More information

OCEANOGRAPHY Chapter 13

OCEANOGRAPHY Chapter 13 OCEANOGRAPHY Chapter 13 Biological Productivity and Energy Transfer part 3: Regional Productivity Energy and Nutrients in Marine Ecosystems, Fisheries Notes from the textbook, integrated with original

More information

MARINE SYSTEMS Lecture Dan Cogalniceanu Course content Overview of marine systems

MARINE SYSTEMS Lecture Dan Cogalniceanu Course content Overview of marine systems Department of Environmental Sciences and Policy MARINE SYSTEMS Lecture 1 2009 Dan Cogalniceanu Course content 1. Overview of marine systems 2. Goods and services provided 3. Human impact on marine systems

More information

(Brief) History of Life

(Brief) History of Life Oldest fossils are 3.5 Ga Cyanobacteria (?) from the Australian Warraroona Group (ancient marine sediments) Bacteria represent the only life on Earth from 3.5 to ~1.5 Ga - and possibly longer Hard to kill

More information

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions Chapter 6 Aquatic Biodiversity Chapter Overview Questions Ø What are the basic types of aquatic life zones and what factors influence the kinds of life they contain? Ø What are the major types of saltwater

More information

Satellite data show that phytoplankton biomass and growth generally decline as the

Satellite data show that phytoplankton biomass and growth generally decline as the Oceanography Plankton in a warmer world Scott C. Doney Satellite data show that phytoplankton biomass and growth generally decline as the oceans surface waters warm up. Is this trend, seen over the past

More information

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area Ch. 6 - Biomes Section 6.1: Defining Biomes Biome: a group of ecosystems that share similar biotic and abiotic conditions, large region characterized by a specific type of climate, plants, and animals

More information

Life in Water. Chapter 3

Life in Water. Chapter 3 Life in Water Chapter 3 Outline Hydrologic Cycle Oceans Shallow Marine Waters Marine Shores Estuaries, Salt Marshes, and Mangrove Forests Rivers and Streams Lakes 2 The Hydrologic Cycle Over 71% of the

More information

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA Background Information on Organisms ALGAE Ecosphere Algae are photosynthetic organisms that occur in most habitats, ranging from marine and freshwater to desert sands and from hot boiling springs in snow

More information

Aquatic Communities Aquatic communities can be classified as freshwater

Aquatic Communities Aquatic communities can be classified as freshwater Aquatic Communities Aquatic communities can be classified as freshwater or saltwater. The two sets of communities interact and are joined by the water cycle. Gravity eventually returns all fresh water

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Chapter 3 Ecosystem Ecology. Monday, May 16, 16

Chapter 3 Ecosystem Ecology. Monday, May 16, 16 Chapter 3 Ecosystem Ecology Populations, Communities, and Ecosystems Ø Members of a species interact in groups called populations. Ø Populations of different species living and interacting in an area form

More information

Questions 3-6 refer to the diagram of surface currents in the oceans. 3. A current responsible for moving heat away from the equator.

Questions 3-6 refer to the diagram of surface currents in the oceans. 3. A current responsible for moving heat away from the equator. 1. Long term differences in which two variables are the primary determinants of climate? (A) Temperature and cloud cover (B) Precipitation and temperature (C) Precipitation and soil type (D) Temperature

More information

What factors affect life in aquatic ecosystems?

What factors affect life in aquatic ecosystems? Aquatic Ecosystems: Notes Outline Today s Objective: Students will explain that different types of organisms exist within aquatic systems due to chemistry, geography, light, depth, salinity, and/or temperature.

More information

Ecology Chapter 11: Marine

Ecology Chapter 11: Marine Ecology Chapter 11: Marine 1 I. Oceans made up of all waters between continents The World Ocean because waters are interconnected can be thought of as one large biome with many different ecosystems and

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Chapter Concepts LIFE IN WATER. The Hydrologic Cycle. The Hydrologic Cycle

Chapter Concepts LIFE IN WATER. The Hydrologic Cycle. The Hydrologic Cycle Chapter Concepts Chapter 3 LIFE IN WATER The hydrologic cycle exchanges water among reservoirs The biology of aquatic environments corresponds broadly to variations in physical factors such as light, temperature,

More information

SUNLIGHT & OCEAN ZONATION

SUNLIGHT & OCEAN ZONATION PLANKTON, PRIMARY PRODUCTIVITY, AND BIOGEOCHEMISTRY EPSS 15 Fall 2017 LAB #7 SUNLIGHT & OCEAN ZONATION Sunlight is critical to the distribution of oceanic life The base of the food chain (phytoplankton)

More information

10/17/ Energy Flow. Producers. Where does the energy for life processes come from?

10/17/ Energy Flow. Producers. Where does the energy for life processes come from? 2 of 41 Where does the energy for life processes come from? 3 of 41 Without a constant input of energy, living systems cannot function. Sunlight is the main energy source for life on Earth. 4 of 41 1 Only

More information

3 2 Energy Flow Slide 1 of 41

3 2 Energy Flow Slide 1 of 41 1 of 41 Producers Producers Without a constant input of energy, living systems cannot function. Sunlight is the main energy source for life on Earth. 2 of 41 Producers In a few ecosystems, some organisms

More information

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall Biology 1 of 41 2 of 41 Producers Where does the energy for life processes come from? 3 of 41 Producers Producers Without a constant input of energy, living systems cannot function. Sunlight is the main

More information

Today: Dinner Time! Yum Yum

Today: Dinner Time! Yum Yum Today: Productivity in the marine world Food webs and trophic levels Chemotrophic communities Dinner Time! Yum Yum Oceans are brimming with life Not a lot of diversity But a great abundance of organisms

More information

Chapter 4, sec. 1 Prentice Hall Biology Book p (This material is similar to Ch.17, sec.3 in our book)

Chapter 4, sec. 1 Prentice Hall Biology Book p (This material is similar to Ch.17, sec.3 in our book) Chapter 4, sec. 1 Prentice Hall Biology Book p.87-89 (This material is similar to Ch.17, sec.3 in our book) Term Definition Weather Day-to-day condition of earth s atmosphere at a particular time and place

More information

California Current Ecosystem Plankton Food Web

California Current Ecosystem Plankton Food Web What role do plankton play in the food web? : California Current Ecosystem Plankton Food Web and the Beth Simmons Education and Outreach Coordinator, CCE LTER, Scripps Institution of Oceanography, and

More information

Bio 112 Ecology: Final Practice Exam Multiple Choice

Bio 112 Ecology: Final Practice Exam Multiple Choice Final Exam Topics: 1) Basic Ecological Principles a) Biomes, ecosystems, communities and populations i) Biomes: know the major ones and where they occur ii) Ecosystem: communities and physical environment

More information

Global Biogeochemical cycles and Ocean Productivity

Global Biogeochemical cycles and Ocean Productivity Global Biogeochemical cycles and Ocean Productivity Biological Oceanography Recall: goal is not to understand the biology of one particular organism (or group), but to understand organisms fit into the

More information

Production vs Biomass

Production vs Biomass Patterns of Productivity OCN 201 Biology Lecture 5 Production vs Biomass Biomass = amount of carbon per unit area (= standing stock * C/cell) Units (e.g.): g C m -2 Primary Production = amount of carbon

More information

OXYGEN, CARBON DIOXIDE, AND PLANKTON

OXYGEN, CARBON DIOXIDE, AND PLANKTON OXYGEN, CARBON DIOXIDE, AND PLANKTON OVERVIEW Students will study videos, charts, ship scientist s logs, and data gathered over a week from the Research Vessel Sea Explorer (located at the Orange County

More information

8/7/18. UNIT 5: ECOLOGY Chapter 15: The Biosphere

8/7/18. UNIT 5: ECOLOGY Chapter 15: The Biosphere UNIT 5: ECOLOGY Chapter 15: The Biosphere I. Life in the Earth System (15.1) A. The biosphere is the portion of the Earth that is inhabited by life 1. Biosphere- part of Earth where life exists a. Includes

More information

Ch. 7 Aquatic Ecology

Ch. 7 Aquatic Ecology Ch. 7 Aquatic Ecology 1.Coral Reefs: the aquatic equal to the tropical rain forests 2.The two major aquatic life zones A. saltwater or marine (estuaries, coastlines, coral reefs, coastal marshes, mangrove

More information

The Energy of Life Chapter 3

The Energy of Life Chapter 3 The Energy of Life Chapter 3 Elements Essential For Life Hydrogen: Organic molecules Carbon: Organic molecules Nitrogen: Proteins and Nucleic Acids Oxygen: Organic molecules These elements account for

More information

Instructions: Answer the questions 1-8 to set up basic rules for how lateral current direction controls vertical motion of seawater.

Instructions: Answer the questions 1-8 to set up basic rules for how lateral current direction controls vertical motion of seawater. Activity 1.1. Vertical Ocean Circulation NAME Reading: Ocean circulation is an important aspect of ocean health because it controls redistribution of both heat and nutrients. Humans indirectly affect ocean

More information

GOALS 1 1. PLANKTON SAMPLING 2 1A. ZOOPLANKTON VERTICAL NET TOW 3 1B. PHYTOPLANKTON NET TOW 4 1C. PHOTOSYNTHESIS & RESPIRATION: BOTTLE INCUBATIONS.

GOALS 1 1. PLANKTON SAMPLING 2 1A. ZOOPLANKTON VERTICAL NET TOW 3 1B. PHYTOPLANKTON NET TOW 4 1C. PHOTOSYNTHESIS & RESPIRATION: BOTTLE INCUBATIONS. GOALS 1 1. PLANKTON SAMPLING 2 1A. ZOOPLANKTON VERTICAL NET TOW 3 1B. PHYTOPLANKTON NET TOW 4 1C. PHOTOSYNTHESIS & RESPIRATION: BOTTLE INCUBATIONS. 5 2. WATER COLUMN STRUCTURE 7 3. MORPHOLOGIC FEATURE

More information

Research Question What ecological and other services do coastal wetlands provide?

Research Question What ecological and other services do coastal wetlands provide? Bringing Wetlands to Market Part 1 Introduction Blue, Green, and Bountiful: Wetlands and carbon Estuary Principle Principle 5: Humans, even those living far from the coast, rely on goods and services supplied

More information

Includes the coastal zone and the pelagic zone, the realm of the oceanographer. I. Ocean Circulation

Includes the coastal zone and the pelagic zone, the realm of the oceanographer. I. Ocean Circulation Includes the coastal zone and the pelagic zone, the realm of the oceanographer I. Ocean Circulation II. Water Column Production A. Coastal Oceans B. Open Oceans E. Micronutrients F. Harmful Algal Blooms

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth.

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth. Producers living systems need energy to function. Sunlight is the main energy source for life on Earth. sources of energy sunlight inorganic chemical compounds. autotrophs. capture energy from sunlight

More information

Unit III Nutrients & Biomes

Unit III Nutrients & Biomes Unit III Nutrients & Biomes Nutrient Cycles Carbon Cycle Based on CO 2 cycling from animals to plants during respiration and photosynthesis. Heavy deposits are stored in wetland soils, oceans, sedimentary

More information

Patterns of Productivity

Patterns of Productivity Patterns of Productivity OCN 201 Biology Lecture 8 Primary Production - the production of autotrophic biomass Secondary Production - the production of heterotrophic biomass Production vs Biomass Biomass

More information

Ocean Production and CO 2 uptake

Ocean Production and CO 2 uptake Ocean Production and CO 2 uptake Fig. 6.6 Recall: Current ocean is gaining Carbon.. OCEAN Reservoir size: 38000 Flux in: 90 Flux out: 88+0.2=88.2 90-88.2 = 1.8 Pg/yr OCEAN is gaining 1.8 Pg/yr Sum of the

More information

ECOLOGY Energy Flow Packet 2 of 4

ECOLOGY Energy Flow Packet 2 of 4 ECOLOGY Energy Flow Packet 2 of 4 3 2 Energy Flow Producers Where does the energy for life processes come from? Producers Producers Without a constant input of energy, living systems cannot function. Sunlight

More information

Patterns of Productivity

Patterns of Productivity Patterns of Productivity Limitation by Light and Nutrients OCN 201 Biology Lecture 8 Primary Production - the production of biomass by autotrophs Secondary Production - the production of biomass by heterotrophs

More information

SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY

SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY CENTRAL CASE STUDY: STARVING THE LOUISIANA COAST OF SEDIMENT LOUISIANA IS LOSING 25MI2 OF COASTAL WETLANDS ANNUALLY WETLANDS SUPPORT A DIVERSITY OF

More information

Taxonomy. Classification of Marine Organisms 11/7/2012. CH 12 Marine Life and the Marine Environment

Taxonomy. Classification of Marine Organisms 11/7/2012. CH 12 Marine Life and the Marine Environment CH 12 Marine Life and the Marine Environment There are more than 250,000 identified marine species Most live in sunlit surface seawater A species success depends on the ability to o find food o avoid predation

More information

California Current Ecosystem Plankton Food Web

California Current Ecosystem Plankton Food Web TEACHER PAGES What role do plankton play in the food web? California Current Ecosystem Plankton Food Web and the Beth Simmons Education and Outreach Coordinator, CCE LTER, Scripps Institution of Oceanography,

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Chapter 55: Ecosystems You Must Know: How energy flows through the ecosystem (food chains and food webs) The difference between gross primary productivity and net primary productivity. The carbon and nitrogen

More information

Healthy oceans new key to combating climate change

Healthy oceans new key to combating climate change Healthy oceans new key to combating climate change Action needed to maintain and restore 'blue carbon' sinks warn three UN agencies An ecosystem approach to management of ocean areas can enhance their

More information

White Lake 2017 Water Quality Report

White Lake 2017 Water Quality Report Introduction Watersheds Canada believes that every person has the right to access clean and healthy lakes and rivers in Canada. We work to keep these precious places naturally clean and healthy for people

More information

Chapter 3: Communities, Biomes, and Ecosystems

Chapter 3: Communities, Biomes, and Ecosystems Chapter 3: Communities, Biomes, and Ecosystems How would you describe your Community? Did you include your family and friends? Did you include your school? Did you include plants and animals? A biological

More information

Chapter 3 Communities, Biomes, and Ecosystems

Chapter 3 Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Section 1: Community Ecology Section 2: Terrestrial Biomes Section 3: Aquatic Ecosystems Click on a lesson name to select. 3.1 Community Ecology Communities A biological

More information

Primary Production Determination in the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia.

Primary Production Determination in the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia. S3/PP Primary Production Determination in the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia Waleerat Musikasung 1) Mohd Shuki Bin Yusoff ) Solahuddin Bin Abdul

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

Marine Microbial Processes

Marine Microbial Processes Marine Microbial Processes Outline size-structured food webs brief history of the development of our current understanding of microbially dominated food webs carbon cycling in marine food webs evolving

More information

Measuring Ocean Color: The Basics

Measuring Ocean Color: The Basics Measuring Ocean Color: The Basics Radiation of energy from the Sun and the Earth s surface. Recall from previous lectures that the Sun (6000 K), radiates energy in three portions of the energy spectrum:

More information

BIOMES. Living World

BIOMES. Living World BIOMES Living World Biomes Biomes are large regions of the world with distinctive climate, wildlife and vegetation. They are divided by terrestrial (land) or aquatic biomes. Terrestrial Biomes Terrestrial

More information

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems Name: Teacher: Pd. Date: STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems TEK 8.11D: Recognize human dependence on ocean systems and explain how human activities such as runoff, artificial

More information

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains.

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Objectives Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Key Terms deforestation greenhouse effect global warming eutrophication acid rain pollution

More information

COLLEGE OF ARTS AND SOCIAL SCIENCE ADI- KEIH Department of Geography Program Geoinformatics Master of Science degree

COLLEGE OF ARTS AND SOCIAL SCIENCE ADI- KEIH Department of Geography Program Geoinformatics Master of Science degree COLLEGE OF ARTS AND SOCIAL SCIENCE ADI- KEIH Department of Geography Program Geoinformatics Master of Science degree Spatial and seasonal variability of phytoplankton concentration in the territorial waters

More information

The Open Ocean. College of Marine Sciences, Shanghai Ocean University

The Open Ocean. College of Marine Sciences, Shanghai Ocean University The Open Ocean Regions of the Open Sea Beyond the shallow coastal seas over the continental shelves (neritic zone) lies the open ocean (oceanic zone). The photic zone is the layer that receives enough

More information

What Keeps Us and Other Organisms Alive?

What Keeps Us and Other Organisms Alive? Energy and Life What Keeps Us and Other Organisms Alive? Four major components of the earth s life-support system: atmosphere (air) hydrosphere (water) geosphere (rock, soil, sediment) biosphere (living

More information

Freshwater ecosystems

Freshwater ecosystems Aquatic Ecosystems Aquatic Ecosystems The types of organisms in an aquatic ecosystem are determined by the water s salinity. Salinity - Amount of salt in the water. Freshwater ecosystems do not have any

More information

This article is provided courtesy of the American Museum of Natural History.

This article is provided courtesy of the American Museum of Natural History. Zebra Mussels and the Hudson River This article is provided courtesy of the American Museum of Natural History. Zebra Mussels and the Hudson River A team of scientists at the Cary Institute of Ecosystem

More information

AP Environmental Science

AP Environmental Science AP Environmental Science Types of aquatic life zones MARINE Estuaries coral reefs mangrove swamps neritic zone pelagic zone FRESHWATER lakes and ponds streams and rivers wetlands Distribution of aquatic

More information

STUDY GUIDE SECTION 21-1 Terrestrial Biomes

STUDY GUIDE SECTION 21-1 Terrestrial Biomes STUDY GUIDE SECTION 21-1 Terrestrial Biomes Name Period Date Multiple Choice-Write the correct letter in the blank 1. The biome that is characterized by the presence of permafrost is called a. savanna

More information

Today: Dinner Time! Yum Yum. Primary Producers = base of food web

Today: Dinner Time! Yum Yum. Primary Producers = base of food web Today: Productivity in the marine world Food webs and trophic levels Chemotrophic communities Dinner Time! Yum Yum Oceans are brimming with life Not a lot of diversity But a great abundance of organisms

More information

3 2 Energy Flow. Slide 1 of 41. Copyright Pearson Prentice Hall

3 2 Energy Flow. Slide 1 of 41. Copyright Pearson Prentice Hall 1 of 41 Producers Where does the energy for life processes come from? Producers Without a constant input of energy, living systems cannot function. Sunlight is the main energy source for life on Earth.

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Section 3 1 What Is Ecology? (pages 63 65)

Section 3 1 What Is Ecology? (pages 63 65) Chapter 3 The Biosphere Section 3 1 What Is Ecology? (pages 63 65) This section identifies the different levels of organization that ecologists study. It also describes methods used to study ecology. Interactions

More information

Biology 13- Marine Biology

Biology 13- Marine Biology Introductions Biology 13- Marine Biology Instructor: Dr. Kevin Raskoff Email: kraskoff@mpc.edu Phone: (831) 646-4132 Office: Life Science, 203B (upstairs) Office hours: Mon-Thurs- 10-11; Thur 5-6pm; or

More information

Marine Life. Communities

Marine Life. Communities Marine Life Communities Habitat, Population, Community, Niche Every marine organism lives in a unique set of physical conditions within a given region of ocean, termed its habitat. A group of marine organism

More information

Examine annual or seasonal scale changes in

Examine annual or seasonal scale changes in Primary production approach 5: Estimate Net community production based on in situ variations in oxygen, nutrients, carbon, or biomass (often chlorophyll) Examine annual or seasonal scale changes in O 2,

More information

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall Biology 1 of 41 2 of 41 Producers Where does the energy for life processes come from? 3 of 41 Producers Producers Without a constant input of energy, living systems cannot function. Sunlight is the main

More information

Describe the five levels of ecological study. Explain how the patchiness of the biosphere creates different habitats. Identify key abiotic factors.

Describe the five levels of ecological study. Explain how the patchiness of the biosphere creates different habitats. Identify key abiotic factors. Objectives Describe the five levels of ecological study. Explain how the patchiness of the biosphere creates different habitats. Identify key abiotic factors. Key Terms ecology biotic factor abiotic factor

More information

Bell Ringer AP Practice

Bell Ringer AP Practice Bell Ringer AP Practice 1) Reasons that the population size of an exotic species often grows rapidly when the species is introduced in a new environment include which of the following? i. The exotic species

More information

De Hoop Nature Reserve Western Cape, South Africa. Shell midden that is over 100,000 years old

De Hoop Nature Reserve Western Cape, South Africa. Shell midden that is over 100,000 years old Humans & the Sea De Hoop Nature Reserve Western Cape, South Africa Shell midden that is over 100,000 years old Shell fish hooks of South Coastal Californians (3000 BC-AD 900) 7 billion Human Population

More information

Climate Change. Greenhouse Effect & Global Warming

Climate Change. Greenhouse Effect & Global Warming Climate Change What is climate change Greenhouse Effect & Global Warming Global Warming = World wide increase in average Temp. Cause = greenhouse effect 1 Some would argue the Global Warming trend is natural

More information

Ecology: Chapters Worksheet

Ecology: Chapters Worksheet Ecology: Chapters 34 36 Worksheet Name: Chapter 34: The Biosphere Concept 34.1 The biosphere is the global ecosystem. (pp. 744 749) The scientific study of the interactions among organisms and between

More information

Unit 2 RELEVANCE OF ECOLOGY TO MARINE ECOTOURISM DEVELOPMENT

Unit 2 RELEVANCE OF ECOLOGY TO MARINE ECOTOURISM DEVELOPMENT Unit 2 RELEVANCE OF ECOLOGY TO MARINE ECOTOURISM DEVELOPMENT Objectives At the completion of this unit, you will be able to: Understand the fundamentals of coral reef ecology Identify threats to reef health

More information

SAMPLE. AQA A Level Geography. Unit Assessment Water and Carbon Cycles (Edition 1)

SAMPLE. AQA A Level Geography. Unit Assessment Water and Carbon Cycles (Edition 1) UNIT ASSESSMENT AQA A Level Geography Unit Assessment 3.1.1 Water and Carbon Cycles (Edition 1) h 45 minutes h The maximum mark for this unit assessment is 36 Name Centre Name AQA A Level Geography Unit

More information

Chapter 22: Energy in the Ecosystem

Chapter 22: Energy in the Ecosystem Chapter 22: Energy in the Ecosystem What is ecology? Global human issues Physical limits Ecosystems Organisms Populations Species Interactions Communities Energy flows and nutrients cycle C, H 2 0, P,

More information

15.1 Life in the Earth System. KEY CONCEPT The biosphere is one of Earth s four interconnected systems.

15.1 Life in the Earth System. KEY CONCEPT The biosphere is one of Earth s four interconnected systems. 15.1 Life in the Earth System KEY CONCEPT The biosphere is one of Earth s four interconnected systems. 15.1 Life in the Earth System The biosphere is the portion of Earth that is inhabited by life. The

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

2.2 - Nutrient Cycles. Carbon Cycle

2.2 - Nutrient Cycles. Carbon Cycle 2.2 - Nutrient Cycles Carbon Cycle Nutrients What are nutrients? Chemicals (C,O, N, P, H...) needed for life There is a constant amount of these nutrients on Earth and they are stored in different places.

More information

RIVER SEDIMENTS AND COASTAL FISH PRODUCTION: WHAT ABOUT THE MEKONG?

RIVER SEDIMENTS AND COASTAL FISH PRODUCTION: WHAT ABOUT THE MEKONG? people Ÿ science Ÿ environment Ÿ partners! RIVER SEDIMENTS AND COASTAL FISH PRODUCTION: WHAT ABOUT THE MEKONG? Eric BARAN Eric GUERIN Project A Climate Resilient Mekong: Maintaining the Flows that Nourish

More information

Great Salt Lake Planktonic and Benthic Habitats

Great Salt Lake Planktonic and Benthic Habitats Great Salt Lake Planktonic and Benthic Habitats Hypersaline lakes are often regarded as "simple" ecosystems because they typically have fewer species than freshwater lakes. Although fewer species are capable

More information

20 1 Properties of Ocean Water (1) for walkabout notes.notebook. April 24, 2018

20 1 Properties of Ocean Water (1) for walkabout notes.notebook. April 24, 2018 Although pure water is tasteless, odorless and colorless, ocean water is not pure. Ocean water is a complex mixture of: dissolved solids and gasses, small particles of matter, tiny organisms, chemicals

More information

Marquesas Islands Mass Effect Study (MIMES): Correlating Satellite and In Situ Oceanographic Measurements with Biological Observations

Marquesas Islands Mass Effect Study (MIMES): Correlating Satellite and In Situ Oceanographic Measurements with Biological Observations Marquesas Islands Mass Effect Study (MIMES): Correlating Satellite and In Situ Oceanographic Measurements with Biological Observations Ethan Estess, Eugene Lee Abstract An episodic Chlorophyll a bloom

More information

OCEAN DEFENDERS. A little more help for your research!

OCEAN DEFENDERS. A little more help for your research! OCEAN DEFENDERS A little more help for your research! OCEANS Humans both depend on it and threaten it with their activities OCEANS Water covers nearly ¾ of the Earth s surface More than 50% of the world

More information

Ecology. Climate. Global Climate. Chapter 52: Introduction to Ecology and the Biosphere

Ecology. Climate. Global Climate. Chapter 52: Introduction to Ecology and the Biosphere Chapter 52: Introduction to Ecology and the Biosphere Ecology oikos - home! logos - to study! Ecology - the study of interactions between organisms and the environment! Answer important questions:! Where

More information

Coral Reefs. 1 of 5. An Ocean of Trouble

Coral Reefs. 1 of 5. An Ocean of Trouble This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Article Coral Reefs An Ocean of

More information