Marine Biogeochemical Modeling

Size: px
Start display at page:

Download "Marine Biogeochemical Modeling"

Transcription

1 Marine Biogeochemical Modeling Scott Doney (WHOI) NCAR ASP Colloquium 2009 Talk Outline Science Motivation Philosophy of Modeling Model Construction Evaluation Against Data Supported by:

2 Ocean Biological Pump Combined biological processes which transfer organic matter and associated elements to depth -pathway for rapid C sequestration Remove C from surface ocean & atmosphere -turn off bio pump and 200 ppmv increase atm. CO 2 Anthropogenic CO 2 uptake currently controlled by ocean circulation For overview on scope and history of ocean biogeochemical models see: Doney, S.C., K. Lindsay, J.K. Moore, 2003: Global ocean carbon cycle modeling, Ocean Biogeochemistry, ed. M. Fasham, Springer,

3 Dissolved Inorganic Carbon Dissolved Oxygen Distributions of ocean carbon, oxygen & nutrients driven by circulation and sinking & respiration/ remineralization of sinking organic particles

4 Rising Atmospheric CO 2 Ice core data -strong evidence for human causation -highest level in at least last million years Thus human beings are now carrying out a large scale geophysical experiment Revelle and Suess, Tellus, 1957

5 Fate of Anthropogenic CO 2 Emissions ( ) 1.5 Pg C y Pg y -1 Atmosphere 46% Pg C y Pg y -1 Land 29% 2.3 Pg y -1 Oceans 26% Canadell et al. 2007, PNAS;

6 Anthropogenic CO 2 & Ocean Acidification Doney et al. Ann. Rev. Mar. Res Anthropogenic CO 2 Column Inventories (mol m -2 ) Sabine et al. Science 2004

7 CO 2 Effects on CaCO 3 Saturation Ω (aragonite) Ω= [Ca 2+ ][CO 3 2- ] / K sp Δ[CO 3 2- ] = [CO 3 2- ] obs - [CO 3 2- ] sat Present 2100 Orr et al. Nature (2005)

8 Future Climate Projections Major uncertainties: -CO 2 emissions (social, political, economic, geological) -atmospheric CO 2 (carbon sinks, climate-carbon feedbacks) -climate sensitivities (clouds, water vapor) IPCC (2007)

9 Frolicher et al. Global Biogeochem. Cycles 2009

10 Coupled Model Uncertainties Strength of Ocean CO 2 Sink Sensitivity to Climate Warming 20 years of current carbon emissions Friedlingstein et al. J Climate 2006

11 Climate Change Impacts on Primary Productivity Steinacher et al. Biogeosciences Disc. 2009

12 Ocean Climate Responses & Feedbacks CHANGING CLIMATE Higher atmosphere CO 2, altered ocean properties sea-ice & circulation OCEAN CO 2 SINK Ocean acidification BIODIVERSITY BIOGEOGRAPHY PHYSIOLOGY ECOSYSTEM SERVICES Fisheries, tourism, shore protection, BIOGEOCHEMISTRY Carbon & nutrient fluxes, CO 2 & other greenhouse gases ECOSYSTEMS Food webs, energy flow

13 Ocean Climate Responses & Feedbacks OCEAN MITIGATION Ocean iron fertilization, direct CO 2 injection CHANGING CLIMATE Higher atmosphere CO 2, altered ocean properties sea-ice & circulation OCEAN CO 2 SINK Ocean acidification BIODIVERSITY BIOGEOGRAPHY PHYSIOLOGY ECOSYSTEM SERVICES Fisheries, tourism, shore protection, BIOGEOCHEMISTRY Carbon & nutrient fluxes, CO 2 & other greenhouse gases ECOSYSTEMS Food webs, energy flow Doney et al. Deep-Sea Res. II 2009

14 "I am never content until I have constructed a mechanical model of the subject I am studying. If I succeed in making one, I understand; otherwise I do not. - Lord Kelvin "People don't understand the earth, but they want to, so they build a model, and then they have two things they don't understand, - Gerard Roe in The Whale and the Supercomputer by C. Wohlforth Data Complex models Simple models

15 The Interdisciplinary Conundrum Physics (relatively) simple set of (mostly) known governing equations (Navier-Stokes) => complex phenomenon unresolved scales Chemistry mass balance equations chemical fields integrate over time/space variability don t uniquely identify process/mechanism Biology information as stories and conceptual pictures historical/evolutionary contingency no biological Navier-Stokes aggregate complicated dynamics across multiplescales (genes, cells, populations, ecosystems) Humans

16 Why do we build/use models? -Quantitative dynamical framework Are different data sets, rate estimates consistent? -Design of experiments & observing systems What, where and when do we sample? -Hypothesis testing If we add or change X, what happens? -Forecasting What will the ocean look like at some point in the future? -Solving for unknown parameters and rates Given things we can measure, can we estimate can we estimate properties that are difficult to measure?

17 Stocks versus Rates C dc/dt Estimated from data Unknowns

18 What is a model? -regression curves variable Y is a function of other variables X and regression parameters p: Y=f(variables, parameters) Chl = p 0 + p 1 T -forward models (often time dependent) Integrate forward in time to find Y: dy/dt = circulation + f(variables, parameters, forcing) d Phyto /dt = circulation + µ*phyto*(1-e -αe/µ ) -λphyto -inverse models Invert the problem to find parameters from data: Parameters = f(circulation, data, forcing)

19 What is a model? (continued) -diagnostic versus prognostic models In diagnostic models, some variables may be prescribed based on observations: e.g., satellite chlorophyll => ecosystem model (no equation for dchl / dt) -data assimilation Combine model equations and observations in a dynamically consistent fashion e.g., weather prediction analysis = f(model forecast, observations) Prognostic, forward models needed to project into the future

20 From Word Problem to Equations Phytoplankton levels depends on nutrient inputs Perturbations relax back to some stable background level dp dt = µ 1 P 0 C P p dp/dt µ 0 >0 net growth Functional form Logistic model State variable (concentrations) P (mmol C/m 3 ) phytoplankton Parameters µ 0 (1/d) and C p (mmol C/m 3 ) P 0 C p P C p <0 net loss time

21 dp dt = µ N 0 k N + N Simple NPZ Model ( 1 e αe / µ 0 )P g P k P + P Z m P P Nutrient limitation Light limitation Grazing dz dt = ag P Z m Z Z k P + P Mortality dn dt = µ N αe / µ0 P 0 ( 1 e )P + (1 a)g Z + m P P + m Z Z k N + N k P + P Three coupled ordinary differential equations Mass conservation

22 How do you estimate parameters and functional forms? Laboratory & field incubations P-E curves; nutrient uptake curves elemental stochiometry Comparative analysis allometric relationships Tuned or optimized against field data mismatch between parameters and data cross-site comparison Previous models

23 Adding Circulation Control volume u P in P t u P out P t + u P κ 2 P = RHS advection diffusion biological source/sink terms

24 Models have time/space scale limits Global Climate Model Regional Coastal Model Dickey (2003) Computational costs scale as (length) 3 to (length) 4 and (time) Typically get ~2-3 decades in space (more in time) Can not resolve all scales; parameterize sub-grid scale

25 Coupled Eco-biogeochemical Elements Physics (flow field; mixing) equations for resolved flow; level of approximation (e.g., primative equations; quasi-geostrophy) forcing (winds, heat & freshwater fluxes, light, tides) parameterization of unresolved scales (mixing) model architecture (e.g., horizontal vs. isopycnal) Chemistry (CO 2, O 2, nutrient fields) air-sea gas exchange elemental stoichiometries trace metal deposition and scavenging Biology primary production, respiration, remineralization community structure and succession bio-optics, etc.

26 State of the Art Model -Aggregate into trophic levels/functional groups -Rates/processes from limited culture/field studies -Many aspects empirically based -Data poor for validation (rates, grazing, loss terms)

27 Ocean ecology and biogeochemistry are (still) data-driven sciences data model model How do we avoid the trap of: false models tested by inadequate data John Steele

28 Assessing Model Skill Poor Model Skill Stow et al. J. Mar. Systems 2009

29 Good Model Skill Stow et al. J. Mar. Systems 2009

30 Model Modern Air-Sea CO 2 Flux Looks pretty good test Takahashi (2002) χ (chi) by eye Doney et al. Deep- Sea Res. II 2009 Doney et al. J. Mar. Systems 2009

31 Look at the magnitude & structure in model-data residuals Stow et al. J. Mar. Systems 2009 Ducklow et al. Ann. Rev. Mar. Res. 2009

32 Bias Correlation rms Error Doney et al. J. Mar. Systems 2009 Stow et al. J. Mar. Systems 2009

33 Taylor Diagram Taylor J. Geophys. Res. 2001

34 Ocean Carbon Model Intercomparison Project (OCMIP) Mostly analysis of tracer & ocean circulation skill; Data metrics for choosing subset of skillful models Matsumoto et al. (Geophys. Res. Lett, 2006)

35 Gregg et al. J. Mar. Systems 2009

36 Data Assimilation Methods (adjust model prognostic variables to data values as integrate forward in time) -nudging -variational methods -Kalman filter Parameter Optimization (adjust model parameters; multiple iterations of forward model) Friedrichs et al. J. Geophys. Res. Oceans 2007 Gregg et al. J. Mar. Systems 2001

37 Modeling Methods for Marine Environments David M. Glover, William J. Jenkins & Scott C. Doney -data analysis -modeling techniques -ocean examples and applications -MATLAB based demos and code -detailed web notes (and perhaps some day a book) (

38 J. Marine Systems Special Issue on Skill Assessment for Coupled Biological / Physical Models of Marine Systems Vol. 76, Issue 1-2, 2009

39

Intro to Biogeochemical Modeling Ocean & Coupled

Intro to Biogeochemical Modeling Ocean & Coupled Intro to Biogeochemical Modeling Ocean & Coupled Keith Lindsay, NCAR/CGD NCAR is sponsored by the National Science Foundation Lecture Outline 1) Large Scale Ocean Biogeochemical Features 2) Techniques

More information

Climate Change & Ocean Acidification

Climate Change & Ocean Acidification Climate Change & Ocean Acidification Scott Doney Woods Hole Oceanographic Institution Thus human beings are now carrying out a large scale geophysical experiment Revelle and Suess, Tellus, 1957 Ice core

More information

Multicentury Climate Warming Impacts on Ocean Biogeochemistry

Multicentury Climate Warming Impacts on Ocean Biogeochemistry Multicentury Climate Warming Impacts on Ocean Biogeochemistry Prof. J. Keith Moore University of California, Irvine Collaborators: Weiwei Fu, Francois Primeau, Greg Britten, Keith Lindsay, Matthew Long,

More information

Physical / Chemical Drivers of the Ocean in a High CO 2 World

Physical / Chemical Drivers of the Ocean in a High CO 2 World Physical / Chemical Drivers of the Ocean in a High CO 2 World Laurent Bopp IPSL / LSCE, Gif s/ Yvette, France Introduction Climate Atmosphere Biosphere Soils Food Web / Fisheries Atmospheric Components

More information

Global Carbon Cycle - II

Global Carbon Cycle - II Global Carbon Cycle - II OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Current status of global CO 2 2. CO 2 speciation in water 3. Atmosphere ocean interactions 4. Ocean acidification

More information

The supplementary section contains additional model details and an additional figure presenting model results.

The supplementary section contains additional model details and an additional figure presenting model results. 1 1. Supplementary materials The supplementary section contains additional model details and an additional figure presenting model results. 1.1. Carbon chemistry implementations The OCMIP carbon chemistry

More information

Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1 Julia Blanchard 3

Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1 Julia Blanchard 3 Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth

More information

Intro to Biogeochemical Modeling Ocean & Coupled

Intro to Biogeochemical Modeling Ocean & Coupled Intro to Biogeochemical Modeling Ocean & Coupled Keith Lindsay, NCAR/CGD NCAR is sponsored by the NaConal Science FoundaCon Lecture Outline 1) Large Scale Ocean Biogeochemical Features 2) Techniques for

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 62 Chemical Oceanography Reading: Libes, Chapter 15, pp. 8 94 (Remainder of chapter: Biogenic production, carbonate saturation and sediment distributions ) 1. CO 2

More information

Advances in Our Understanding of Ocean Iron. Fertilization: What comes next? Ken Buesseler. Marine Chemistry and Geochemistry Department

Advances in Our Understanding of Ocean Iron. Fertilization: What comes next? Ken Buesseler. Marine Chemistry and Geochemistry Department Advances in Our Understanding of Ocean Iron Fertilization: What comes next? Ken Buesseler Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Ocean Iron Fertilization & Carbon

More information

Some (other) possible climate and biogeochemical effects of iron fertilization

Some (other) possible climate and biogeochemical effects of iron fertilization Some (other) possible climate and biogeochemical effects of iron fertilization Andy Watson School of Environmental Sciences University of East Anglia Norwich UK Special thanks to: Sue Turner (UEA), Manfredi

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 31 January 2013 Reading: Libes, Chapter 15, pp. 383 394 (Remainder of chapter will be used with the lecture: Biogenic production, carbonate

More information

INTERPLAY BETWEEN ECOSYSTEM STRUCTURE AND IRON AVAILABILITY IN A GLOBAL MARINE ECOSYSTEM MODEL

INTERPLAY BETWEEN ECOSYSTEM STRUCTURE AND IRON AVAILABILITY IN A GLOBAL MARINE ECOSYSTEM MODEL ITERPLAY BETWEE ECOSYSTEM STRUCTURE AD IRO AVAILABILITY I A GLOBAL MARIE ECOSYSTEM MODEL Stephanie Dutkiewicz Fanny Monteiro, Mick Follows, Jason Bragg Massachusetts Institute of Technology Program in

More information

Oceanic CO 2 system - Significance

Oceanic CO 2 system - Significance OCN 401 Biogeochemical Systems (10.25.18) (10.30.18) (Schlesinger: Chapter 9) (11.27.18) Oceanic Carbon and Nutrient Cycling - Part 2 Lecture Outline 1. The Oceanic Carbon System 2. Nutrient Cycling in

More information

Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean

Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean C.L. Sabine, R.A. Feely, N. Bates, N. Metzl, R.M. Key, F.J. Millero, C. LoMonaco and C. Goyet Take home message: Each of the

More information

MODELING NUTRIENT LOADING AND EUTROPHICATION RESPONSE TO SUPPORT THE ELKHORN SLOUGH NUTRIENT TOTAL MAXIMUM DAILY LOAD

MODELING NUTRIENT LOADING AND EUTROPHICATION RESPONSE TO SUPPORT THE ELKHORN SLOUGH NUTRIENT TOTAL MAXIMUM DAILY LOAD MODELING NUTRIENT LOADING AND EUTROPHICATION RESPONSE TO SUPPORT THE ELKHORN SLOUGH NUTRIENT TOTAL MAXIMUM DAILY LOAD Martha Sutula Southern California Coastal Water Research Project Workshop on The Science

More information

Environmental Science. Physics and Applications

Environmental Science. Physics and Applications Environmental Science 1 Environmental Science. Physics and Applications. Carbon Cycle Picture from the IPCC report on the environment. 4. Carbon cycle 4.1 Carbon cycle, introduction 4.2 The oceans 4.3

More information

ROUGH DRAFT PLEASE COMMENTS TO BY 18 AUG 2000

ROUGH DRAFT PLEASE  COMMENTS TO BY 18 AUG 2000 Prognostic Ocean Carbon-Cycle Modeling A working document in preparation for an international global carbon-cycle science research plan prepared by the Prognostic Model Working Group of the EU/US Ocean

More information

9. Ocean Carbonate Chemistry II: Ocean Distributions

9. Ocean Carbonate Chemistry II: Ocean Distributions 9. Ocean Carbonate Chemistry II: Ocean Distributions What is the distribution of CO 2 added to the ocean? - Ocean distributions - Controls on distributions 1 Takahashi (Surface Ocean) pco 2 Climatology

More information

COUPLED PHYSICAL BIOGEOCHEMICAL MODELS

COUPLED PHYSICAL BIOGEOCHEMICAL MODELS COUPLED PHYSICAL BIOGEOCHEMICAL MODELS Upwelling CONCEPTUAL MODEL OF EUTROPHICATION IN THE COASTAL OCEAN Nutrient/ Acid Deposition Local Emissions HABs! Phytoplankton Blooms Senesce and Settling Respiration:

More information

ereefsoptical and biogeochemical model. CSIRO OCEANS AND ATMOSPHERE FLAGSHIP

ereefsoptical and biogeochemical model. CSIRO OCEANS AND ATMOSPHERE FLAGSHIP ereefsoptical and biogeochemical model. CSIRO OCEANS AND ATMOSPHERE FLAGSHIP 2 Presentation title Presenter name BGC state variables: - 10 dissolved - 22 living particulate - 11 non-living part. -6 epibenthic.

More information

ATM S 211 Final Examination June 4, 2007

ATM S 211 Final Examination June 4, 2007 ATM S 211 Final Examination June 4, 2007 Name This examination consists of a total of 100 points. In each of the first two sections, you have a choice of which questions to answer. Please note that you

More information

Ironing Out Uncertainties in Climate Engineering. Ocean Fertilization: Ken Buesseler

Ironing Out Uncertainties in Climate Engineering. Ocean Fertilization: Ken Buesseler Ocean Fertilization: Ironing Out Uncertainties in Climate Engineering Ken Buesseler Senior Scientist Marine Chemistry and Geochemistry Dept. Woods Hole Oceanographic Institution Carbon Sequestration in

More information

increase in mean winter air temperature since 1950 (Ducklow et al, 2007). The ocean

increase in mean winter air temperature since 1950 (Ducklow et al, 2007). The ocean Exploring the relationship between Chlorophyll a, Dissolved Inorganic Carbon, and Dissolved Oxygen in the Western Antarctic Peninsula Ecosystem. Katie Coupland December 3, 2013 Since the start of the industrial

More information

Phytoplankton! Zooplankton! Nutrients!

Phytoplankton! Zooplankton! Nutrients! Phytoplankton! Zooplankton! Nutrients! Phytoplankton! Zooplankton! Critical Depth Recycled Nutrients! Oxidized Nutrients! Detritus! Rest of Ocean Biological and Solubility Pumps New (Export) vs. Regenerated

More information

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9.

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9. Next 3 weeks Tu 2/24: Terrestrial CO 2 uptake (LJ) Th 2/26: Paper discussion (Solomon et al., Irreversible climate change due to CO 2 emissions, 2009, PNAS) Tu 3/3: Geoengineering (JS+LJ) Th 3/5: Geoengineering

More information

The 20 th century carbon budget simulated with CCCma first generation earth system model (CanESM1)

The 20 th century carbon budget simulated with CCCma first generation earth system model (CanESM1) 1/21 The 2 th century carbon budget simulated with CCCma first generation earth system model (CanESM1) Vivek K Arora, George J Boer, Charles L Curry, James R Christian, Kos Zahariev, Kenneth L Denman,

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Tom Bibby September 2003 bibby@imcs.rutgers.edu falko@imcs.rutgers.edu The Carbon Cycle - Look at past climatic change; as controlled by the carbon cycle. - Interpret the influence

More information

Chemical and biological effects on mesopelagic organisms and communities in a high-co 2 world

Chemical and biological effects on mesopelagic organisms and communities in a high-co 2 world Chemical and biological effects on mesopelagic organisms and communities in a high-co 2 world Louis Legendre Villefranche Oceanography Laboratory, France Richard B. Rivkin Memorial University of Newfoundland,

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Laurent Bopp LSCE, Paris 1 From NASA Website Introduction CO2 is an important greenhouse gas Contribution to Natural Greenhouse Effect Contribution to Anthropogenic Effect 2 Altitude

More information

Study on the Diagnostics and Projection of Ecosystem Change Associated with Global Change

Study on the Diagnostics and Projection of Ecosystem Change Associated with Global Change Study on the Diagnostics and Projection of Ecosystem Change Associated with Global Change Project Representative Eitaro Wada Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science

More information

Phytoplankton and Upper Ocean Biogeochemical Cycles Along Line P

Phytoplankton and Upper Ocean Biogeochemical Cycles Along Line P Phytoplankton and Upper Ocean Biogeochemical Cycles Along Line P Angelica Peña Institute of Ocean Sciences, Fisheries & Oceans Canada. Contribution: Diana Varela, Department of Biology & School of Earth

More information

CO 2 is the raw material used to build biomass (reduced to form organic matter)

CO 2 is the raw material used to build biomass (reduced to form organic matter) 1. The oceanic carbon system (a) Significance (b) CO 2 speciation (c) Total CO 2 (d) Atmosphere-ocean CO 2 exchange (e) Global status of CO 2 2. Human perturbations of N and P cycling 3. Other elements:

More information

The Hawaii Ocean Time-series (HOT): Highlights and perspectives from two decades of ocean observations

The Hawaii Ocean Time-series (HOT): Highlights and perspectives from two decades of ocean observations The Hawaii Ocean Time-series (HOT): Highlights and perspectives from two decades of ocean observations MATTHEW CHURCH UNIVERSITY OF HAWAII OCB SCOPING WORKSHOP SEPTEMBER 2010 A Dedicated HOT Team NSF What

More information

Ocean Production and CO 2 uptake

Ocean Production and CO 2 uptake Ocean Production and CO 2 uptake Fig. 6.6 Recall: Current ocean is gaining Carbon.. OCEAN Reservoir size: 38000 Flux in: 90 Flux out: 88+0.2=88.2 90-88.2 = 1.8 Pg/yr OCEAN is gaining 1.8 Pg/yr Sum of the

More information

The Ocean Carbon Cycle. Doug Wallace Dalhousie University, Halifax, Canada

The Ocean Carbon Cycle. Doug Wallace Dalhousie University, Halifax, Canada The Ocean Carbon Cycle Doug Wallace Dalhousie University, Halifax, Canada KISS Satellite to Seafloor Workshop, Pasadena, 6 October, 2013 Premise: There are Two Flavours (or Colours) of Carbon Natural carbon

More information

Ocean Fertilization Ironing Out Uncertainties in Climate Engineering

Ocean Fertilization Ironing Out Uncertainties in Climate Engineering Ocean Fertilization Ironing Out Uncertainties in Climate Engineering Ken Buesseler Senior Scientist Marine Chemistry and Geochemistry Dept. Woods Hole Oceanographic Institution Elisabeth and Henry Morss

More information

11/9/2010. Stoichiometry of POM and DOM. DOC cycling via DO 14 C Williams, Oeschger, and Kinney; Nature v224 (1969)

11/9/2010. Stoichiometry of POM and DOM. DOC cycling via DO 14 C Williams, Oeschger, and Kinney; Nature v224 (1969) DOC cycling via DO 1 C Williams, Oeschger, and Kinney; Nature v22 (1969) UV photooxidation Radiocarbon in the Atlantic and Pacific Oceans Peter M. Williams and Ellen Druffel; Nature 1987, JGR 1992 DIC

More information

Using dynamic biomes and a climate model to describe the responses of the North Pacific to climate change over the 21 st Century

Using dynamic biomes and a climate model to describe the responses of the North Pacific to climate change over the 21 st Century Using dynamic biomes and a climate model to describe the responses of the North Pacific to climate change over the 21 st Century Jeffrey Polovina 1, John Dunne 2, Phoebe Woodworth 1, and Evan Howell 1

More information

5/2/13. Zooplankton! Phytoplankton! Nutrients!

5/2/13. Zooplankton! Phytoplankton! Nutrients! Phytoplankton! Zooplankton! Nutrients! 1 Phytoplankton! Zooplankton! Critical Depth Recycled Nutrients! Oxidized Nutrients! Detritus! Rest of Ocean Biological and Solubility Pumps 2 New (Export) vs. Regenerated

More information

25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean

25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean 25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean MATTHEW CHURCH, ROBERT BIDIGARE, JOHN DORE, DAVID KARL,

More information

Summary. Temperature and CO 2 co-vary over contemporary time scales. Does this imply a cause-effect relationship?

Summary. Temperature and CO 2 co-vary over contemporary time scales. Does this imply a cause-effect relationship? Summary Complexity of climate models Atmosphere composition (GHG) plays major role in determining climate Life plays a major role in the cycling of GHG Contemporary increases in anthropogenic GHG and global

More information

Observations of Growth Rate of Carbon Reservoirs. Keeling et al. (2000) & Marland et al. (2000)

Observations of Growth Rate of Carbon Reservoirs. Keeling et al. (2000) & Marland et al. (2000) Carbon Science A new synthesis of the present carbon budget. Building an earth system model for century time scale scenarios An examination of the long term consequences of continued fossil fuel use Scouts

More information

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Karen McLaughlin Southern California Coastal Water Research Project January 23, 2014 Today s Talk (In Two Acts ) What is ocean acidification

More information

The Carbon Cycle and Energy Security

The Carbon Cycle and Energy Security The Carbon Cycle and Energy Security EQ1: How does the carbon cycle operate to maintain planetary health? 6 & 8 markers = AO1. 12 & 20 markers = AO1 and AO2 larger weighting Carbon cycle Fluxes IPCC Anthropogenic

More information

Equatorial Pacific HNLC region

Equatorial Pacific HNLC region Equatorial Pacific HNLC region Another region with high nitrogen left over after the growing season Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis

More information

Introduction. OCN 623 Chemical Oceanography. 9 January TR 12:00 13:15 in MSB 315

Introduction. OCN 623 Chemical Oceanography. 9 January TR 12:00 13:15 in MSB 315 Introduction 9 January 2018 OCN 623 Chemical Oceanography TR 12:00 13:15 in MSB 315 Brian Glazer glazer@hawaii.edu Biogeochemistry & microbial geochemistry Chris Measures chrism@soest.hawaii.edu Chemistry

More information

Tracking the fate of carbon in the ocean using thorium-234

Tracking the fate of carbon in the ocean using thorium-234 Tracking the fate of carbon in the ocean using thorium-234 Ken Buesseler Dept. of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Outline 1. Background- the biological pump & why

More information

Earth System Modeling at GFDL:

Earth System Modeling at GFDL: Earth System Modeling at GFDL: Goals, strategies and early results for the carbon system John Dunne In coordination with researchers at GFDL and PU Background The CO 2 Climate Forcing Question CCSP Strategic

More information

Ocean Acidification. Bibliography:

Ocean Acidification. Bibliography: When ecosystems undergo change it can have dramatic effects on the competition between species, food web dynamics and biodiversity. Ecosystems can undergo change by the addition of carbon dioxide into

More information

MEDUSA. Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification. Julien Palmiéri, Andrew Yool, Katya Popova

MEDUSA. Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification. Julien Palmiéri, Andrew Yool, Katya Popova MEDUSA Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification Julien Palmiéri, Andrew Yool, Katya Popova Oxford 1-12-2015 UKESM1 and imarnet Development of UKESM1 required the

More information

Decadal and Longer-term changes of the CO 2 in the ocean

Decadal and Longer-term changes of the CO 2 in the ocean The 2 nd GEOSS AP Symposium 15 Apr 2008, Tokyo Decadal and Longer-term changes of the CO 2 in the ocean Masao Ishii Meteorological Research Institute, JMA Background Strong air-sea interaction Distribution

More information

High School Climate Science Curriculum Course learning goals. October 2011

High School Climate Science Curriculum Course learning goals. October 2011 1 High School Climate Science Curriculum Course learning goals October 2011 Current Climate 1. Earth climate is determined by a balance between absorbed sunlight and emitted infrared radiation. Because

More information

CHAPTER CHAPTER CONTENTS

CHAPTER CHAPTER CONTENTS 7 Carbon Cycle CHAPTER CHAPTER CONTENTS Question 7.1:What are the magnitudes and distributions of North American carbon sources and sinks on seasonal to centennial time scales, and what are the processes

More information

the future? From the Seattle Post-Intelligencer, October 20, 2005 Assessing the potential impacts of global warming Courtesy of Nate Mantua

the future? From the Seattle Post-Intelligencer, October 20, 2005 Assessing the potential impacts of global warming Courtesy of Nate Mantua the future? From the Seattle Post-Intelligencer, October 20, 2005 Assessing the potential impacts of global warming Courtesy of Nate Mantua Climate Change: Assessing its Implications for Marine Ecosystems

More information

Nitrogen Cycling in the Sea

Nitrogen Cycling in the Sea Nitrogen Cycling in the Sea NH 4 + N0 2 N0 2 NH 4 + Outline Nitrogen species in marine watersdistributions and concentrations New, regenerated, and export production The processes: Assimilation, N 2 fixation,

More information

Trophic Structure & Food Webs

Trophic Structure & Food Webs Trophic Structure & Food Webs 1946, Riley published a simple food web model: PP = 153T - 120P - 7.3N - 9.1Z + 6713 1947, simplified it to: dn/dt = N(Ph - R) - G Trophic Structure & Food Webs 1946, Riley

More information

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at GLOBAL WARMING Global warming is evidenced by a steady rise in average global temperatures, changing climate, the fact that snow cover has decreased 10% over the past half-century and that glaciers have

More information

Trophic Structure & Food Webs

Trophic Structure & Food Webs Trophic Structure & Food Webs 1946, Riley published a simple food web model: PP = 153T - 120P - 7.3N - 9.1Z + 6713 1947, simplified it to: dn/dt = N(Ph - R) - G Trophic Structure & Food Webs 1946, Riley

More information

Part 3. Oceanic Carbon and Nutrient Cycling

Part 3. Oceanic Carbon and Nutrient Cycling OCN 401 Biogeochemical Systems (11.03.11) (Schlesinger: Chapter 9) Part 3. Oceanic Carbon and Nutrient Cycling Lecture Outline 1. Models of Carbon in the Ocean 2. Nutrient Cycling in the Ocean Atmospheric-Ocean

More information

Climate Change. Greenhouse Effect & Global Warming

Climate Change. Greenhouse Effect & Global Warming Climate Change What is climate change Greenhouse Effect & Global Warming Global Warming = World wide increase in average Temp. Cause = greenhouse effect 1 Some would argue the Global Warming trend is natural

More information

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection CO 2 and the carbonate system II Carbon isotopes as a tracer for circulation The (solid) carbonate connection with ocean acidity Climate The ocean climate connection The carbon cycle the carbon cycle involves

More information

CLIMATE MODELING AND DATA ASSIMILATION ARE KEY FOR CLIMATE SERVICES

CLIMATE MODELING AND DATA ASSIMILATION ARE KEY FOR CLIMATE SERVICES CLIMATE MODELING AND DATA ASSIMILATION ARE KEY FOR CLIMATE SERVICES Guy P. Brasseur Climate Service Center-Germany GKSS, Hamburg, Germany and National Center for Atmospheric Research Boulder, Colorado,

More information

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15 Plankton production is supported by 2 types of nitrogen: 1) new production supported by external sources of N (e.g. NO 3 and N 2 ), 2) recycled or regenerated production, sustained by recycling of N. Assumptions:

More information

Introduction to the Community Earth System Model

Introduction to the Community Earth System Model Introduction to the Community Earth System Model Jean-François Lamarque CESM Chief Scientist Atmospheric Chemistry Observations and Modeling and Climate and Global Dynamics Laboratories NCAR What is a

More information

Global CO 2 and Climate Change

Global CO 2 and Climate Change Global CO 2 and Climate Change A deeper look at the carbon dioxide cycle, greenhouse gases, and oceanic processes over the last 200 years OCN 623 Chemical Oceanography 17 April 2018 Reading: Libes, Chapter

More information

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The Carbon cycle Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The oceans store much more carbon than the atmosphere and the terrestrial biosphere The oceans essentially

More information

N-cycle: biogeochemistry. Biological flows of Nitrogen

N-cycle: biogeochemistry. Biological flows of Nitrogen N-cycle: biogeochemistry SWES 410/510 April 4, 2014 I. N cycling A. simplest possible B. Global N budget C. Effects of N-cycling ( the Nitrogen Cascade ) II. Nitrous Oxide (N 2 O) budgets III. Data-Model

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change A deeper look at the carbon dioxide cycle, greenhouse gases, and oceanic processes over the last 150 years OCN 623 Chemical Oceanography 18 April 2013 Reading: Libes,

More information

Ocean Acidification the other CO2 problem..

Ocean Acidification the other CO2 problem.. Ocean Acidification the other CO2 problem.. 1. Ocean Acidification the other CO2 problem.. Recall: Atm CO 2 already above recent planetary history CO 2 Today: What does this do to ocean water? Main Outline:

More information

Nitrogen Cycling, Primary Production, and Water Quality in the New River Estuary. Defense Coastal/Estuarine Research Program (DCERP)

Nitrogen Cycling, Primary Production, and Water Quality in the New River Estuary. Defense Coastal/Estuarine Research Program (DCERP) Nitrogen Cycling, Primary Production, and Water Quality in the New River Estuary Defense Coastal/Estuarine Research Program (DCERP) Introduction: A key theme of the ongoing DCERP program is monitoring

More information

U.S. ECoS. U.S. Eastern Continental Shelf Carbon Budget: Modeling, Data Assimilation, and Analysis

U.S. ECoS. U.S. Eastern Continental Shelf Carbon Budget: Modeling, Data Assimilation, and Analysis U.S. ECoS U.S. Eastern Continental Shelf Carbon Budget: Modeling, Data Assimilation, and Analysis A project of the NASA Earth System Enterprise Interdisciplinary Science Program E. Hofmann, M. Friedrichs,

More information

Model Study of Coupled Physical-Biogeochemical Variability in the Labrador Sea

Model Study of Coupled Physical-Biogeochemical Variability in the Labrador Sea Model Study of Coupled Physical-Biogeochemical Variability in the Labrador Sea Hakase Hayashida M.Sc. Thesis (Physical Oceanography) Memorial University of Newfoundland January 14, 214 Global carbon cycle:

More information

Satellite data show that phytoplankton biomass and growth generally decline as the

Satellite data show that phytoplankton biomass and growth generally decline as the Oceanography Plankton in a warmer world Scott C. Doney Satellite data show that phytoplankton biomass and growth generally decline as the oceans surface waters warm up. Is this trend, seen over the past

More information

Oceanic Carbon Cycle

Oceanic Carbon Cycle An Intro to the Oceanic Carbon Cycle Oceanic Carbon Cycle Why is C an important element? Cellular level essential for macromolecular synthesis Trophodynamics- important in energy flow between trophic levels.

More information

Ocean fertilization: what we have learned from models

Ocean fertilization: what we have learned from models Ocean fertilization: what we have learned from models Jorge L. Sarmiento Princeton University I. A tutorial on the biological pump and its role in controlling the air-sea balance of CO 2 II. A tutorial

More information

Phytoplankton and bacterial biomass, production and growth in various ocean ecosystems

Phytoplankton and bacterial biomass, production and growth in various ocean ecosystems Phytoplankton and bacterial biomass, production and growth in various ocean ecosystems Location Bact. Biomass (mg C m -2 ) Phyto. Biomass (mg C m -2 ) BactB: PhytoB BactP (mg C m -2 d -1 ) 1 o Pro (mg

More information

WHOTS Mixed Layer and 1-D 1 D Model. Station ALOHA: Time-series Science and Status

WHOTS Mixed Layer and 1-D 1 D Model. Station ALOHA: Time-series Science and Status Station ALOHA: Time-series Science and Status 25 years of HOT Fernando Santiago-Mandujano and Roger Lukas University of Hawaii Station ALOHA (~4750m deep) 9 years of WHOI Hawaii Ocean Time-series (WHOTS)

More information

Denitrification 2/11/2011. Energy to be gained in oxidation. Oxidized N. Reduced N

Denitrification 2/11/2011. Energy to be gained in oxidation. Oxidized N. Reduced N Oxidized N Energy to be gained in oxidation Reduced N (Sarmiento & Gruber, 2006) Denitrification The reduction of NO 3 and NO 2 to N 2 during heterotrophic respiration of organic matter. Occurs predominately

More information

LECTURE #24: Mega Disasters Climate Change

LECTURE #24: Mega Disasters Climate Change GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #24: Mega Disasters Climate Change Date: 17 April 2018 I. Early Earth was more similar to present-day Venus o very high amounts of carbon dioxide

More information

UAU102F, University of Iceland

UAU102F, University of Iceland Systems, systems theory, thermodynamics SYSTEMS System A set of components that interact with one another A system must be distinguishable from its environment (i.e. must be able to identify it) Systems

More information

Quantifying Sources & Sinks of Atmospheric CO 2. Uptake and Storage of Anthropogenic Carbon

Quantifying Sources & Sinks of Atmospheric CO 2. Uptake and Storage of Anthropogenic Carbon Quantifying Sources & Sinks of Atmospheric CO 2 Uptake and Storage of Anthropogenic Carbon by Christopher L. Sabine ; NOAA/PMEL, Seattle, WA USA Acknowledgements: Richard A. Feely (PMEL), Frank Millero

More information

Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory

Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory Ocean acidification is normally discussed in terms of global average responses the global

More information

Announcements. What are the effects of anthropogenic CO 2 on the ocean? 12/7/2017. UN Commitment to plastics in the ocean

Announcements. What are the effects of anthropogenic CO 2 on the ocean? 12/7/2017. UN Commitment to plastics in the ocean Announcements UN Commitment to plastics in the ocean http://www.bbc.com/news/scienceenvironment-42239895 Today: Quiz on paper by Lee et al. 2009 Climate change and OA Review for final exam (Tuesday 8 AM)

More information

Measurements and Models of Primary Productivity

Measurements and Models of Primary Productivity Measurements and Models of Primary Productivity Supported by NSERC 1 including OTN John J. Cullen! Department of Oceanography, Dalhousie University Halifax, Nova Scotia, Canada B3H 4R2! 2014 C-MORE Summer

More information

Monitoring Carbon Dioxide Sequestration in Deep Geological Formations for Inventory Verification and Carbon Credits

Monitoring Carbon Dioxide Sequestration in Deep Geological Formations for Inventory Verification and Carbon Credits Monitoring Carbon Dioxide Sequestration in Deep Geological Formations for Inventory Verification and Carbon Credits Sally M. Benson Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley,

More information

The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years. OCN 623 Chemical Oceanography

The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years. OCN 623 Chemical Oceanography The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years OCN 623 Chemical Oceanography In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse

More information

Answer THREE questions, at least ONE question from EACH section.

Answer THREE questions, at least ONE question from EACH section. UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series Undergraduate Examination 2012-2013 CHEMICAL OCEANOGRAPHY ENV-2A45 Time allowed: 2 hours. Answer THREE questions, at least ONE question

More information

BIG IDEAS. Global Environmental Changes Human actions affect the quality of water and its ability to sustain life. Learning Standards

BIG IDEAS. Global Environmental Changes Human actions affect the quality of water and its ability to sustain life. Learning Standards Area of Learning: SCIENCE Environmental Science Grade 12 Ministry of Education BIG IDEAS Human actions affect the quality of water and its ability to sustain life. Human activities have caused changes

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle In a nutshell We are mining fossil CO 2 and titrating into the oceans, (buffered by acid-base chemistry) Much of the fossil CO 2 will remain in the atmosphere for thousands of years

More information

Biological Pump. Suttle (2005) Nature 437:

Biological Pump. Suttle (2005) Nature 437: Scenario This reservoir of dissolved organic carbon (DOC) is as large as that of CO2 in the atmosphere Its average age is ~5000y and hence can be a mechanism of carbon sequestration Viruses are major players

More information

Ocean Acidification and other Climate Change Implications

Ocean Acidification and other Climate Change Implications Ocean Acidification and other Climate Change Implications A deeper look at the effects of growing CO 2 and climate change on the ocean OCN 623 Chemical Oceanography 19 April 2018 Reading: Libes, Chapter

More information

Trace Metal Iron (Fe), an important element to measure at sea. Dr. Thato Nicholas Mtshali

Trace Metal Iron (Fe), an important element to measure at sea. Dr. Thato Nicholas Mtshali Trace Metal Iron (Fe), an important element to measure at sea Dr. Thato Nicholas Mtshali Southern Atlantic Ocean and Antarctic Seminar (Cape Town): 5 December 2017 A CSIR-led multidisciplinary and multi-institutional

More information

How will we measure the response of carbon export in the ocean to climate change? Ken Johnson MBARI

How will we measure the response of carbon export in the ocean to climate change? Ken Johnson MBARI How will we measure the response of carbon export in the ocean to climate change? Ken Johnson MBARI johnson@mbari.org Outline: Why care about ocean carbon flux? Future changes? How would we measure changes

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Calculation of greenhouse effect. The carbon cycle Lecture 11

More information

Report for the year 2018 and future activities

Report for the year 2018 and future activities Report for the year 2018 and future activities SOLAS Israel compiled by: Yoav Lehahn This report has two parts: - Part 1: reporting of activities in the period of January 2018 Jan-Feb 2019 - Part 2: reporting

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change or the unnatural carbon dioxide cycle and oceanic processes over the last few hundred years OCN 623 Chemical Oceanography Reading: Libes, Chapter 25 (a good summary) In

More information

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Global Carbon Trends Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Outline 1. Recent Trends 2. Perturbation Budget 3. Sink Efficiency 4. Attribution 5. Processes

More information

Carbon Sequestration Why and How?

Carbon Sequestration Why and How? 16 th March 2017 Carbon Sequestration Why and How? Christopher Johns Research Manager Northern Australia and Land Care Research Programme Key Points To achieve the global warming targets set by the Paris

More information