IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part I of Course Prof. Leachman Fall, 2017

Size: px
Start display at page:

Download "IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part I of Course Prof. Leachman Fall, 2017"

Transcription

1 IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part I of Course Prof. Leachman Fall, The thickness of a film deposited on wafers at a particular process step is subject to statistical process control. The upper specification limit for the film thickness is 50 angstroms and the lower specification limit is 20 angstroms, i.e., wafers with film thickness more than 50 angstroms or less than 20 angstroms deposited on them are scrapped. At present, the process has considerable variability, with mean film thickness equal to 25 angstroms and standard deviation equal to 5 angstroms. (a) What kind of control chart(s) should be used to track this parameter? (b) What is the process performance index for this step? (c) Assume the only yield loss mechanism at this process step is out-of-spec film thickness. What is the yield of this process step? (d) To raise the yield of this step to 95%, what value for the process performance index must be achieved? 2. A production process is subject to defects. If the number of defects on a production unit exceeds USL, the unit is scrapped. The yield of the process averages Assume the only yield loss mechanisms are the defects. (a) What kind of control chart is most appropriate for this process? (b) Estimate the process performance index. (c) The upper control limit of the control chart is 100. Estimate USL. 3. The thickness of a film deposited on wafers at a particular process step is subject to statistical process control. The thickness is measured at five points on one wafer per lot. The upper control limit is 132 angstroms and the lower control limit is 96 angstroms. (a) What kind of control chart should be used to track this parameter? Assume in the following questions that this kind of chart is in use. 1

2 (b) What are the mean and standard deviation of the film thickness? (c) Assume the yield loss due to out-of-spec film thickness is 1 percent and assume all of this loss is from wafers whose film thickness exceeded the upper specification limit. What is the equivalent process performance index? (d) What is USL for this film thickness? 4. For a product with 300 gross die per wafer, stacked wafer maps of yield by die site have been studied. Considering only wafers believed to be free of yield excursions, the best observed yield is 90%. The average die yield for the product is 80%. (a) Determine baseline random and systemic mechanisms-limited yields for the product. (b) The die size is 0.5 square centimeters. What defect density is equivalent to the baseline random yield? (c) If the defect density in (b) were cut in half, what would be the improvement in average die yield for the product? (d) The following systematic yield-loss mechanisms have been identified: Mechanism Fraction of wafers Fraction of die loss on such wafers Edge losses Missing photo patterns (excluding edge die) Poly etch bridging (excluding edge die) Metal II particle excursions (excluding edge die) Metal I particle excursions (excluding edge die) Assume the last four mechanisms can be overlapping, i.e., the same die might experience poly etch bridging, missing photo patterns, and/or particle excursions. Edge die are excluded when figuring average losses from the other mechanisms, i.e., the above figures for the last four mechanisms express losses in addition to edge losses. How much systematic yield loss remains to be explained? 2

3 5. A simple manufacturing technology has three process steps. Each step is subjected to statistical process control procedures. The process capability and process performance indices are as follows: Step Cp Cpk (a) Assume the only yield loss mechanisms are violations of the specification limits at the three steps. What is the overall yield of the manufacturing technology? (b) Now suppose that in addition there is a yield loss mechanism of random defects. There is no inspection for such defects until testing after production is completed. Further, suppose the overall yield for a device with area equal to 0.5 sq cm fabricated using this manufacturing technology is 87.5%. What is the defect density equivalent to the random defect yield loss? 6. A simple manufacturing process consists of a sequence of four steps: Step Cpk Cp (a) Which step is in most urgent need of process improvement? If the process was well-centered at each step, which step would be in most urgent need of improvement? (b) Considering only the yield loss mechanisms underlying these process performance indices, estimate the yield of the manufacturing process. (c) The engineering department is considering several projects to reduce process variability as follows: Step 1 new / Required engineering hours

4 Rank the projects in order of decreasing return per expended engineering hour. 7. Two factories A and B make the same product in three manufacturing steps. Each step has an upper specification limit but no lower specification limit. Data on the process performance index (Cpk) for each of the steps at each factory is as follows: Step Fab A Fab B Suppose the only yield loss mechanisms are from exceeding the upper spec limits. Further, suppose yield losses at each step are independent. Assume there is 100% inspection after each step, and bad units are discarded before processing by the next step. (a) Explain why, for any of the steps above, the yield of the step may be well-estimated as Prob{Z < 3*Cpk} where Z is ~ N(0,1). (b) Estimate the overall yield at each factory. Which factory is doing better? (c) Suppose the first step involves a countable parameter of quality, and suppose USL for this step is 100. What is the upper control limit of an SPC chart for the first step in Fab A? (d) Suppose we could utilize the best step from each fab to make the product. How much better would the yield be? 8. The engineering management of a fabrication line is considering three projects to improve the process stability of certain manufacturing steps. (Stability in this case means the standard deviation of the process quality parameter for the step would be reduced.) Information about the current performance, estimated engineering effort and predicted performance of the steps after process improvement is as follows: Step Cpk new Required_engineering_man_hours (a) Estimate the percentage product cost reduction for each project and if all three projects are completed. State any assumptions you need to make. 4

5 (b) If the fab could only do one of the projects, which one should be done? If it could only do two, which ones should it do? Justify your answers. 9. The management of a factory is trying to sort out how much yield loss is coming from a stationary baseline distribution of defects vs. how much is coming from defect excursions and other systematic mechanisms of yield loss. A stacked wafer map is analyzed including only wafers believed to not be involved in any defect excursions. The best-yielding die site on the wafer map has a 65% yield. The number of 0.5 sq-cm dice printed on the wafer is 450. The average die yield over all wafers (including those involved in excursions) is 35%. (a) Calculate the baseline defect-limited yield and the underlying baseline defect density. (b) Management is considering an upgrade of the air flow system costing $1.5 million. Engineering tests have been performed that indicate that this upgrade can be expected to cut baseline particle contamination on the wafers by 20%. However, particle excursions do not seem to be abated by the improved air flow. Estimate the improvement in baseline defect-limited yield and in the overall die yield if this upgrade is undertaken. (c) Management also is considering investment in a $1.5 million inspection system enabling increased process monitoring so that excursions can be detected earlier and thereby reduce yield losses. Engineering analysis and experiments indicate that total systematic and excursion yield losses could be cut 20% by this investment. Assuming the air flow system is NOT upgraded, what overall die yield would result from implementation of this inspection system? If only $1.5 million is available to spend, which is a better expenditure for improving yield the air flow system upgrade, or the new inspection system? 10. A product with 400 die per wafer has an average die yield of 61% and a die area of 0.5 cm 2. The best die yield observed near the center of a wafer map is 82%. (This wafer map was made from wafers in lots not subject to excursions.) (a) Estimate the stationary random yield (when systematic losses are not present), and estimate the systematic mechanisms limited yield. (b) Determine the Poisson defect density equivalent to the stationary random yield. (c) The following systematic mechanisms have been identified: 5

6 Mechanism Fraction of wafers Fraction die loss Total yield loss Wafer edge losses Missing photo patterns (counting only losses not overlapping the edge losses) Particle excursions (counting all die containing fatal defects, including those die experiencing missing photo patterns and those die in the edge losses) How much systematic yield loss is occurring from mechanisms not listed above? (d) The following contributors to the baseline stationary random yield have been identified: Layer Defect density Fraction fatal (defects per cm 2 ) Metal Metal Poly What amount of fatal defect density is occurring that is not observed by the above three inspections? How much yield loss does that account for? 11. A product with 400 die per wafer has an average die yield of 62% and a die area of 0.5 cm 2. The best die yield observed near the center of the wafer map is 82%. (a) In-line inspections have been implemented at the Metal 1, Metal 2 and Poly layers, and the observed defects have been correlated with the wafer maps of die yield to estimate the fraction of observed defects that are fatal. The following results were obtained: Layer Defect density Fraction fatal (defects per cm 2 ) Metal Metal Poly What amount of fatal defect density is occurring that is not observed by the above three inspections? How much yield loss does that account for? (b) The following systematic yield loss mechanisms have been identified: Mechanism Fraction of wafers Fraction die loss Total yield loss Wafer edge loss

7 Missing photo patterns (excluding the edge loss) Particle excursions How much systematic yield loss is the result of mechanisms yet to be discovered? 12. In a large stacked wafer map of wafers printed with 1,000 die, the die site with the maximum observed yield has a yield equal to 85%. (a) Estimate the baseline defect-limited yield. (b) Suppose fatal baseline defect density is reduced by 0.05 per sq cm. Suppose the die size is 0.5 sq cm. Predict the new maximum observed yield. (c) The following systematic yield loss mechanisms have been identified: Mechanism Fraction of lots Fraction of wafers Fraction of die lost affected affected per lot affected per wafer affected Edge loss Particle excursions Poisoned vias (Note: These mechanisms are not mutually exclusive, i.e., multiple failure mechanisms may be present in the same die.) 13. A product with 400 die per wafer has an average die yield of 65% and a die area of 0.5 cm 2. The best die yield observed near the center of a wafer map is 85%. (This wafer map was made from wafers in lots not subject to excursions.) (a) Estimate the stationary random yield (when systematic losses are not present), and estimate the systematic mechanisms limited yield. (b) Determine the Poisson defect density equivalent to the stationary random yield. (c) Clustering of the random defects has been studied. It has been found that mean number of defects per die is 0.8 and the variance in the number of defects per die is 1.2. Revise the estimate of the random defect density accordingly. 7

8 (d) In-line inspections have been implemented at the Metal 1, Metal 2 and Poly layers, and the observed defects have been correlated with the wafer maps of die yield to estimate the fraction of observed defects that are fatal. The following results were obtained: Layer Defect density Fraction fatal (defects per cm 2 ) Metal Metal Poly What amount of fatal defect density is occurring that is not observed by the above three inspections? How much yield loss does that account for? 14. Rework is sometimes required at photolithography steps. Statistics on rework in recent shifts are as follows: Shift # # of wafers # of wafers processed reworked (a) During which shifts was photo rework in statistical control? (b) The photo engineer has determined that an adjustment to the photo machine can reduce rework. The adjustment requires 60 minutes to perform. The process time per lot is 30 minutes. The photo engineer has collected statistics on rework and has found that the probability of rework grows as a function of the number of lots processed since last adjustment. The probability of no rework on the n th lot processed after an adjustment is P(n) = n-1. Consider the following potential frequencies for adjustment: Once every 10 lots, once every 20 lots, once every 30 lots, once every 40 lots, or once every 50 lots. Which frequency maximizes photo capacity? Explain. 15. A wet bench consists of a series of tanks served by a robot arm. Two production lots (50 wafers total) form one batch that travels down the bench. The batch is dunked in each tank by the robot arm. One of the tanks contains sulfuric acid that strips an undesired film off the wafers. With repeated use, the acid bath contains more and more residue from previously stripped wafers, and there is increasing probability that the film on the wafers in the next batch may be inadequately stripped. An inspection step carried out after the wet bench step would detect this, in which case the batch must be re-worked. At some point the acid bath must be dumped and re- 8

9 poured with fresh acid; this involves one hour of down time to the wet bench as well as the expenses for new sulfuric acid and disposing of the old acid. The process time in the sulfuric acid tank is 30 minutes per batch, whether for a first-time batch or a re-worked batch. The wet etch engineer estimates the probability that rework is required is a linear function of bath usage: P(n) = 0.05*n, where n is the number of first-time batches processed since the acid bath was re-poured and P(n) is the probability that the n th batch must be re-worked. You may assume that with probability one a batch that is reworked will be successfully stripped of the undesired film on the second pass through the tank, and that reworking does not cause the acid bath to deteriorate. (a) Suppose our objective is maximum wet-bench capacity. What frequency of re-pour is best? (By frequency, we mean how many batches between re-pours of the sulfuric acid bath.) (b) Now suppose our objective is minimum cycle time. Assume the following data for the wet bench: m=1, ca = 1, ce = 1, the wet bench receives 250 lots per week (i.e., 125 batches per week, excluding rework), and the only down time is for re-pouring the acid bath. Now what frequency of re-pour is best? (Hint: You can calculate the availability and average rework rate as functions of the re-pour frequency. And be sure to include rework in utilization.) (c) Now suppose our objective is maximum profit. What factors should be taken into account to decide the best frequency of re-pour? What other data would you request in order to make this determination? 16. The overlay alignment of the exposure machine used in a particular manufacturing technology is difficult to control. After re-calibration of the machine, the first lot processed has zero probability of mis-alignment. The second lot processed has probability 0.02 of misalignment. The third lot has probability 0.02(2) = 0.04 of mis-alignment, the fourth lot has probability has probability 0.02(3) = 0.06, and so on. Each lot that is mis-aligned must be re-worked. Re-worked lots are manually aligned on the machine, so there is zero chance of mis-aligning a rework lot. Processing one lot through the machine takes 1 hour. It takes another 1 hour to process the lot through the machine if rework is required. To re-calibrate the machine takes 8 hours, during which time processing can not be performed. The exposure machine is the bottleneck of the manufacturing process. (a) Starting with a just-calibrated machine, assuming a continuous supply of work-in-process, and assuming no further re-calibration of the machine, provide a formula for the expected duration for the exposure machine to complete processing of n lots, including any required rework of those lots. You do not need to simplify the expression. 9

10 (b) Which frequency of re-calibration will maximize the long-run output rate of the exposure machine: re-calibrate every 5 lots, every 10 lots, every 25 lots, or every 50 lots? (Hint: use your formula from part (a) to express the output rate per calibration cycle.) (c) Assuming there is no idle time and assuming 1 hour is the theoretical time to process one lot, what is the expected OEE of the machine for the frequency of re-calibration you chose in part (b)? 17. A wet etching machine processes a batch of two 25-wafer lots. The lots are dunked in an acid batch, followed by a dunk in a rinse bath. The acid tank of a wet etching machine becomes increasingly dirty with each batch processed. As a result, there is an increasing chance of particles becoming lodged in the circuitry on the wafers within each batch that cannot be rinsed off. Starting with a fresh acid bath, the process engineer estimates that the fatal defect density increases by 0.35 per sq cm after every batch processed. That is, if the fatal defect density of a batch run in a fresh acid bath is D0 per sq cm, then the fatal defect density of the next batch will be D , and that for the next batch will be D , and so on. At some point, the acid bath should be dumped and re-poured; this takes 2 hours. Suppose the process time of a batch is one hour, and suppose the die size is 0.5 sq cm. Suppose the wet etching machine is very busy, i.e., there are almost always lots waiting to be wet-etched. (a) Suppose we re-pour the acid bath after every n batches. Provide a formula to estimate the average yield of the n batches between re-pours of the acid bath. (b) Consider three alternative frequencies for re-pouring the acid bath: after every 2 batches, after every 4 batches, or after every 6 batches. Which frequency would you recommend? Explain. (c) Suppose the fab product mix changes such that this wet etching machine now has considerable idle time. Qualitatively, how should the frequency be changed, i.e., should we dump the bath more often, less often, or no change? 18. The processing cycle for a diffusion furnace consists of three phases: load, run, and unload. During the load portion of the cycle, an operator transfers wafers from incoming lots into a boat accommodating 150 wafers. If the incoming lots include less than 150 wafers, the operator inserts dummy wafers to raise the total wafers in the boat up to 150. During the run portion of the cycle, the boat is mechanically inserted into the furnace, the wafers are cooked for a specified length of time, and then the boat is mechanically withdrawn from the furnace. During the unload portion of the cycle, the operator unloads the product wafers from the boat into lots to be sent to follow-on operations, and he/she unloads the dummy wafers for re-use in subsequent furnace runs as may be required. 10

11 For a particular furnace, the run portion of the cycle takes exactly 6 hours every cycle. The theoretical times to perform the load and unload portions of the cycle are 0.5 hours each, but sometimes the operators take longer to complete these tasks. The average load time is estimated to be 0.6 hours (and the average unload time also is 0.6 hours). Last week this furnace completed 20 process cycles and experienced 4.5 hours of down time. The average batch size was 5.7 lots (i.e., product wafers). (a) Estimate the utilization of total time, utilization of availability, and OEE of this furnace last week. Assume the factory is operated 24 hours per day, seven days per week. (b) Identify the two reasons that rate efficiency was less than 100% for this furnace. (c) The equipment vendor offers a modification to the furnace whereby the furnace would be equipped with dual boats instead of a single boat. If equipped with dual boats, the operator could load boat B while the furnace was running boat A. After the run on boat A was completed, the furnace could immediately start the run on boat B. In parallel with the run on boat B, the operator could unload boat A. When loading and unloading are conducted in parallel with processing, the furnace is said to be backloaded. If equipped with dual boats, what is the reduction in theoretical process time per cycle? (d) Assuming the same number of process cycles were run with the same average batch size, estimate the OEE and utilization of availability last week if the furnace had been equipped with dual boats and all batches could be backloaded. (e) Assuming the same number of process cycles were run with the same average batch size, estimate the reduction in cycle time last week if the furnace had been equipped with dual boats and all batches could be backloaded. Assume there are no alternative furnaces, i.e., this is the only one that can be used, and assume down time statistics and process time variability would be unchanged if dual boats are installed. Other data: c0 = 1, MTTR = 4.5, cr = 1.0, ca = 1, lot arrival rate = lots per hour. (f) Suppose the current revenue from one lot is $25,000 and is declining 25% per year. The current fab cycle time is 40 days. The remaining product lifetime is 3 years. Assuming last week s processing rate is maintained, estimate the revenue gain from installation of dual boats in the furnace. 19. A wafer fab runs a single process technology that includes three high current implant steps. Data concerning these three steps are as follows: 11

12 Parameter Theoretical Time (secs) Average Time (secs) Beam Setup Time, BSU Vent Time, VT Wafer Exchange Time, XT Pump-down time, PT Wheel Rev-up Time, RT Implant Time - step 1, IT Implant Time - step 2, IT Implant Time - step 3, IT There are two high current implant machines in the fab. For each machine, down time averages 6 hours per day and idle time averages 3 hours per day. The maximum load size per implant is 12 wafers. Assume the average load size also is 12 wafers. (a) Estimate the fab output rate. Assume line yield losses in the fab are negligible. (b) Estimate the OEE of the high current implant machines. Assume there are no quality efficiency losses for the high current implant machines. (c) The equipment vendor offers a modification to the implanters that will reduce the average beam setup time (BSU) to 60 seconds. Assuming the fab output rate is held constant, by how much will the idle time increase for each high current implanter? In this case, how will the OEE score change? (d) Now suppose high current implant is the bottleneck equipment type. Suppose the fab starts rate is raised just enough so that all of the time saved by reducing BSU is absorbed by processing more wafers per day. Now how will the OEE score change? 20. A fabrication plant includes a sophisticated etching machine purchased almost a year ago. The purchase agreement for the machine included a service contract lasting one year whereby technicians working for the machine vendor perform preventative maintenance and repairs on the machine. At present, a machine vendor s technician performs a weekly PM. The PM takes the machine down for 4 hours. When the machine breaks down, the down time averages 8 hours (including time for the technician to drive to the plant). Data on machine failures indicates that the time until failure from performance of PM is distributed as follows: Days since PM, t Fraction of breakdowns occurring on day t

13 The service contract is about to expire. The machine vendor offers to renew the service contract for one year at a fixed cost of $150,000. Alternatively, the plant could hire a local, on-call independent contractor charging $250 per hour to perform PMs or repairs. This contractor used to work for the vendor and is very knowledgeable about the machine. It is believed that the contractor could perform high-quality maintenance work just as quickly as the vendor s staff. (a) The machine vendor is currently performing weekly PMs. Estimate the availability of the machine. (b) What frequency of PMs would you recommend to maximize machine availability? (c) Estimate the availability if the frequency of PM was changed to follow your recommendation in (b). (d) Estimate the annual costs for maintenance of the machine if the plant terminates the service contract and instead utilizes the local independent contractor following the PM frequency you calculated in (b). Would you recommend renewing the service contract? Or hiring the local contractor? 21. A wet bench consists of a series of tanks served by a robot arm. Two production lots (50 wafers total) form one batch that travels down the bench. The batch is dunked in each tank by the robot arm. Batches move along the bench one after another; the minimum spacing of the batches is the longest time spent in any one tank. One of the tanks contains sulfuric acid that strips an undesired film off the wafers. With repeated use, the acid bath accumulates more and more residue from previously stripped wafers, so there is increasing probability that the film on the wafers in the next batch may be inadequately stripped. An inspection step carried out after the wet bench step would detect this, in which case the batch must be re-worked. At some point the acid bath must be dumped and re-poured with fresh acid. The minimum time between consecutive batches run on the bench is 30 minutes, regardless of whether the batches involved are first-time batches or batches being re-worked. Once it is decided to re-pour the acid bath, no 13

14 more batches can be input to the bench until the re-pour is complete. A re-pour involves one hour of down time to the whole wet bench. The wet etch engineer estimated that the probability that rework is required is a linear function of bath usage: P(n) = 0.03*n, where n is the number of first-time batches processed since the acid bath was re-poured and P(n) is the probability that the n th batch must be re-worked. You may assume that with probability one a batch that is reworked will be successfully stripped of the undesired film on the second pass through the bench, and that rework causes negligible deterioration of the acid bath. Suppose our objective is maximum wet-bench output. Consider the following alternative frequencies for re-pouring the acid bath: Once every 4 batches, once every 8 batches, once every 12 batches, or once every 16 batches. Given an unlimited supply of WIP, which frequency of repour would achieve the highest output rate? 22. A wet etching machine processes a batch of two 25-wafer lots. The lots are dunked in an acid batch, followed by a dunk in a rinse bath. The acid tank of the wet etching machine becomes increasingly dirty with each batch processed. As a result, there is an increasing chance of particles becoming lodged in the circuitry on the wafers within each batch that cannot be rinsed off. Starting with a fresh acid bath, the process engineer estimates that the fatal defect density increases by 0.01 per sq cm after every batch processed. That is, if the fatal defect density of a batch run in a fresh acid bath is D0 per sq cm, then the fatal defect density of the next batch will be D , and that for the next batch will be D , and so on. At some point, the acid bath should be dumped and re-poured; this takes 3 hours. Suppose the process time of a batch is one hour, and suppose the die size is 0.05 sq cm. Suppose the wet etching machine is very busy, i.e., there are almost always lots waiting to be wet-etched. (a) Suppose we re-pour the acid bath after every n batches. What is the average defect density across those n batches? (b) Consider three alternative frequencies for re-pouring the acid bath: after every 50 batches, after every 100 batches, or after every 150 batches. Which frequency would you recommend? Explain. (c) Suppose the fab product mix changes such that this wet etching machine now has considerable idle time. Qualitatively, how should the frequency be changed, i.e., should we dump the bath more often or less often? 23. A vacuum process machine currently equipped with a wet pump is being modified to incorporate a dry pump. The equipment maintenance department would like to set up a preventative maintenance (PM) schedule for the dry pump. The process machine currently experiences weekly PMs, monthly PMs, bi-monthly PMs, and quarterly PMs. The maintenance 14

15 department does not want to add any more frequencies of PMs because of the long requalification time. The maintenance department is wondering to which of the existing frequencies of PMs it is best to place maintenance of the dry pump. Data received from the dry pump vendor is as follows: Weeks of service Probability of failure To add the dry pump to an existing PM involves 4 hours of incremental down time. If the dry pump fails, the unscheduled down time to repair the pump and re-qualify the process machine for service takes 12 hours. (a) From the point of view of maximizing machine availability, which of the existing PM frequencies is best for the dry pump? (b) Suppose the incremental cost of a dry pump PM is $500, and if the dry pump fails, the cost of lost output and repair of the dry pump is $25,000. From the point of view of cost minimization, is the same PM frequency as in (a) best? If not, which frequency is best? 24. Three photolithography scanner machines in a particular fabrication plant experience rate efficiency losses because of substandard lamp intensity. This substandard lamp intensity also generates occasional rework. The photo engineer has determined that, with weekly cleaning of the mirrors forming the optical path inside the machine, the average lamp intensity (LI) can be raised from its current average value of 700 mw/sq cm to an estimated 770 mw/sq cm. In addition, the average photo rework rate is expected to decline from 10% to an estimated 7%. However, this cleaning effort would introduce an additional 1 hour of machine down time per week. 15

16 Data concerning theoretical process times on the scanner are as follows: AT = 50 seconds XT = 35 seconds MT = 2 seconds LI = 785 mw/sq cm There is no blading required. Two products are in production, each with one photo step: Product Exposure energy (EE) No. of exposures to cover wafer A 2800 mw-sec/sq cm 500 B 2000 mw-sec/sq cm 350 Data concerning last week s operation of the scanners is as follows: Total photo department machine hours: (3 machines)(168 hours) = 504 machine-hours Total available time: = 462 machine-hours Total wafers processed by scanner machines: Product No. of wafer operations No. of wafers completed (including rework) (excluding rework) A B (a) What was the availability (A) of the photo scanner machines last week? Estimate the utilization of total time (U). Estimate the utilization of availability (U/A). (b) Estimate the overall equipment efficiency (OEE) of the photo scanner machines last week. You may assume the actual values of AT, XT and MT were equal to their theoretical values. (c) Suppose weekly cleaning of the mirrors is implemented, and suppose the production rates of A and B are kept at 300 and 250 per week, respectively. Suppose further that last week s actual availability is a good estimate of the average availability of the photo machines before cleaning of the mirrors is implemented. Estimate the values of A, U, and U/A after the change is made. Qualitatively, what do you expect would happen to cycle times? (d) Suppose instead of keeping the same production rates for products A and B, the production rates of products A and B are scaled proportionately so that U/A would have the same value as it did in part (a). Estimate the new output rates of A and B, and estimate the new OEE in that case. Qualitatively, what do you expect would happen to cycle times? Is cleaning of the mirrors a good idea? 25. A wafer fabrication plant is manufacturing a single device whose area is 0.5 sq cm and whose fatal defect density according to the Seeds Model is 0.5 per sq cm. The device has a line yield of 100%. 16

17 It has been determined that the metalization process is a source of significant particles. It is possible to reduce this contamination if a special machine clean cycle is inserted into the process recipe. This extra clean cycle will reduce particle contamination, but it will increase the metalization process time. The Process Engineering Dept. would like to know if it is beneficial to introduce this special clean cycle. There are two metallization steps in the overall process flow for the device, each performed by the same machine type. It is estimated that, without the special clean cycle, the machine deposits 0.40 particles per sq cm per wafer pass, of which 20% are fatal. If the special clean cycle is added to the process recipe of each step, it is estimated that the particles deposited per wafer pass will drop to 0.30 per sq cm. The fab inputs 21,000 wafers of the device per 30-day month, which is just equal to the capacity of the bottleneck equipment. The average process time per wafer pass of the metalization machine is currently 0.05 hours, but if the special clean cycle is introduced, this time will rise to 0.06 hours. There are five metalization machines; they average 30% down time. The metalization machines are not the current fab bottleneck, but if they were, it is estimated that their minimum idle time would be 5%. (a) Express the die yield improvement as a multiplier on the current die yield. Estimate the die yield subsequent to implementation of the special clean cycle. (b) Estimate the fab wafer throughput subsequent to implementation of the special clean cycle. (c) Estimate the % increase (or decrease) in die output if the special clean cycle is implemented. (d) Find the lower limit on the amount of particle reduction resulting from the special clean cycle in order for implementation of the special clean cycle not to reduce die output. 17

IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part II of Course Prof. Leachman Fall, 2017

IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part II of Course Prof. Leachman Fall, 2017 IEOR 130 Methods of Manufacturing Improvement Practice Examination Problems Part II of Course Prof. Leachman Fall, 2017 1. For a particular semiconductor product, the customer orders received to date are

More information

IEOR 130 Methods of Manufacturing Improvement Fall, 2016, Prof. Leachman Homework Assignment #5, Due Thursday, Oct. 6, 2016

IEOR 130 Methods of Manufacturing Improvement Fall, 2016, Prof. Leachman Homework Assignment #5, Due Thursday, Oct. 6, 2016 IEOR 130 Methods of Manufacturing Improvement Fall, 2016, Prof. Leachman Homework Assignment #5, Due Thursday, Oct. 6, 2016 1. The management of a wafer fabrication facility is trying to sort out how much

More information

Closed-Loop Measurement of Equipment Efficiency and Equipment Capacity. Prof. Rob Leachman University of California at Berkeley

Closed-Loop Measurement of Equipment Efficiency and Equipment Capacity. Prof. Rob Leachman University of California at Berkeley Closed-Loop Measurement of Equipment Efficiency and Equipment Capacity Prof. Rob Leachman University of California at Berkeley Introduction Important concept from "TPM" paradigm: Overall Equipment Efficiency

More information

Before Reliability-Centered Maintenance. The Manufacturing Enterprise

Before Reliability-Centered Maintenance. The Manufacturing Enterprise Before Reliability-Centered Maintenance. The Manufacturing Enterprise By Alexander D. Douglas Jr., Manager of Equipment Reliability and Maintenance, JDS Uniphase, Flex Products Santa Rosa, California Key

More information

(4 Marks) (b) Enumerate the industrial applications of linear programming.

(4 Marks) (b) Enumerate the industrial applications of linear programming. 47 PAPER 5 : COST ACCOUNTING & COST SYSTEMS MAY 2003 Question No.1 is compulsory Answer any four questions from the rest. Working notes should form part of the answer. Make assumptions wherever necessary

More information

for higher reliability by lower costs

for higher reliability by lower costs Service Strategies for higher reliability by lower costs Joerg Recklies Director Engineering Infineon Dresden GmbH Content Todays Challenges Existing Strategies Reliability Centered Optimization / Review

More information

PRACTICE PROBLEM SET Topic 1: Basic Process Analysis

PRACTICE PROBLEM SET Topic 1: Basic Process Analysis The Wharton School Quarter II The University of Pennsylvania Fall 1999 PRACTICE PROBLEM SET Topic 1: Basic Process Analysis Problem 1: Consider the following three-step production process: Raw Material

More information

DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS

DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS www.wipro.com DRIVING SEMICONDUCTOR MANUFACTURING BUSINESS PERFORMANCE THROUGH ANALYTICS Manoj Ramanujam Table of Contents 03... Introduction 03... Semiconductor Industry Overview 05... Data Sources and

More information

IT 470a Six Sigma Chapter X

IT 470a Six Sigma Chapter X Chapter X Lean Enterprise IT 470a Six Sigma Chapter X Definitions Raw Materials component items purchased and received from suppliers WIP work in process, items that are in production on the factory floor

More information

Managerial Accounting Prof. Dr. Varadraj Bapat Department of School of Management Indian Institute of Technology, Bombay

Managerial Accounting Prof. Dr. Varadraj Bapat Department of School of Management Indian Institute of Technology, Bombay Managerial Accounting Prof. Dr. Varadraj Bapat Department of School of Management Indian Institute of Technology, Bombay Lecture - 31 Standard Costing - Material, Labor and Overhead Variances Dear students,

More information

Prof. Rob Leachman University of California at Berkeley Leachman & Associates LLC

Prof. Rob Leachman University of California at Berkeley Leachman & Associates LLC Cycle Time Management Prof. Rob Leachman University of California at Berkeley Leachman & Associates LLC October 25, 2016 Oct. 26, 2016 Leachman - Cycle Time 1 Agenda Definitions of cycle time Measures

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

COST OF OWNERSHIP (COO) FOR OPTOELECTRONIC MANUFACTURING EQUIPMENT

COST OF OWNERSHIP (COO) FOR OPTOELECTRONIC MANUFACTURING EQUIPMENT COST OF OWNERSHIP (COO) FOR OPTOELECTRONIC MANUFACTURING EQUIPMENT Sid Ragona, Ph.D. Burleigh Instruments, Inc. 7647 Main Street Fishers, Victor NY 14564-8909 SRagona@burleigh.com ABSTRACT To increase

More information

Keeping Your CMP Slurry From Being A Pain in the As-Probed Die Yield. Robert L. Rhoades (Entrepix) Brian Orzechowski and Jeff Wilmer (DivInd, LLC)

Keeping Your CMP Slurry From Being A Pain in the As-Probed Die Yield. Robert L. Rhoades (Entrepix) Brian Orzechowski and Jeff Wilmer (DivInd, LLC) Keeping Your CMP Slurry From Being A Pain in the As-Probed Die Yield Robert L. Rhoades (Entrepix) Brian Orzechowski and Jeff Wilmer (DivInd, LLC) Presentation for the Levitronix Conference February 1,

More information

Integrating Cost, Capacity, and Simulation Analysis

Integrating Cost, Capacity, and Simulation Analysis Integrating Cost, Capacity, and Simulation Analysis Dr. Frank Chance Dr. Jennifer Robinson FabTime Inc. 325M Sharon Park Drive #219, Menlo Park, CA 94025 www.fabtime.com 1. Introduction In this article,

More information

Process Performance and Quality Chapter 6

Process Performance and Quality Chapter 6 Process Performance and Quality Chapter 6 How Process Performance and Quality fits the Operations Management Philosophy Operations As a Competitive Weapon Operations Strategy Project Management Process

More information

Process Performance and Quality

Process Performance and Quality Process Performance and Quality How Process Performance and Quality fits the Operations Management Philosophy Chapter 6 Operations As a Competitive Weapon Operations Strategy Project Management Process

More information

Process Development and Process Integration of Semiconductor Devices

Process Development and Process Integration of Semiconductor Devices Process Development and Process Integration of Semiconductor Devices Mark T. Tinker, Ph.D. Department of Electrical Engineering University of Texas at Dallas Process Development Activities Worked in Process

More information

Process Control and Yield Management Strategies in HBLED Manufacturing

Process Control and Yield Management Strategies in HBLED Manufacturing Process Control and Yield Management Strategies in HBLED Manufacturing Srini Vedula, Mike VondenHoff, Tom Pierson, Kris Raghavan KLA-Tencor Corporation With the explosive growth in HBLED applications including

More information

Report 1. B. Starting Wafer Specs Number: 10 Total, 6 Device and 4 Test wafers

Report 1. B. Starting Wafer Specs Number: 10 Total, 6 Device and 4 Test wafers Aaron Pederson EE 432 Lab Dr. Meng Lu netid: abp250 Lab instructor: Yunfei Zhao Report 1 A. Overview The goal of this lab is to go through the semiconductor fabrication process from start to finish. This

More information

Customer Support: Leveraging Value of Ownership

Customer Support: Leveraging Value of Ownership Customer Support: Leveraging Value of Ownership Bernard Carayon SVP Customer Support WW Analyst Day, 30 September 2004 / Slide 1 Agenda! Customer Support main activities! Worldwide Organization and installed

More information

Online Student Guide Total Productive Maintenance

Online Student Guide Total Productive Maintenance Online Student Guide Total Productive Maintenance OpusWorks 2016, All Rights Reserved 1 Table of Contents LEARNING OBJECTIVES... 2 INTRODUCTION... 2 MEETING CUSTOMER DEMAND... 2 UNPLANNED DOWNTIME... 3

More information

TFS PRODUCTION SOLUTIONS. TFS Production Solutions. For thin-film solar modules

TFS PRODUCTION SOLUTIONS. TFS Production Solutions. For thin-film solar modules TFS PRODUCTION SOLUTIONS TFS Production Solutions For thin-film solar modules 2 TFS PRODUCTION SOLUTIONS MANZ AG 3 TFS PRODUCTION SOLUTIONS MANZ AG GERMAN ENGINEERING INTERNATIONALLY STAGED GLOBAL REFERENCES

More information

CONTROL. Chapter 3-7. Cost of Quality Institute of Industrial Engineers 3-7-1

CONTROL. Chapter 3-7. Cost of Quality Institute of Industrial Engineers 3-7-1 Chapter 3-7 Cost of Quality 2011 Institute of Industrial Engineers 3-7-1 Cost of Quality Topics Introduction Understanding Quality Cost Categories and Models Hidden Costs Benefits of a Cost of Quality

More information

There are three options available for coping with variations in demand:

There are three options available for coping with variations in demand: Module 3E10 Operations management for Engineers - Crib 1 (a) Define the theoretical capacity of a manufacturing line. Explain why the actual capacity of a manufacturing line is often different from its

More information

Cost and Yield Analysis of RDL Creation in Fan-out Wafer Level Packaging

Cost and Yield Analysis of RDL Creation in Fan-out Wafer Level Packaging Cost and Analysis of RDL Creation in Fan-out Wafer Level Packaging Amy P. Lujan SavanSys Solutions LLC Austin, TX, 78733, USA amyl@savansys.com Abstract This paper will break down the cost of the activities

More information

Hierarchy of Dealer Knowledge

Hierarchy of Dealer Knowledge Hierarchy of Dealer Knowledge On Becoming a More Effective Dealer Manager By Walter J. McDonald I -- The Transaction Level Why do so many dealer sales and operations managers appear to be stuck at the

More information

TFS PRODUCTION SOLUTIONS. TFS Production Solutions. For thin-film solar modules

TFS PRODUCTION SOLUTIONS. TFS Production Solutions. For thin-film solar modules TFS PRODUCTION SOLUTIONS TFS Production Solutions For thin-film solar modules 2 TFS PRODUCTION SOLUTIONS MANZ AG 3 TFS PRODUCTION SOLUTIONS MANZ AG GERMAN ENGINEERING INTERNATIONALLY STAGED GLOBAL REFERENCES

More information

Waiting Line Models. 4EK601 Operations Research. Jan Fábry, Veronika Skočdopolová

Waiting Line Models. 4EK601 Operations Research. Jan Fábry, Veronika Skočdopolová Waiting Line Models 4EK601 Operations Research Jan Fábry, Veronika Skočdopolová Waiting Line Models Examples of Waiting Line Systems Service System Customer Server Doctor s consultancy room Patient Doctor

More information

Lecture Notes on Statistical Quality Control

Lecture Notes on Statistical Quality Control STATISTICAL QUALITY CONTROL: The field of statistical quality control can be broadly defined as those statistical and engineering methods that are used in measuring, monitoring, controlling, and improving

More information

Overall Equipment Efficiency (OEE)

Overall Equipment Efficiency (OEE) Research on Overall Equipment Efficiency Overall Equipment Efficiency (OEE) Prepared by: ASECO Integrated Systems Office Locations including; Oakville, ON, Canada 905/339-0059 Philadelphia, PA, USA 215/830-1420

More information

Total Productive Maintenance OVERVIEW

Total Productive Maintenance OVERVIEW Total Productive Maintenance OVERVIEW Aims and Objectives Target Audience : Senior Management Purpose of Module : To understand the need for TPM and the commitment required to achieve an effective system..

More information

EVALUATION OF CLUSTER TOOL THROUGHPUT FOR THIN FILM HEAD PRODUCTION

EVALUATION OF CLUSTER TOOL THROUGHPUT FOR THIN FILM HEAD PRODUCTION Proceedings of the 1999 Winter Simulation Conference P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. EVALUATION OF CLUSTER TOOL THROUGHPUT FOR THIN FILM HEAD PRODUCTION Eric J.

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

Solutions for Agile Semiconductor Manufacturing. Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009

Solutions for Agile Semiconductor Manufacturing. Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009 Solutions for Agile Semiconductor Manufacturing Sanjiv Mittal Applied Global Services Applied Materials October 6, 2009 What Is Agile Semiconductor Manufacturing? Agile (dictionary) 1: marked by ready

More information

Lessons Learned from SEMATECH s Nanoimprint Program

Lessons Learned from SEMATECH s Nanoimprint Program Accelerating the next technology revolution Lessons Learned from SEMATECH s Nanoimprint Program Matt Malloy Lloyd C. Litt Mac Mellish 10/19/11 Copyright 2010 SEMATECH, Inc. SEMATECH, and the SEMATECH logo

More information

2015 EE410-LOCOS 0.5µm Poly CMOS Process Run Card Lot ID:

2015 EE410-LOCOS 0.5µm Poly CMOS Process Run Card Lot ID: STEP 0.00 - PHOTOMASK #0- ZERO LEVEL MARKS Starting materials is n-type silicon (5-10 ohm-cm). Add four test wafers labeled T1-T4. T1 and T2 will travel with the device wafers and get all of the processing

More information

Total Points = 110 possible (graded out of 100)

Total Points = 110 possible (graded out of 100) Lab Report 1 Table of Contents 1. Profiles & Layout (9 Points) 2. Process Procedures (20 points) 3. Calculations (36 Points) 4. Questions (35 Points) 5. Bonus Questions (10 Points) Total Points = 110 possible

More information

Impact of Quality on Cost Economics for In-Circuit and Functional Test

Impact of Quality on Cost Economics for In-Circuit and Functional Test Impact of Quality on Cost Economics for In-Circuit and Functional Test Each step in the production process for a printed circuit board assembly (PCBA) or final product requires a sustained minimum standard

More information

IMPROVEMENT OF A MANUFACTURING PROCESS FOR SUSTAINABILITY USING MODELING AND SIMULATION Thesis

IMPROVEMENT OF A MANUFACTURING PROCESS FOR SUSTAINABILITY USING MODELING AND SIMULATION Thesis IMPROVEMENT OF A MANUFACTURING PROCESS FOR SUSTAINABILITY USING MODELING AND SIMULATION 4162 Thesis Submitted by: Pol Pérez Costa Student #: 7753145 Thesis Advisor: Qingjin Peng Date Submitted: April 3

More information

The Tri-Star Simulation Model

The Tri-Star Simulation Model The Tri-Star Simulation Model After Mark Redmond and his former colleague, Hal Brookings, finished a nice dinner at Mark s country club and a lengthy discussion of Hal s experiences with lean manufacturing,

More information

Getting the Best 300mm Fab Using the Right Design and Build Process. Presented on SEMI ITRS

Getting the Best 300mm Fab Using the Right Design and Build Process. Presented on SEMI ITRS Getting the Best 300mm Fab Using the Right Design and Build Process Presented on SEMI ITRS Agenda Introduction Objectives of Fab Design Design Process Overview From process flow to toolset Resource Modeling

More information

REDUCING MANUFACTURING CYCLE TIME OF WAFER FAB WITH SIMULATION

REDUCING MANUFACTURING CYCLE TIME OF WAFER FAB WITH SIMULATION Computer Integrated Manufacturing. J. Winsor, AI Sivakumar and R Gay, eds. World Scientific, (July 1995), pp 889-896. REDUCING MANUFACTURING CYCLE TIME OF WAFER FAB WITH SIMULATION Giam Kim Toh, Ui Wei

More information

IEOR 130 Factory Floor Scheduling Prof. Robert C. Leachman May, 2017

IEOR 130 Factory Floor Scheduling Prof. Robert C. Leachman May, 2017 IEOR 130 Factory Floor Scheduling Prof. Robert C. Leachman May, 2017 1. Introduction The primary purpose of factory floor scheduling is to ensure the factory production plan is fulfilled. As described

More information

Optimal network topology and reliability indices to be used in the design of power distribution networks in oil and gas plants *

Optimal network topology and reliability indices to be used in the design of power distribution networks in oil and gas plants * Optimal network topology and reliability indices to be used in the design of power distribution networks in oil and gas plants * R Naidoo and EJ Manning University of Pretoria, Pretoria, South Africa ABSTRACT:

More information

EBM EVIDENCE-BASED MANAGEMENT GUIDE

EBM EVIDENCE-BASED MANAGEMENT GUIDE EBM EVIDENCE-BASED MANAGEMENT GUIDE Scrum.org August 2018 How to improve business results by measuring business value and using empirical management OVERVIEW Organizations adopting agile product delivery

More information

Only focused on production itself, not the infrastructure to support the production

Only focused on production itself, not the infrastructure to support the production A Self Assessment Tool For Implementing Overall Equipment Effectiveness Systems A strategic advantage for any manufacturing enterprise can be found within its data. Data can enable you to become an information-driven

More information

Flow and Pull Systems

Flow and Pull Systems Online Student Guide Flow and Pull Systems OpusWorks 2016, All Rights Reserved 1 Table of Contents LEARNING OBJECTIVES... 4 INTRODUCTION... 4 BENEFITS OF FLOW AND PULL... 5 CLEARING ROADBLOCKS... 5 APPROACH

More information

Cork Regional Technical College

Cork Regional Technical College Cork Regional Technical College Bachelor of Engineering in Chemical and Process Engineering - Stage 4 Summer 1996 CE 4.8 - DECISION ANALYSIS AND OPERATIONS RESEARCH (Time: 3 Hours) Answer FOUR Questions.

More information

Ch 19 Flexible Manufacturing Systems

Ch 19 Flexible Manufacturing Systems Ch 19 Flexible Manufacturing Systems Sections: 1. What is a Flexible Manufacturing System? 2. FMS Components 3. FMS Applications and Benefits 4. FMS Planning and Implementation Issues 5. Quantitative Analysis

More information

3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003

3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003 3.155J / 6.152J MICROELECTRONICS PROCESSING TECHNOLOGY TAKE-HOME QUIZ FALL TERM 2003 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss

More information

History of Parylene. The Parylene Deposition Process

History of Parylene. The Parylene Deposition Process History of Parylene Parylene development started in 1947, when Michael Szwarc discovered the polymer as one of the thermal decomposition products of a common solvent p-xylene at temperatures exceeding

More information

By: Adrian Chu, Department of Industrial & Systems Engineering, University of Washington, Seattle, Washington November 12, 2009.

By: Adrian Chu, Department of Industrial & Systems Engineering, University of Washington, Seattle, Washington November 12, 2009. OPT Report By: Adrian Chu, Department of Industrial & Systems Engineering, University of Washington, Seattle, Washington 98195. November 12, 2009. The Goal Every manufacturing company has one goal to make

More information

TenStep Project Management Process Summary

TenStep Project Management Process Summary TenStep Project Management Process Summary Project management refers to the definition and planning, and then the subsequent management, control, and conclusion of a project. It is important to recognize

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Wolfgang Scholl. Infineon Technologies Dresden Koenigsbruecker Strasse Dresden, GERMANY

Wolfgang Scholl. Infineon Technologies Dresden Koenigsbruecker Strasse Dresden, GERMANY Proceedings of the 28 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. COPING WITH TYPICAL UNPREDICTABLE INCIDENTS IN A LOGIC FAB Wolfgang Scholl

More information

The Cost of Poor Quality (COPQ) Speaking the Language of Money

The Cost of Poor Quality (COPQ) Speaking the Language of Money The Cost of Poor Quality (COPQ) Speaking the Language of Money Background and Satisfied Clients Walter Tighe President/Owner of Sustaining Edge Solutions, Inc. Management Consulting & Training Firm Founded

More information

Quality Handbook. October, 2017 Memory Semiconductor Samsung Electronics, Ltd.

Quality Handbook. October, 2017 Memory Semiconductor Samsung Electronics, Ltd. Quality Handbook October, 2017 Memory Semiconductor Samsung Electronics, Ltd. Caution for Document License THIS DOCUMENT AND ALL INFORMATION PROVIDED HEREIN (COLLECTIVELY, INFORMATION ) IS PROVIDED ON

More information

Accounting Technicians Ireland 2 nd Year Examination: Summer 2016 Paper: MANAGEMENT ACCOUNTING

Accounting Technicians Ireland 2 nd Year Examination: Summer 2016 Paper: MANAGEMENT ACCOUNTING Accounting Technicians Ireland 2 nd Year Examination: Summer 2016 Paper: MANAGEMENT ACCOUNTING Monday 16 May 2016 2.30 p.m. to 5.30 p.m. INSTRUCTIONS TO CANDIDATES In this examination paper the symbol

More information

OPERATİONS & LOGİSTİCS MANAGEMENT İN AİR TRANSPORTATİON

OPERATİONS & LOGİSTİCS MANAGEMENT İN AİR TRANSPORTATİON OPERATİONS & LOGİSTİCS MANAGEMENT İN AİR TRANSPORTATİON PROFESSOR DAVİD GİLLEN (UNİVERSİTY OF BRİTİSH COLUMBİA )& PROFESSOR BENNY MANTİN (UNİVERSİTY OF WATERLOO) Istanbul Technical University Air Transportation

More information

22 ways to get the most out of OEE and lean manufacturing disciplines

22 ways to get the most out of OEE and lean manufacturing disciplines automation technology & consulting 22 ways to get the most out of OEE and lean manufacturing disciplines Overall equipment effectiveness (OEE) and lean manufacturing have won many converts. These two disciplines

More information

Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 28 Basic elements of JIT, Kanban systems In this lecture we see some

More information

EBM EVIDENCE-BASED MANAGEMENT GUIDE

EBM EVIDENCE-BASED MANAGEMENT GUIDE EBM EVIDENCE-BASED MANAGEMENT GUIDE Scrum.org January 2019 How to continuously improve business results by measuring business value and using empirical management OVERVIEW Organizations adopting agile

More information

Project Quality Management

Project Quality Management 1 Project Quality Management Unit 8 Eng.elsaka09@gmail.com Project Quality Management Includes the processes and activities of the performing organization that determine quality policies, objectives, and

More information

9.7 Summary. 9.8 Training Cases. 394 Business Process Modeling, Simulation and Design

9.7 Summary. 9.8 Training Cases. 394 Business Process Modeling, Simulation and Design 394 Business Process Modeling, Simulation and Design experience more than 14 min of cycle time under the new design, which more than satisfies the goal of at most 30 min. Furthermore, no type 3 patient

More information

Microelectronic Device Instructional Laboratory. Table of Contents

Microelectronic Device Instructional Laboratory. Table of Contents Introduction Process Overview Microelectronic Device Instructional Laboratory Introduction Description Flowchart MOSFET Development Process Description Process Steps Cleaning Solvent Cleaning Photo Lithography

More information

EBM EVIDENCE-BASED MANAGEMENT GUIDE

EBM EVIDENCE-BASED MANAGEMENT GUIDE EBM EVIDENCE-BASED MANAGEMENT GUIDE Scrum.org September 2018 How to continuously improve business results by measuring business value and using empirical management OVERVIEW Organizations adopting agile

More information

Online Course Manual By Craig Pence. Module 12

Online Course Manual By Craig Pence. Module 12 Online Course Manual By Craig Pence Copyright Notice. Each module of the course manual may be viewed online, saved to disk, or printed (each is composed of 10 to 15 printed pages of text) by students enrolled

More information

Enterprise Asset Management STREAMLINE FACILITY MAINTENANCE OPERATIONS & REDUCE COSTS

Enterprise Asset Management STREAMLINE FACILITY MAINTENANCE OPERATIONS & REDUCE COSTS Enterprise Asset Management STREAMLINE FACILITY MAINTENANCE OPERATIONS & REDUCE COSTS Dematic Sprocket ENTERPRISE ASSET MANAGER (EAM) Dematic Sprocket is the facility solution for maximizing the productivity

More information

Improving material-specific dispense processes for low-defect coatings

Improving material-specific dispense processes for low-defect coatings Improving material-specific dispense processes for low-defect coatings Nick Brakensiek *a, Jennifer Braggin b, John Berron a, Raul Ramirez b, Karl Anderson b, Brian Smith a a Brewer Science, Inc., 2401

More information

Precision-guided Equipment Maintenance in a Modern Foundry Case Study Co-Authors - Dimitry Gurevich, Ariel Meyuhas, Marino F.

Precision-guided Equipment Maintenance in a Modern Foundry Case Study Co-Authors - Dimitry Gurevich, Ariel Meyuhas, Marino F. Precision-guided Equipment Maintenance in a Modern Foundry Case Study Co-Authors - Dimitry Gurevich, Ariel Meyuhas, Marino F. Arturo MAX I.E.G. LLC 180 Old Tappan Rd Old Tappan NJ 07675, (201) 750-7888,

More information

Flexible Manufacturing systems. Lec 4. Dr. Mirza Jahanzaib

Flexible Manufacturing systems. Lec 4. Dr. Mirza Jahanzaib Flexible Manufacturing systems AB A. Bottleneck kmdl Model Lec 4 Dr. Mirza Jahanzaib Where to Apply FMS Technology The plant presently either: Produces parts in batches or Uses manned GT cells and management

More information

SNAP-ON INCORPORATED STANDARD ON FACILITY SPECIFIC REQUIREMENTS

SNAP-ON INCORPORATED STANDARD ON FACILITY SPECIFIC REQUIREMENTS SNAP-ON INCORPORATED STANDARD ON FACILITY SPECIFIC REQUIREMENTS Approval: Date: SEQ80.01.doc Page 1 of 15 Rev. 05/01/05 0.0 Introduction and overview The QFS system document (Tier I) includes both corporate

More information

Report 2. Aaron Pederson EE 432 Lab Dr. Meng Lu netid: abp250 Lab instructor: Yunfei Zhao. Steps:

Report 2. Aaron Pederson EE 432 Lab Dr. Meng Lu netid: abp250 Lab instructor: Yunfei Zhao. Steps: Aaron Pederson EE 432 Lab Dr. Meng Lu netid: abp250 Lab instructor: Yunfei Zhao Report 2 A. Overview This section comprised of source and drain construction for the NMOS and PMOS. This includes two different

More information

Dollarizing Maintenance

Dollarizing Maintenance Dollarizing Maintenance IF YOU WANT TO TAKE MAINTENANCE TO THE NEXT LEVEL AT YOUR FACILITY LEARN TO EXPRESS YOUR OPERATION S IMPACT IN DOLLARS. A Publication of Vesta Partners Table of Contents Introduction

More information

CH (8) Hot Topics. Quality Management

CH (8) Hot Topics. Quality Management CH (8) Hot Topics Quality Management 1 CH ( 8 ) Quality Management 2 Introduction This knowledge area requires you to understand three processes, as described in the book PMP : Plan Quality Management,

More information

THE COMMANDER NAVY REGION, SOUTHWEST (CNRSW) HAZARDOUS MATERIALS (HAZMAT) OPERATIONS QUALITY ASSURANCE SURVEILLANCE PLAN (QASP) 20 June 2000

THE COMMANDER NAVY REGION, SOUTHWEST (CNRSW) HAZARDOUS MATERIALS (HAZMAT) OPERATIONS QUALITY ASSURANCE SURVEILLANCE PLAN (QASP) 20 June 2000 THE COMMANDER NAVY REGION, SOUTHWEST (CNRSW) HAZARDOUS MATERIALS (HAZMAT) OPERATIONS QUALITY ASSURANCE SURVEILLANCE PLAN (QASP) 20 June 2000 TABLE OF CONTENTS 1.0 INTRODUCTION 1 1.1 PURPOSE... 1 2.0 OVERVIEW.2

More information

SPECIAL CONTROL CHARTS

SPECIAL CONTROL CHARTS INDUSTIAL ENGINEEING APPLICATIONS AND PACTICES: USES ENCYCLOPEDIA SPECIAL CONTOL CHATS A. Sermet Anagun, PhD STATEMENT OF THE POBLEM Statistical Process Control (SPC) is a powerful collection of problem-solving

More information

Decision Making Using Cost Concepts and CVP Analysis

Decision Making Using Cost Concepts and CVP Analysis 2 Decision Making Using Cost Concepts and CVP Analysis Question 1 Panchwati Cement Ltd. produces 43 grade cement for which the company has an assured market. The output for 2004 has been budgeted at 1,80,000

More information

Time study is not rocket science, but it is possible to get in big-time trouble with incorrect application. Briefly,

Time study is not rocket science, but it is possible to get in big-time trouble with incorrect application. Briefly, Jackson Productivity Research Inc. 843-422-1298 Contact me for help with your project. Also, for on-line articles on this and similar subjects, click on http://jacksonproductivity.com/artts.htm http://jacksonproductivity.com

More information

Family-Based Scheduling Rules of a Sequence-Dependent Wafer Fabrication System

Family-Based Scheduling Rules of a Sequence-Dependent Wafer Fabrication System IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 16, NO. 1, FEBRUARY 2003 15 Family-Based Scheduling Rules of a Sequence-Dependent Wafer Fabrication System Ching-Chin Chern and Yu-Lien Liu Abstract

More information

WHITE PAPER. spencermetrics LLC Three Giffard Way, Melville, NY p:

WHITE PAPER. spencermetrics LLC Three Giffard Way, Melville, NY p: WHITE PAPER MEASURE ANALYZE W p IMPROVE Operational Equipment Effectiveness spencermetrics CONNECT When you think of printing as the production of printed objects whether those objects are documents, labels,

More information

Operation and supply chain management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras

Operation and supply chain management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Operation and supply chain management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture - 37 Transportation and Distribution Models In this lecture, we

More information

A WIP Balance Study from Viewpoint of Tool Group in a Wafer Fab

A WIP Balance Study from Viewpoint of Tool Group in a Wafer Fab Integrationsaspekte der Simulation: Technik, Organisation und Personal Gert Zülch & Patricia Stock (Hrsg.) Karlsruhe, KIT Scientific Publishing 2010 A WIP Balance Study from Viewpoint of Tool Group in

More information

Intermediate Systems Acquisitions Course. The Manufacturing Process

Intermediate Systems Acquisitions Course. The Manufacturing Process The Manufacturing Process Historically, for hardware-intensive programs, production and deployment costs account for about one third of the total life cycle cost of a system. These ratios will vary for

More information

EE432/532 CYMOS PROCESS PWELL LITHOGRAPHY AND DIFFUSION

EE432/532 CYMOS PROCESS PWELL LITHOGRAPHY AND DIFFUSION EE432/532 CYMOS PROCESS PWELL LITHOGRAPHY AND DIFFUSION [Document subtitle] GROUP 4 GROUP 4 (TUESDAY AFTERNOON) GROUP LEADER: ANDREW MCNEIL GROUP MEMBERS: WENG HOONG LOO MARIO PEREZ ZHIHAO LIAO LAB INSTRUCTOR

More information

MTAT Business Process Management (BPM) (for Masters of IT) Lecture 4: Quantitative Process Analysis

MTAT Business Process Management (BPM) (for Masters of IT) Lecture 4: Quantitative Process Analysis MTAT.03.231 Business Process Management (BPM) (for Masters of IT) Lecture 4: Quantitative Process Analysis Marlon Dumas marlon.dumas ät ut. ee Business Process Analysis Techniques Qualitative analysis

More information

Responsibility for a lifetime. after-sale service

Responsibility for a lifetime. after-sale service Service & Parts after-sale service When a customer needs us, we re there. Together with our partners, we ve built a worldwide service and parts network of the highest calibre. Maintenance agreements make

More information

Introduction to Computer Integrated Manufacturing Environment

Introduction to Computer Integrated Manufacturing Environment Introduction to Computer Integrated Manufacturing Environment I. What are the problems facing manufacturing industries today? External pressures: *Technological advancements *Increased cost, quality, and

More information

QUALITY ASSURANCE IN AN MDRD

QUALITY ASSURANCE IN AN MDRD QUALITY ASSURANCE IN AN MDRD MAINTENANCE AND PREVENTATIVE MAINTENANCE MDRD is a machine dependent department washers, pasteurizers, cart washer, sterilizer, ultrasonic, heat sealers, RO water systems All

More information

Measurement Systems Analysis

Measurement Systems Analysis Measurement Systems Analysis Components and Acceptance Criteria Rev: 11/06/2012 Purpose To understand key concepts of measurement systems analysis To understand potential sources of measurement error and

More information

Aluminium & Non-Ferrous Production Optimization Fast, Reliable, Efficient

Aluminium & Non-Ferrous Production Optimization Fast, Reliable, Efficient Optical Surface Inspection for Aluminium & Non-Ferrous Production Optimization Fast, Reliable, Efficient Leading the Way in Aluminium & Non-Ferrous Process Improvement BEYOND INSPECTION MORE Than Just

More information

PHYSICIAN SERVICES ALIGN. IMPROVE. ENGAGE. SUSTAIN.

PHYSICIAN SERVICES ALIGN. IMPROVE. ENGAGE. SUSTAIN. ALIGN. IMPROVE. ENGAGE. SUSTAIN. Burning Questions What do you want to know more about that will contribute significantly to your success?" 2 Content Creative Tension Align and Deploy the Organization

More information

Increasing Your Competitiveness in PCB Assembly

Increasing Your Competitiveness in PCB Assembly Increasing Your Competitiveness in PCB Assembly This article offers a seven step model for analyzing and integrating production systems. This phased approach can reduce costs, improve on-time delivery,

More information

KEMET Electronics Italia. December 7, 2011

KEMET Electronics Italia. December 7, 2011 Development of fb Battery Manufacturing Technologies Joint EC / European Green Cars Initiative Workshop 2011 Bruxelles 7 December 2011 December 7, 2011 1 Corporate Statistics Headquarters: Simpsonville,

More information

DEVELOPMENT OF TPM IMPLEMENTATION PLAN IN SWITCHGEAR & ENGINEERING COMPANY

DEVELOPMENT OF TPM IMPLEMENTATION PLAN IN SWITCHGEAR & ENGINEERING COMPANY Proceedings of the International Conference on Mechanical Engineering 2003 (ICME2003) 26-28 December 2003, Dhaka, Bangladesh ICME03-AM-32 DEVELOPMENT OF TPM IMPLEMENTATION PLAN IN SWITCHGEAR & ENGINEERING

More information

CenterPoint Oklahoma Demand Programs Annual Report 2016

CenterPoint Oklahoma Demand Programs Annual Report 2016 CenterPoint Oklahoma Demand Programs Annual Report 2016 March 31, 2017 Executive Summary... 1 165:45-23-7(c)(1): Demand Programs by Category... 5 165:45-23-7(c)(2): Programs and Date Started... 6 165:45-23-7(c)(3):

More information

2012 MPS Qualify Exam

2012 MPS Qualify Exam 2012 MPS Qualify Exam The examination will be four hours long. There will be eight questions in all. Students must select 7 out of 8 questions to answer. The exam is open book and open notes. The students

More information

Eclipse Production Management Software Training

Eclipse Production Management Software Training Eclipse Production Management Software Training Eclipse & Pathfinder Training Schedule Tuesday 8:30am 9:00am 10:20am - 10:30am 11:45am - 12:30pm 2:20pm - 2:30pm Introduction Training begins Break Lunch

More information