University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil.

Size: px
Start display at page:

Download "University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil."

Transcription

1 Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro, Brazil P.L. da Fonseca 1 *, L. Pimentel da Silva and D.P.Batista 3 1 Subsecretary of Watershed Management RIOÁGUAS, Campo de São Cristóvão 68, , Rio de Janeiro, RJ and Civil Engineering Department of the Fluminense Federal University(UFF), Rua Passo da Pátria, 156, , Niterói, RJ, Brazil. Post- Graduation in Environmental Engineering Program (PEAMB), Rio de Janeiro State University (UERJ), Rua São Francisco Xavier, 54, , Rio de Janeiro, RJ, Brazil. 3 Rio de Janeiro State University (UERJ) ), Rua São Francisco Xavier, 54, , Rio de Janeiro, RJ, Brazil. *Corresponding author, paulofonseca@vm.uff.br ABSTRACT In the last decades, the model used in the urbanization process involved deforestation and the increase of impervious areas in association to traditional measures within a hygienist perspective for urban drainage projects. Unconventional measures have been characterized as a paradigm shift in the design of urban drainage systems, such as flood control at source, flood detention basins, whose ultimate aim is runoff control. This paper has as its focus, the use of SOBEK 1D hydrodynamic model in order to analyze the flow of the Sacarrão River in Jacarepaguá, Rio de Janeiro. It will be developed simulations of the flows, considering the transitory nature of them. It utilizes exploratory research methodology, involving applicable updated technology in the control of floods, as well as mathematical model. Moreover, a diagnostic for the macro drainage basin of the Sacarrão river in Rio de Janeiro, Brazil, based on river flow simulations for return period of 5 years, as well as the routing of a dumping reservoir flood. For developing of this paper, it will be made research of the bibliographic collection and data of the Fluminense Federal University, of the Rio de Janeiro State University and of the Subsecretary of Watershed Management RIOÁGUAS. KEYWORDS Urban Storm Management, Flood Control, Reservoirs, Hydrodynamic Simulation. INTRODUCTION The accelerated urbanization process that took place in the last decades in the major urban centers of Brazil resulted in a number of environmental impacts, mainly due to the increase of impervious areas and resulting soil sealing. The direct impacts are related to diminishing groundwater recharge rates and increasing of surface runoff. Moreover, water quality is also impacted. The increase of surface runoff accelarate soil erosiion, aggravate urban floods,and entrainment of pollutants into water courses. The increase of floods due to urbanization has brought about the adoption of corrective measures to control runoff increasing. In the traditional measures, the focus is on increasing the capacity of the drainage network, causing, in general, the transfer of floods downstreams. Unconventional measures and control at Fonseca et al. 1

2 source have been adopted in order to promote the infiltration and temporary storage of stormwater in order to mitigate the impacts of urbanization on the hydrological responses. The project HIDROCIDADES (Pimentel da Silva et al., 008) aims the conservation of water in the urban and peri-urban environment. As object of study it is taken the Morto river catchment and its main tributary, the Sacarrão River, in Jacarepaguá, west area of the city of Rio de Janeiro, Brazil (Figure 1). This project is developed in a participatory way and has attempted to provide solutions to local problems, as in the Low Impact Urban Design and Development (LIUDD), van Roon (005), Figure 1. Location of Morto River Catchment and its main tributary, the Sacarrão River, Jacarepaguá, Rio de Janeiro, Rosa (003). OBJECTIVES This article presents a diagnostic for the macro drainage basin of the Sacarrão River, based on simulations produced for the current river channel for return period of 5 years, as well as the routing of a dumping reservoir flood, localized in the middle part of the basin, which has favorable topographical conditions for the detention of stormwater. The simulations took into account the transitory nature of flows to allow a more realistic representation of physical phenomena, enabling to achieve more reliable solutions to the problem. For hydrologic analysis, it was used the Triangular Unit Hydrograph method, U.S. Soil Conservation Service, and the equation intensity-duration-frequency (IDF) for Via Onze gaging station, used by the Secretariat for Watershed Management of the Municipality of Rio de Janeiro. METHODS Model is a physical or mathematical representation of the reality, which seeks to reproduce the behavior of a system, in order to predict the system response given an input and its initial state. Models, allow to analyze scenarios and explore alternatives for managing processes. The mathematical models seek to represent the system by means of equations which reproduce their processes. The simulation of mathematical models may require solving complex equation systems which require the use of computational tools. Softwares are developed for hydrological and hydrodynamic modeling simulations. Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro

3 A hydrological model commonly used in urban hydrology is the SCS, developed by the Natural Resources Conservation Service, and widely accepted because of its simplicity and ease of application parameters. In this model, rainwater retention in ground depressions and infiltration are the main factors affecting the rainfall-runoff relationship, determining the amount of rainfall that becomes runoff, called effective rainfall. To calculate the flow rates of each sub basin, it was used the Triangular Unit Hydrograph method. It seeks to synthesize the SCS unit hydrograph for a given duration of rainfall unit D. The peak time is based on the following empirical relationship: D = tp / tc, where tc is the time of concentration of the basin. For the determination of CN, curve number runoff of the basin, due to adopt the value obtained by the weighted average number of CNs corresponding to homogeneous areas, in which case the basin presents different soil types and occupancy, taking also consider the future occupation of the soil. The values adopted varied from 60 (point C) to 64 (point E). The Intensity Duration Frequency (IDF) equation for the area is referred to Via Onze gaging station, used by the Subsecretary of Watershed Management RIOÁGUAS (equation 1). I a T b x R d t c I = rainfall intensity (mm/h); Tr = return period (years); t = rainfall duration (min); a, b, c e d = constants determined from the analysis of rainfall historical data set. For Via Onze gaging station, a=143,0, b=0,196, c=14,58 and d=0,796. It is extremely important the fact that, due to the hydrodynamic characteristics of drainage networks, calculations based on concepts of simplified and approximated results does not hit the goals of a particular study. To overcome this limitation, it will be used mathematical models that take into account the transitory nature of stormwater runoff, where the magnitudes vary over space and time on the same cross section - not permanent flow. The model will use Saint-Venant equations, which is the result of combining the continuity equation with the equation of moments, described respectively as follows (equations and 3). Q Af x t q Q t Q x Af g Af h gq Q x C RAf wi Wf w 0 Q = discharge (m³/s); t = time (s); x = distance along the axis of flow (m); Af= wet area of the cross section (m²); q lat = lateral discharge (m³/s /m); Fonseca et al. 3

4 g= acceleration of gravity (m/s²); h= water level (m); C= Chézy coefficient (m½/s); R= hydraulic radius(m); Wf= width of flow (m); wi = wind pressure (N/m²); w = specific mass of water (Kg/m³). Regarding the terms of the equation of moments, the first term is the inertia, the second is convection, the third is the gravitational potential, the fourth is the friction between the fluid and the channel bed and the fifth term is due by the wind. SOBEK 1D modeling suite 1 was applied for processing integral simulation. It is a powerful suite for flood forecasting, optimisation of drainage systems, control of irrigation systems, sewer overflow design, ground-water level control, river morphology etc. It has been further developed by WL/Delft Hydraulics part of Deltares jointly with Dutch public institutes and private consultants. The model SOBEK URBAN was used considering riverflow transitory nature. Related to another line of action in the control of urban drainage, compensatory measures are used to promote infiltration and temporary stormwater storage in order to minimize the effects of urbanization (increasing impervious surface) on the hydrological responses. The use of flood detention basins is a measure of runoff control that reduces hydrograph peak-flow through the temporary storage of part of the runoff. Release of stored water is under conditions according to downstream channel capacity. The areas for rainwater reservation may have a secondary use during rainless periods, such as recreation ground, soccer fields and for sports in general. Besides that, unconventional practices are proposed with the aim of improving the current conditions of the river. These measures are being adopted all over the world, as a way of the maintenance of the initial urbanization flow. RESULTS AND DISCUSSION The Sacarrão river has its sources in the State Park of Pedra Branca, at an altitude of 60m, and receives the contribution of the Café River, plus some other smaller tributaries. Joins with the Branco River, giving rise to the Morto River, at an elevation of 10.9 m. It has an approximate length of 5.3 km and the total catchment area of 6.18 km. Figure. Sacarrão River Basin, Jacarepaguá, Rio de Janeiro. 1 Deft Hydraulics Software. 4 Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro

5 The hydrological model used was developed by the Natural Resources Conservation Service (1976). To calculate the flow rates of each sub basin, it was applied the Triangular Unit Hydrograph method, for return period of 5 years. Figures 3 to 8 show the flood hydrographs on river sections C, D and E. Flood Hydrograph - Point C Recurrence Time = 5 years 16,000 14,000 Discharge (m 3 /s) 1,000 10,000 8,000 6,000 4,000,000 0,000 0,000 0,500 1,000 1,500,000,500 3,000 Time (h) Figures 3 and 4. Flood Hydrograph, Cross Section C, Return Period = 5 years. 5,000 Flood Hydrograph - Point D Recurrence Time = 5 years 0,000 Discharge (m 3 /s) 15,000 10,000 5,000 0,000 0,000 0,500 1,000 1,500,000,500 3,000 3,500 Time (h) Figures 5 and 6. Flood Hydrograph, Cross Section D, Return Period = 5 years. Flood Hydrograph - Point E Recurrence Time = 5 years 30,000 5,000 Discharge (m 3 /s) 0,000 15,000 10,000 5,000 0,000 0,000 0,500 1,000 1,500,000,500 3,000 3,500 Time (h) Figures 7 and 8. Flood Hydrograph, Cross Section E, Return Period = 5 years. Fonseca et al. 5

6 SOBEK 1D modeling suite was used for the integral process simulation. The model SOBEK URBAN was applied considering the transitory flow nature. Figures 9 to 13 show the results of the simulation, considering rectangular project sections (width of 3.90m and height of.0m) and trapezoidal ones (bottom width of 8.0m and slope H/V of.5). Figure 9. Longitudinal profile of the flow through hydrodynamic simulation, Return Period= 5 years. TeeChart TeeChart 14 37, Discharge max.(m³/s) 5 37, Velocity max. (m/s) :00 00:30 01:00 01:30 0:00 0:30 03:00 03:30 04:00 00:00 00:30 01:00 01:30 0:00 0:30 03:00 03:30 04:00 Figures 10 and 11. Graphics of discharge and velocity, Cross Section, Return Period = 5 years. TeeChart TeeChart 0 49, Discharge max.(m³/s) 49, Velocity max. (m/s) :00 00:30 01:00 01:30 0:00 0:30 03:00 03:30 04:00 00:00 00:30 01:00 01:30 0:00 0:30 03:00 03:30 04:00 Figures 1 and 13. Graphics of discharge and velocity, Cross Section D, Return Period = 5 years. 6 Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro

7 In order to minimize impacts downstream, it was considered in this study the alternative of deploying a detention basin near control section D (Figure ), which has favorable topographical conditions for stormwater detention. It was proposed the adoption of a reservoir that will serve to multiple purposes, being used for stormwater detention during rainy periods and serve as recreation ground during rainless periods. The idea is to run a depression in the local terrain, in order to maintain the natural characteristics of the area using a minimum of reinforced concrete, allowing the reservation. The approximate area of the proposed reservoir is,500 m, possessing an average height of 1.40 m with a total volume of 31,500 m³, with a spillway sill with a length of 10 m and height 0.40 m, 1.10 m located to the background. It was also considered a discharge aperture of 0.40 m in diameter, and auxiliary spillway with rectangular dimensions of m (base) by 0.30 m (height). Figures 14 and 15 show the results of the reservoirs routing, considering the modified Pulz method (Tomaz, 00). Figures 14 and 15. Routing of the reservoir, Cross Section D, Return Period = 5 years. Fonseca et al. 7

8 Analyzing the influence of reservoir flood damping, it was observed for the return period of 5 years, a hydrograph peak-flow reduction of 3,1%, which was considered satisfactory in terms of runoff peak reduction However, it is essential the implementation of monitoring and maintenance programs of these devices. CONCLUSIONS The use of mathematical modeling considering flows transitory nature where the magnitudes vary over space and time at the same river section reproduced a more realistic result, closer to the physical phenomena. Sacarrão River flows were analyzed for return period of 5 years. In order to reduce downstream projected sections, as well as hydrograph peak-flow delay, it was considered alternative to deploying a detention basin near D control section. The results showed a hydrograph peak flow reduction of 3,1% for a return period of 5 years, considering the modified Pulz method. REFERENCES Pimentel da Silva, L., Reinert F., Marques, M., Cerqueira, L.F.F., Rosa, E.U., Moraes, M. F. (008). HIDROCIDADES - Cities, Quality of Life and Water Resources: Integrated Water Resources Management and Urban Planning for Low-Land Region of Jacarepaguá, Rio de Janeiro, Brazil. 11 th International Conference on Urban Drainage. Edinburgh, Scotland. Rosa, E. U., Kauffmann, M. O. Pimentel da Silva, L. (003). Installment Management and Land Use in the City of Rio de Janeiro. VII Brazilian Congress of Environmental Defence, Proceedings, Engineering Club. Rio de Janeiro, Brazil. Tomaz, P. (00). Hydrologic and Hydraulic Calculations for Municipal Works (in Portuguese). São Paulo, Brazil. Van Roon, M. (005). Emerging Approaches to Urban Ecosystems Management: The Potential of Low Impact Urban Design and Development Principles. J. Environ. Assess. Policy Manage. 7(1), WL/Delft Hydraulics Part of Deltares et al. (008). SOBEK URBAN. Technical Reference Manual. 8 Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro

La Riereta Catchment Sant Boi de Llobregat

La Riereta Catchment Sant Boi de Llobregat La Riereta Catchment Sant Boi de Llobregat Final Report Team 2 Enrique Amaya (COL) Lilian Yamamoto (BRA) Martín Pez (ARG) Sergio Esquivel (MEX) Instructor: José Macor Summary Contents 1. Introduction...

More information

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar Hydrology and Water Management Dr. Mujahid Khan, UET Peshawar Course Outline Hydrologic Cycle and its Processes Water Balance Approach Estimation and Analysis of Precipitation Data Infiltration and Runoff

More information

Index. Page numbers followed by f indicate figures.

Index. Page numbers followed by f indicate figures. Index Aerodynamic method, 103, 110 111 Algae, 131, 173, 175 Alternate depth, 88 Alternating block method, 132, 140 141 Attenuation, 106, 107f, 118, 120 Page numbers followed by f indicate figures. Baseflow

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management Husam Al-Najar Storm water management : Collection System Design principles The Objectives

More information

Software Applications for Runoff Hydrological Assessment

Software Applications for Runoff Hydrological Assessment Bulletin UASVM Horticulture, 67(2)/2010 Print ISSN 1843-5254; Electronic ISSN 1843-5394 Software Applications for Runoff Hydrological Assessment Severin CAZANESCU 1), Sorin CIMPEANU 1), Oana GUI 2), Dana

More information

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH INTRODUCTION Water is a common chemical substance essential for the existence of life and exhibits many notable and unique

More information

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Vidal, D.H.F 1*, Barbosa, F.R 1, and Miguez, M.G 1 1 Federal University of Rio de

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or any

More information

DRAINAGE & DESIGN OF DRAINAGE SYSTEM

DRAINAGE & DESIGN OF DRAINAGE SYSTEM Drainage on Highways DRAINAGE & DESIGN OF DRAINAGE SYSTEM P. R.D. Fernando Chartered Engineer B.Sc.(Hons), M.Eng. C.Eng., MIE(SL) Drainage Requirement of Highway Drainage System Introduction Drainage means

More information

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff October 2003, Revised February 2005 Chapter 6.0, Runoff Page 1 6.1 Introduction 6.0 Runoff The timing, peak rates of discharge, and volume of stormwater runoff are the primary considerations in the design

More information

Implementing Stormwater Management through Split-Flow Drainage Design

Implementing Stormwater Management through Split-Flow Drainage Design Implementing Stormwater Management through Split-Flow Drainage Design Stuart Patton Echols PhD, ASLA, RLA Assistant Professor - Department of Landscape Architecture 210 Engineering Unit D Center for Watershed

More information

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan TR-20 is a computer program for the simulation of runoff occurring from a single storm event. The program develops flood hydrographs from runoff and routes

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY)

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) Hydromodification design criteria for the North Orange County permit area are based on the 2- yr, 24-hr

More information

TUCCI, C.E.M Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p

TUCCI, C.E.M Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p TUCCI, C.E.M. 1999. Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p 10-18. URBAN DRAINAGE PLAN IN BRAZIL Carlos E. M. Tucci Institute of Hydraulic Research - Federal

More information

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952).

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). 1. Stream Network The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). First Order Streams streams with no tributaries. Second Order Streams begin at

More information

Runoff Hydrographs. The Unit Hydrograph Approach

Runoff Hydrographs. The Unit Hydrograph Approach Runoff Hydrographs The Unit Hydrograph Approach Announcements HW#6 assigned Storm Water Hydrographs Graphically represent runoff rates vs. time Peak runoff rates Volume of runoff Measured hydrographs are

More information

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED Mark Pennington, Engineer, Pattle Delamore Partners Ltd, Tauranga ABSTRACT The Rational Method has been in use in some form or another at least since

More information

5/11/2007. WinTR-55 for Plan Reviews Small Watershed Hydrology Overview

5/11/2007. WinTR-55 for Plan Reviews Small Watershed Hydrology Overview WinTR-55 for Plan Reviews Small Watershed Hydrology Overview 1 Overview Course Outline Historical Background Program Description Model Capabilities and Limitations This is the Overview portion of the training.

More information

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Maine Stormwater Conference (Portland, ME, 2015) Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Park Jongpyo, Lee Kyoungdo: HECOREA. INC Shin Hyunsuk: Busan National University

More information

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall 6.0 Introduction This chapter summarizes methodology for determining rainfall and runoff information for the design of stormwater management facilities in the City. The methodology is based on the procedures

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment

More information

Storm Water Management Model

Storm Water Management Model Use of Storm Water Management Model for on lot drainage Renato Nunes de Mattos Ricardo Prado Abreu Reis Marina Sangoi de Oliveira Ilha The increased runoff flow is one of the impacts caused by the construction

More information

Water Balance Methodology

Water Balance Methodology Water Balance Methodology Integrating the Site with the Watershed and the Stream March 2012 An initiative under the umbrella of the Water Sustainability Action Plan for British Columbia Water Balance Methodology

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

STORM WATER MANAGEMENT REPORT

STORM WATER MANAGEMENT REPORT Silvercreek Junction STORM WATER MANAGEMENT REPORT Howitt Creek at the Silvercreek Parkway Site Guelph, Ontario August, 2008 TSH File 22304A-04 August 19, 2008 STORMWATER MANAGEMENT REPORT Howitt Creek

More information

Flood forecasting model based on geographical information system

Flood forecasting model based on geographical information system doi:10.5194/piahs-368-192-2015 192 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Flood forecasting model

More information

Gwinnett County Stormwater System Assessment Program

Gwinnett County Stormwater System Assessment Program Gwinnett County Stormwater System Assessment Program Jonathan Semerjian, PE Dept. of Water Resources Stormwater Management Sam Fleming, PE Dewberry Presentation Overview Project Background Drivers Enhanced

More information

Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological Response: a Case in Malaysia

Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological Response: a Case in Malaysia International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 93 (2016) DOI: 10.7763/IPCBEE. 2016. V93. 23 Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological

More information

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Civil Engineering Forum Volume XXII/ - May 03 ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Ruhban Ruzziyatno Directorate General of Water Resources, Ministry of Public Works, Republic

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Bruce McEnroe, Bryan Young, Ricardo Gamarra and Ryan Pohl Department of Civil, Environmental, and Architectural

More information

HYDROLOGIC-HYDRAULIC STUDY BAYAMON SOUTH COMMERCIAL CENTER BAYAMON, PUERTO RICO. Casiano Ancalle, P.E. August, 2006 I.

HYDROLOGIC-HYDRAULIC STUDY BAYAMON SOUTH COMMERCIAL CENTER BAYAMON, PUERTO RICO. Casiano Ancalle, P.E. August, 2006 I. HYDROLOGIC-HYDRAULIC STUDY BAYAMON SOUTH COMMERCIAL CENTER BAYAMON, PUERTO RICO Casiano Ancalle, P.E. August, 2006 I. INTRODUCTION A commercial development project named Bayamon South Commercial Center

More information

The role of domestic rainwater harvesting systems in storm water runoff mitigation

The role of domestic rainwater harvesting systems in storm water runoff mitigation European Water 58: 497-53, 217. 217 E.W. Publications The role of domestic rainwater harvesting systems in storm water runoff mitigation I. Gnecco *, A. Palla and P. La Barbera Department of Civil, Chemical

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Summary of Detention Pond Calculation Canyon Estates American Canyon, California

Summary of Detention Pond Calculation Canyon Estates American Canyon, California July 15, 2015 Bellecci & Associates, Inc Summary of Detention Pond Calculation Canyon Estates American Canyon, California 1. Methodology: Method: Unit Hydrograph Software: Bentley Pond Pack Version 8i

More information

IBS Site Drainage: Senior Design Project

IBS Site Drainage: Senior Design Project IBS Site Drainage: Senior Design Project Len Wright, Ph.D., PE Lecturer, CEAE Wright.Len@gmail.com September 11, 2008 mwsw204i1.ppt/1 OUTLINE Motivation for Stormwater Management Quantity (both onsite,

More information

Rainwater Harvesting for Domestic Water Supply and Stormwater Mitigation

Rainwater Harvesting for Domestic Water Supply and Stormwater Mitigation Rainwater Harvesting for Domestic Water Supply and Stormwater Mitigation C Liaw 1, W Huang 2, Y Tsai 3, and, J Chen 4 1 President, Taiwan Rainwater Catchment Systems Association, Chliaw@ms41.hinet.net

More information

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR 1 INTRODUCTION 1.1 Project Description and Location Isabella Ocean Residences is a residential development to be constructed

More information

Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control

Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control 12 nd International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011 Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control O.M.

More information

Hydrology Study. Ascension Heights Subdivision Ascension Drive at Bel Aire Road San Mateo, California (Unincorporated)

Hydrology Study. Ascension Heights Subdivision Ascension Drive at Bel Aire Road San Mateo, California (Unincorporated) Hydrology Study Ascension Heights Subdivision Ascension Drive at Bel Aire Road San Mateo, California (Unincorporated) Prepared for San Mateo Real Estate & Construction March 9, 21 Rev. 1 11-8-211 Rev.

More information

Uncertainty in Hydrologic Modelling for PMF Estimation

Uncertainty in Hydrologic Modelling for PMF Estimation Uncertainty in Hydrologic Modelling for PMF Estimation Introduction Estimation of the Probable Maximum Flood (PMF) has become a core component of the hydrotechnical design of dam structures 1. There is

More information

SEWAGE TREATMENT AND DISPOSAL

SEWAGE TREATMENT AND DISPOSAL SEWAGE TREATMENT AND DISPOSAL QUANTITY OF SANITARY SEWAGE AND STORM WATER Zerihun Alemayehu Unpolluted cooling water Intercept or sewer Sources of Sewage Residential and commercial sewage Industrial wastewater

More information

Chapter 7 : Conclusions and recommendations

Chapter 7 : Conclusions and recommendations Chapter 7 : Conclusions and recommendations 7.1 Conclusions The main goal of this research was to investigate the modelling and rainfall data requirements for the design of combined sewer systems and the

More information

Appendix G Preliminary Hydrology Study

Appendix G Preliminary Hydrology Study Appendix G Preliminary Hydrology Study Preliminary Hydrology Study VESTING TTM 72608 Long Beach, CA Prepared for: The Long Beach Project, LLC 888 San Clemente, Suite 100 New Port Beach, CA May 28, 2014

More information

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model 9 th International Conference on Urban Drainage Modelling Belgrade 2012 Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model Beniamino Russo, David Suñer, Marc Velasco,

More information

Sunset Circle Vegetated Swale and Infiltration Basin System Monitoring Report: Rainy Seasons and

Sunset Circle Vegetated Swale and Infiltration Basin System Monitoring Report: Rainy Seasons and Sunset Circle Vegetated Swale and Infiltration asin System Monitoring Report: Rainy Seasons 2012-13 and 2013-14 bstract Site Summary Project Features Sunset Circle Vegetated swales and infiltration basins

More information

What s so hard about Stormwater Modelling?

What s so hard about Stormwater Modelling? What s so hard about Stormwater Modelling? A Pugh 1 1 Wallingford Software Pty Ltd, ann.pugh@wallingfordsoftware.com Abstract A common misconception of stormwater modelling is that it is simple. While

More information

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE KOTSIFAKIS

More information

Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes

Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes As seen in Figure H.1, hydrology is a complex science that deals with the movement of water between various stages

More information

July, International SWAT Conference & Workshops

July, International SWAT Conference & Workshops Analysis of the impact of water conservation measures on the hydrological response of a medium-sized watershed July, 212 212 International SWAT Conference & Workshops ANALYSIS OF THE IMPACT OF WATER CONSERVATION

More information

CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL CITY UTILITIES DESIGN STANDARDS MANUAL () September 2017 Page Chapter 1 Acronyms and Definitions 1.01 Purpose 1 1.02 Acronyms 1 1.03 Definitions 3 Chapter 2 Introduction 2.01 Purpose 1 2.02 Applicability

More information

CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008

CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008 CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008 When estimating runoff for a storm event it is assumed that the storm runoff occurs from

More information

APPENDIX H Guidance for Preparing/Reviewing CEQA Initial Studies and Environmental Impact Reports

APPENDIX H Guidance for Preparing/Reviewing CEQA Initial Studies and Environmental Impact Reports APPENDIX H H.1 Guidance for Preparing and Reviewing CEQA Initial Studies Step 1: Consider the Project Characteristics as Provided by the Project Applicant Review the project application and draft plan

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Flood Risk Analysis of Cocó Urban River in Fortaleza, Brazil

Flood Risk Analysis of Cocó Urban River in Fortaleza, Brazil Hydrology Days 2010 Flood Risk Analysis of Cocó Urban River in Fortaleza, Brazil Carla Freitas Andrade 1, Vanessa Ueta 2, Patrícia Freire Chagas 2, Silvia Helena Santos 2 and Raimundo Souza 2 Universidade

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to:

Learning objectives. Upon successful completion of this lecture, the participants will be able to: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to: Describe and perform the required step for designing sewer system networks Outline Design

More information

DIVISION 5 STORM DRAINAGE CRITERIA

DIVISION 5 STORM DRAINAGE CRITERIA DIVISION 5 STORM DRAINAGE CRITERIA Section 5.01 GENERAL The following storm drainage design criteria shall apply to all storm drainage designs in the City. Additional design criteria are specified in the

More information

Integrated urban water systems modelling with a simplified surrogate modular approach

Integrated urban water systems modelling with a simplified surrogate modular approach Integrated urban water systems modelling with a simplified surrogate modular approach Z. Vojinovic 1 *, and S.D. Seyoum 2 Department of Hydroinformatics and Knowledge Management, UNESCO-IHE, Institute

More information

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA Mohamed Mashood Mohamed Moufar* (MEE 13633) Supervisor: Dr. Duminda Perera**, ABSTRACT The canal network in Metro Colombo area in Sri Lanka, initially

More information

Design criteria, Flooding of sewer systems in flat areas.

Design criteria, Flooding of sewer systems in flat areas. Design criteria, Flooding of sewer systems in flat areas. Ir Harry. Van Luijtelaar Tauw bv, P.O. box 830, 7400 AV Deventer, The Netherlands, Telephone +31570699304, Fax +31570699666, E-mail hlj@tauw.nl.

More information

Pennsylvania Stormwater Best Management Practices Manual. Chapter 3. Stormwater Management Principles and Recommended Control Guidelines

Pennsylvania Stormwater Best Management Practices Manual. Chapter 3. Stormwater Management Principles and Recommended Control Guidelines Pennsylvania Stormwater Best Management Practices Manual Chapter 3 Stormwater Management Principles and Recommended Control Guidelines 363-0300-002 / December 30, 2006 Chapter 3 Stormwater Management Principles

More information

Peak discharge computation

Peak discharge computation Ia/P 4 Peak Dischage Method Graphical Peak Discharge Method This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed

More information

DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA

DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA 1 Adejumo, L. A., 1 Adeniran, K. A., 2 Salami, A.W., 3 Abioye Tunde., and 4 Adebayo, K. R 1 Department of Agricultural

More information

RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION

RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION RAIN WATER HARVESTING FOR URBAN FLOOD PEAK REDUCTION Dr. A.K.Sarma, IIT Guwahati, India M. D. Baishya, Engineering Student, NERIST, India G. Giraud, Engineering Student, ENGEES, France 2005 INTRODUCTION

More information

Modelling storm water control operated by green roofs at the urban catchment scale

Modelling storm water control operated by green roofs at the urban catchment scale Modelling storm water control operated by green roofs at the urban catchment scale A. Palla*, C. Berretta, L.G. Lanza and P. La Barbera Department of Civil, Environmental and Architectural Engineering,

More information

Open Channel Flow. Ch 10 Young, Handouts

Open Channel Flow. Ch 10 Young, Handouts Open Channel Flow Ch 10 Young, Handouts Introduction Many Civil & Environmental engineering flows have a free surface open to the atmosphere Rivers, streams and reservoirs Flow in partially filled pipes

More information

Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity

Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity 9th International Conference on Urban Drainage Modelling, Belgrade 2012 C4. Climate change impacts, pp.287-288 Modelling Climate Change and Urbanization Impacts on Urban Stormwater and Adaptation Capacity

More information

TECHNICAL MEMORANDUM. SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design

TECHNICAL MEMORANDUM. SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design TECHNICAL MEMORANDUM FROM: Ken MacKenzie and Ryan Taylor SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design DATE: June 7, 2012 The purpose of this memorandum

More information

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 600 STORM RUNOFF TABLE OF CONTENTS 601 INTRODUCTION 603 601.1 - Basin Characteristics 603 602 TIME OF

More information

Estimating Stormwater Runoff from the 3D-model of an Urban Area in Istanbul

Estimating Stormwater Runoff from the 3D-model of an Urban Area in Istanbul 198 Estimating Stormwater Runoff from the 3D-model of an Urban Area in Istanbul Muhammed Ali Örnek 1, Melike Ersoy 2, Yasin Çağatay Seçkin 3 1 Istanbul Technical University, Istanbul/Turkey maornek@itu.edu.tr

More information

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE by James C.Y. Guo. Professor, Civil Engineering, U. Of Colorado at Denver, James.Guo@cudenver.edu.. And Eric Hsu, Project Engineer, Parson

More information

HYDRODYNAMIC MODELLING IN LARGE RESERVOIRS FOR WATER RESOURCES MANAGEMENT. Alfredo Ribeiro Neto, Carlos E.O. Dantas, José Almir Cirilo

HYDRODYNAMIC MODELLING IN LARGE RESERVOIRS FOR WATER RESOURCES MANAGEMENT. Alfredo Ribeiro Neto, Carlos E.O. Dantas, José Almir Cirilo HYDRODYNAMIC MODELLING IN LARGE RESERVOIRS FOR WATER RESOURCES MANAGEMENT Alfredo Ribeiro Neto, Carlos E.O. Dantas, José Almir Cirilo Department of Civil Engineering, Federal University of Pernambuco,

More information

Pre-Treatment Bioretention Cells Bioswales IOWA STORMWATER MANAGEMENT MANUAL DECEMBER 16, 2015

Pre-Treatment Bioretention Cells Bioswales IOWA STORMWATER MANAGEMENT MANUAL DECEMBER 16, 2015 Pre-Treatment Bioretention Cells Bioswales IOWA STORMWATER MANAGEMENT MANUAL DECEMBER 16, 2015 Urban Runoff Background How we got here What Problem?? Provenance of the Problem Unified Sizing Criteria What

More information

Hydrologic Calibration:

Hydrologic Calibration: Hydrologic Calibration: UPDATE OF EFFECTIVE HYDROLOGY FOR MARYS CREEK October 2010 Agenda Background Hydrologic model Calibrated rainfall Hydrologic calibration 100 year discharges, Existing Conditions

More information

Module 10b: Gutter and Inlet Designs and Multiple Design Objectives

Module 10b: Gutter and Inlet Designs and Multiple Design Objectives Module 10b: Gutter and Inlet Designs and Multiple Design Objectives Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg Evening traffic plows through high water at the intersection of

More information

CHAPTER 3 STORMWATER HYDROLOGY. Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF

CHAPTER 3 STORMWATER HYDROLOGY. Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF CHAPTER 3 STORMWATER HYDROLOGY Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF 3.1.1 Introduction to Hydrologic Methods...3.1-1 3.1.2 Symbols and Definitions...3.1-3 3.1.3 Rainfall

More information

Urban Hydrology and Storm Water Management. iwater_3rd International Event Juan Jose Galan Vivas (Aalto University)

Urban Hydrology and Storm Water Management. iwater_3rd International Event Juan Jose Galan Vivas (Aalto University) Urban Hydrology and Storm Water Management iwater_3rd International Event Juan Jose Galan Vivas (Aalto University) OBJECTIVES of the LECTURE Provide the basics to understand the hydraulic factors and variables

More information

STORMWATER RUNOFF MODELING IMPACTS OF URBANIZATION AND CLIMATE CHANGE

STORMWATER RUNOFF MODELING IMPACTS OF URBANIZATION AND CLIMATE CHANGE STORMWATER RUNOFF MODELING IMPACTS OF URBANIZATION AND CLIMATE CHANGE Anne Blair,* Denise Sanger, A. Frederick Holland, David White, Lisa Vandiver, Susan White Development pressure throughout the coastal

More information

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools.

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools. Remote Software This document briefly presents the hydrological and hydraulic modeling software available on the University of Nice Server with Remote Desktop Connection. Note that the Server provides

More information

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality M.J. Cambez 1, J. Pinho 1, L.M. David 2 * 1 Trainee at Laboratório Nacional de Engenharia Civil (LNEC) 2 Research Officer at

More information

the 2001 season. Allison brought high winds and street flooding to Houston, after

the 2001 season. Allison brought high winds and street flooding to Houston, after Module 10b: Gutter and Inlet Designs and Multiple Design Objectives Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg Evening traffic plows through high water at the intersection of

More information

ENVIRONMENTAL RESOURCE PERMIT APPLICATION

ENVIRONMENTAL RESOURCE PERMIT APPLICATION ENVIRONMENTAL RESOURCE PERMIT APPLICATION SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT 2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 (352) 796-7211 OR FLORIDA WATS 1 (800) 423-1476 SECTION E INFORMATION

More information

The City of Cocoa (City) is located in east

The City of Cocoa (City) is located in east FWRJ Reclaimed Water and Stormwater: A Perfect Pair to Meet Total Maximum Daily Load Wasteload Allocations? Danielle Honour, James Wittig, John A. Walsh, and Don Stevens Danielle Honour, P.E., D.WRE, and

More information

Effect of the Underlying Groundwater System on the Rate of Infiltration of Stormwater Infiltration Structures.

Effect of the Underlying Groundwater System on the Rate of Infiltration of Stormwater Infiltration Structures. Effect of the Underlying Groundwater System on the Rate of Infiltration of Stormwater Infiltration Structures. Presented at: Storm Water Infiltration & Groundwater Recharge A Conference on Reducing Runoff

More information

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle 1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle Watersheds are subjected to many types of changes, major or minor, for various reasons. Some of these are natural changes and

More information

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation 1 v= R S n 2/3 1/2 DEM Flow direction Raster Spatial analyst slope DEM (%) Flow accumulation slope DEM / 100 (actual slope) 0 = no cell contributing 215 = 215 cell contributing towards that cell sqrt (actual

More information

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ 2008/2 PAGES 1 7 RECEIVED 13.1.2008 ACCEPTED 26.4.2008 A. H. KAMEL APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ Ing. Ammar H. Kamel Slovak University of Technology Faculty

More information

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies Chapter 5 " HYDROLOGIC SYSTEMS " CHAPTER 5 5.1 INTRODUCTION 5.1.1 Training Objectives The objectives of this module are:! to

More information

Smart modelling for future proof rainwater systems: Sirio & Scan software

Smart modelling for future proof rainwater systems: Sirio & Scan software Smart modelling for future proof rainwater systems: Sirio & Scan software Stormwater Poland 2018 15-16 March, Gdansk dr. ir. Vincent Wolfs Situation in Belgium Climate change Floods Droughts Urbanisation

More information

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT 10 th International Conference on Hydroinformatics HIC 2012, Hamburg, GERMANY RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT CHI DUNG DOAN (1)(3), JIANDONG LIU (1), SHIE-YUI LIONG (1), ADRI VERWEY

More information

Taking the pain out of the treatment train: continuous simulation modelling for integrated water management

Taking the pain out of the treatment train: continuous simulation modelling for integrated water management Engineers & Consultants Taking the pain out of the treatment train: continuous simulation modelling for integrated water management Stu Farrant & Reuben Ferguson, Morphum Environmental Limited Abstract

More information

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS Darshan Mehta 1, Raju Karkar 2, Lalji Ahir 3 Assistant Professor, CED, S.S.A.S.I.T, Surat, Gujarat, India

More information

4.1 General Methodology and Data Base Development

4.1 General Methodology and Data Base Development Chapter 4 METHODOLOGY 4.1 General and Data Base Development This report project utilized several computer software models and analysis techniques to create the numeric data on which decisions for this

More information

Project Drainage Report

Project Drainage Report Design Manual Chapter 2 - Stormwater 2A - General Information 2A-4 Project Drainage Report A. Purpose The purpose of the project drainage report is to identify and propose specific solutions to stormwater

More information

HYDROLOGIC CONSIDERATIONS. 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY

HYDROLOGIC CONSIDERATIONS. 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY LOW IMPACT DEVELOPMENT HYDROLOGIC CONSIDERATIONS 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY May 18, 2011 PRESENTATION AGENDA Introduction Definitions Discuss Impacts to Hydrologic

More information

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08

(b) Discuss in brief shaft spillway with neat sketches. Marks 04. OR Q (2) Explain in brief USBR stilling basin. Marks 08 (b) Discuss in brief shaft spillway with neat sketches. Marks 04 OR Q (2) Explain in brief USBR stilling basin. Marks 08 Stilling Basins The basins are usually provided with special appurtenances including

More information