Runoff Hydrographs. The Unit Hydrograph Approach

Size: px
Start display at page:

Download "Runoff Hydrographs. The Unit Hydrograph Approach"

Transcription

1 Runoff Hydrographs The Unit Hydrograph Approach

2 Announcements HW#6 assigned

3 Storm Water Hydrographs Graphically represent runoff rates vs. time Peak runoff rates Volume of runoff Measured hydrographs are best But not often available Methods are available to develop a synthetic hydrograph Use a unit hydrograph (UHG)

4 Unit Hydrograph Widely used method of empirical storm flow analysis Def: Basin outflow resulting from 1 unit (in./mm/cm/etc) of direct runoff generated uniformly over the drainage area at a uniform rainfall rate during a specified period of rainfall intensity.

5 Unit Hydrographs Assumptions: rainfall intensity is not considered linear relationship between stormwater runoff and rainfall UHG is independent of antecedent conditions uniform rainfall distribution

6 Unit Hydrographs Derived from observed records extensive data requirements streamflow and rainfall record pairs generally not used for small catchments UHG represent direct surface runoff baseflow (ground water) must be removed For small catchments ==> synthetic UHG models models give ==> tp (time to peak), qp(peak flow rate and mathematical shape of curve

7 Duration of the Unit Hydrograph Unit hydrograph have a duration that is the same as the duration of the rainfall excess that produced it Conceptually it is possible to have an infinite # of hydrographs corresponding to different durations. Practically, unit hydrographs are limited to rainfall excesses up to 25% different than the duration of the unit hydrograph.

8 How is the unit hydrograph used? For a unit hydrograph of duration, D, the volume underneath the hydrograph is always 1, produced by 1 unit of excess rainfall. A hydrograph for a block of rainfall excess of any depth is obtained by multiplying the ordinates of the unit hydrograph by the depth of the rainfall excess block. The result are the ordinates of the runoff hydrograph.

9 Unit Hydrograph Development Approximate hydrograph using a triangle Need to find: Time to peak (t p ) Time lag (t l ) Time of the base (t b ) Peak flow (q p )

10 Lag time, t L SCS Equation to calculate time lag L = hydraulic length of watershed (feet) S = curve number parameter (inches) Y = average land slope of the watershed (%) t l = time lag (hours) t L L 0.8 (S 1) 1900Y Eq. 1

11 Unit Hydrograph Development Equation to calculate time to peak t p = t l + D/2, ( Eq. 2), where: t l = time lag D = time increment of rainfall excess SCS Equation to calculate peak flow (q p ) q p = 484A / t p, (Eq. 3), where: A = watershed area in mi 2 t p = time to peak in hours q p = peak flow in cfs per inch of runoff*** SCS Equation for time of base (t b ) t b = 2.67t p (Eq. 4)

12 Example 5.10 in Text Given: 1-hr storm = 2.5 in. P = 2.5 in. 500 ac watershed = 21,780,000 ft 2 Land use = commercial business Watershed soil HSG = D Average watershed slope = 1% Hydraulic length of watershed = 6,000 ft Required: Find the storm hydrograph Use the triangular unit hydrograph method

13 Example 5.10 in Text Solution: HSG = D / Commercial T. 5.1 CN = 95 S = 0.53 in. S = (1000 / CN) - 10 Assume AMC = II Q = 1.96 in. of runoff Using the SCS CN method Q = (P - 0.2S) 2 / (P + 0.8S) Step #1 Find points to develop the unit hydrograph t l = 0.75 hr (45 min) Use Eq. 1 t p = 1.25 hr (75 min) Use Eq. 2 t b = 3.33 hr (200 min) Use Eq. 4 q p = 302 cfs / 1 in. of runoff Use Eq. 3 Plot unit hydrograph Check area under the triangle 1 in.

14 Q (cfs) Volume under triangle = 1/2bh = ½(200 min x 60 sec/min)302.5 ft 3 /sec = 1,815,000 ft 3 Surface runoff depth = 1,815,000 ft 3 / 21,780,000 ft 2 = ft = 1.0 in. ok q p = cfs Watershed area (A) = 21,780,000 ft t p = t b = 200 T(min)

15 Example 5.10 in Text Step #2 q p 2.5 rain = cfs x 1.96 in. of SRO - SRO = 1.96 in. from the SCS CN Method q p 2.5 rain = cfs Plot storm hydrograph Check area under the triangle 1.96 in.

16 Q (cfs) 600 q p = cfs Volume under triangle = 3,557,400 ft 3 Surface runoff depth = 1.96 in. ok 3,557,400 ft 3 / 21,780,000 ft 2 = ft = 1.96 in t p = t b = 200 T(min)

17 Example 5.11 in Text Given: Same as Example 5.10 but this time more detailed rainfall information 1-hr storm = 2.5 in min = 0.5 in min = 1.0 in min = 0.75 in min = 0.25 in. 500 ac watershed Land use = commercial business Watershed soil HSG = D Average watershed slope = 1% Hydraulic length of watershed = 6,000 ft Required: Find the storm hydrograph

18 Example 5.11 in Text Solution: HSG = D / Commercial T. 5.1 CN = 95 S = 0.53 in. (same as Ex. 5.10, S = (1000 / CN) - 10) Assume AMC = II Q = 1.96 in. of runoff (same as Ex. 5.10, Q = (P - 0.2S) 2 / (P + 0.8S) Find points to develop the unit hydrograph t L = 0.75 hr (45 min) (same as Ex. 5.10, t L = [L 0.8 (S + 1) 0.7 ] / [1900 x Y 0.5 ] New since D = 15 min. t p = t L + D/2 = 0.88 hr (52.5 min) New since t p = 52.5 min q p = 484(A)/t p = 432 cfs / 1 in. of runoff

19 Example 5.11 in Text 0 15 min P = 0.5 in. (given) Q 1 = [ (.53))] 2 / [ (.53)] Q 1 = 0.17 in. of runoff q p1 = 432 cfs / 1 of SRO x 0.17 = cfs t p1 = t L + D/2 = /2 = 52.5 min t b1 = 2.67(t p ) = 2.67(52.5) = min

20 Example 5.11 in Text 0 30 min P = = 1.5 in. Q 1 + Q 2 = [ (.53))] 2 / [ (.53)] Q 1 + Q 2 = 1.01 in. of runoff Q 2 = 1.01 in. - Q 1 Q 2 = = 0.84 in. of runoff q p2 = 432 cfs / 1 of SRO x 0.84 = cfs t p2 = = 67.5 min Shift on the x-axis by 15 min t b2 = = min Shift on the x-axis by 15 min

21 Example 5.11 in Text 0 45 min P = = 2.25 in. Q 1 + Q 2 + Q 3 = [ (.53))] 2 / [ (.53)] Q 1 + Q 2 + Q 3 = 1.72 in. of runoff Q 3 = 1.72 in. - Q 1 - Q 2 Q 3 = = 0.71 in. of runoff q p3 = 432 cfs / 1 of SRO x 0.71 = cfs t p3 = = 82.5 min Shift on the x-axis by 30 min t b3 = = min Shift on the x-axis by 30 min

22 Example 5.11 in Text 0 60 min P = = 2.50 in. Q 1 + Q 2 + Q 3 + Q 4 = [ (.53))] 2 / [ (.53)] Q 1 + Q 2 + Q 3 + Q 4 = 1.96 in. of runoff Q 4 = 1.96 in. - Q 1 - Q 2 - Q 3 Q 4 = = 0.24 in. of runoff q p4 = 432 cfs / 1 of SRO x 0.24 = cfs t p4 = = 97.5 min Shift on the x-axis by 45 min t b4 = = min Shift on the x-axis by 45 min

23 Y = mx + b Y = -mx + b

24

25 Y = mx + b m = (73.4 0) / ( ) m = Y = X + b b = Y X = (52.5) b = Y = X Incremental Hydrograph #1 Q (cfs) (52.5, 73.4) (140.2, 0.0) Time (min)

26

Module 3. Lecture 6: Synthetic unit hydrograph

Module 3. Lecture 6: Synthetic unit hydrograph Lecture 6: Synthetic unit hydrograph Synthetic Unit Hydrograph In India, only a small number of streams are gauged (i.e., stream flows due to single and multiple storms, are measured) There are many drainage

More information

Module 3. Lecture 4: Introduction to unit hydrograph

Module 3. Lecture 4: Introduction to unit hydrograph Lecture 4: Introduction to unit hydrograph (UH) The unit hydrograph is the unit pulse response function of a linear hydrologic system. First proposed by Sherman (1932), the unit hydrograph (originally

More information

Rainfall - runoff: Unit Hydrograph. Manuel Gómez Valentín E.T.S. Ing. Caminos, Canales y Puertos de Barcelona

Rainfall - runoff: Unit Hydrograph. Manuel Gómez Valentín E.T.S. Ing. Caminos, Canales y Puertos de Barcelona Rainfall - runoff: Unit Hydrograph Manuel Gómez Valentín E.T.S. ng. Caminos, Canales y Puertos de Barcelona Options in many commercial codes,, HMS and others HMS Menu Transform method, User specified,

More information

Engineering Hydrology. Class 16: Direct Runoff (DRO) and Unit Hydrographs

Engineering Hydrology. Class 16: Direct Runoff (DRO) and Unit Hydrographs Engineering Hydrology Class 16: and s Topics and Goals: 1. Calculate volume of DRO from a hydrograph; 2. Complete all steps to develop a. Class 14: s? HG? Develop Ocean Class 14: s? HG? Develop Timing

More information

Introduction to Hydrology, Part 2. Notes, Handouts

Introduction to Hydrology, Part 2. Notes, Handouts Introduction to Hydrology, Part 2 Notes, Handouts Precipitation Much of hydrology deals with precipitation How much? How frequently/infrequently? What form? How quickly? Seasonal variation? Drought frequency?

More information

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952).

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). 1. Stream Network The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). First Order Streams streams with no tributaries. Second Order Streams begin at

More information

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Bruce McEnroe, Bryan Young, Ricardo Gamarra and Ryan Pohl Department of Civil, Environmental, and Architectural

More information

Engineering Hydrology Class 3

Engineering Hydrology Class 3 Engineering Hydrology Class 3 Topics and Goals: I.Develop s (estimate precipitation) II.Develop simple constant intensity design storm III.Develop SCS design storm Ocean s Why do we want to derive the?

More information

Peak discharge computation

Peak discharge computation Ia/P 4 Peak Dischage Method Graphical Peak Discharge Method This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to describe:

Learning objectives. Upon successful completion of this lecture, the participants will be able to describe: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to describe: The different approaches for estimating peak runoff for urban drainage network

More information

FAST WATER / SLOW WATER AN EVALUATION OF ESTIMATING TIME FOR STORMWATER RUNOFF

FAST WATER / SLOW WATER AN EVALUATION OF ESTIMATING TIME FOR STORMWATER RUNOFF FAST WATER / SLOW WATER AN EVALUATION OF ESTIMATING TIME FOR STORMWATER RUNOFF Factors Affecting Stormwater Runoff: Rainfall intensity % Impervious surfaces Watershed size Slope Soil type, soil compaction

More information

Norman Maclean Snowmelt Flow rate Storm flows fs (c flow m a tre S

Norman Maclean Snowmelt Flow rate Storm flows fs (c flow m a tre S Eventually, all things merge into one, and a river runs through it. Norman Maclean Understanding Streamflow ADEQ SW Short Course June 13, 213 Phoenix, AZ Hydrographs Discharge (Q) USGS flow data & plots

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment

More information

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream What is runoff? Runoff Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream 1 COMPONENTS OF Runoff or STREAM FLOW 2 Cont. The types of runoff

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or any

More information

Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes

Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes Chapter H. Introduction to Surface Water Hydrology and Drainage for Engineering Purposes As seen in Figure H.1, hydrology is a complex science that deals with the movement of water between various stages

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Keanan Bell NorthStar June 12, 2015 Project began in 2010 as a Hydrology Assessment and Conceptual Restoration

More information

Basic Hydrology Runoff Curve Numbers

Basic Hydrology Runoff Curve Numbers Basic Hydrology Runoff Curve Numbers By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District The SCS Runoff Curve Number The RCN (Runoff Curve Number) method was originally established

More information

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation Watershed MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1 A watershed is an area of land thaaptures rainfall and other precipitation and funnels it to a lake or stream or wetland. The area within the watershed

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

San Francisco State University Site 1 Vegetated Infiltration Basin Monitoring Report: Rainy Seasons and

San Francisco State University Site 1 Vegetated Infiltration Basin Monitoring Report: Rainy Seasons and San Francisco State University Site 1 Vegetated Infiltration Basin Monitoring Report: Rainy Seasons 2011-12 and 2012-13 Project Overview San Francisco State University (SFSU) has implemented several green

More information

Runoff Processes. Daene C. McKinney

Runoff Processes. Daene C. McKinney CE 374 K Hydrology Runoff Processes Daene C. McKinney Watershed Watershed Area draining to a stream Streamflow generated by water entering surface channels Affected by Physical, vegetative, and climatic

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part 257.82 PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R. Part

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

Utah State University Department of Civil and Environmental Engineering CEE 3430 Engineering Hydrology Test 2. Date: 3/31/2014

Utah State University Department of Civil and Environmental Engineering CEE 3430 Engineering Hydrology Test 2. Date: 3/31/2014 Utah State University Department of Civil and Environmental Engineering CEE 3430 Engineering Hydrology Test 2. Date: 3/31/2014 D.G. Tarboton Time: 50 min 45 Points Open Book. Answer all questions. Please

More information

Introduction, HYDROGRAPHS

Introduction, HYDROGRAPHS HYDROGRAPHS Sequence of lecture Introduction Types of Hydrograph Components of Hydrograph Effective Rainfall Basin Lag or Time Lag Parts of Hydrograph Hydrograph Analysis Factors Affecting Hydrograph Shape

More information

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges Detention Pond Design Considering Varying Design Storms Land Development Results in Increased Peak Flow Rates and Runoff Volumes Developed area Robert Pitt Department of Civil, Construction and Environmental

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

DETENTION BASIN DESIGN USING RATIONAL HYDROGRAPHS

DETENTION BASIN DESIGN USING RATIONAL HYDROGRAPHS DETENTION BASIN DESIGN USING RATIONAL HYDROGRAPHS By Thomas F. Smith, P.E., P.L.S. Bercek and Smith Engineering, Inc. www.bercekandsmith.com tfsmith2@bercekandsmith.com 1 Topics Covered: 2 1 Attributed

More information

Stream hydrographs. Stream hydrographs. Baseflow. Graphs of river stage or discharge at a single location as a function of time

Stream hydrographs. Stream hydrographs. Baseflow. Graphs of river stage or discharge at a single location as a function of time Stream hydrographs Graphs of river stage or discharge at a single location as a function of time Hydrologic og budget Discharge: units? How is it measured? Show fluctuating water levels in response to

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or

More information

HERPIC County Storm Drainage Manual

HERPIC County Storm Drainage Manual HERPIC County Storm Drainage Manual C h r is t o p h e r B. B u r k e Research Assistant Highway Extension and Research Project for Indiana Counties Purdue University The HERPIC (Highway Extension and

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Unit 2: Geomorphologic and Hydrologic Characteristics of Watersheds. ENVS 435: Watershed Management INSTR.: Dr. R.M. Bajracharya

Unit 2: Geomorphologic and Hydrologic Characteristics of Watersheds. ENVS 435: Watershed Management INSTR.: Dr. R.M. Bajracharya Unit 2: Geomorphologic and Hydrologic Characteristics of Watersheds ENVS 435: Watershed Management INSTR.: Dr. R.M. Bajracharya Watersheds are hydro-geologic units Water flow and cycling are basic and

More information

5/25/2017. Overview. Flood Risk Study Components HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES. Hydraulics. Outcome or Impacts

5/25/2017. Overview. Flood Risk Study Components HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES. Hydraulics. Outcome or Impacts HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES C. Landon Erickson, P.E.,CFM Water Resources Engineer USACE, Fort Worth District April 27 th, 2017 US Army Corps of Engineers Overview Flood

More information

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40

More information

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor.

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor. AN ALTERNATE APPROACH FOR ESTIMATING SCS UNIT HYDROGRAPH PEAK RATE FACTORS (PRFS) IN SOUTHWEST FLORIDA Himat Solanki Southwest Florida Water Management District 115 Corporation Way, Venice, Florida 34292

More information

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 600 STORM RUNOFF TABLE OF CONTENTS 601 INTRODUCTION 603 601.1 - Basin Characteristics 603 602 TIME OF

More information

Stormwater Management Impacts Resulting from the Volumetric Abstraction of Runoff from Frequent Storms per PADEP CG-1. Geoffrey A. Cerrelli 1, P.E.

Stormwater Management Impacts Resulting from the Volumetric Abstraction of Runoff from Frequent Storms per PADEP CG-1. Geoffrey A. Cerrelli 1, P.E. Stormwater Management Impacts Resulting from the Volumetric Abstraction of Runoff from Frequent Storms per PADEP CG-1 Geoffrey A. Cerrelli 1, P.E. 1 Hydraulic Engineer USDA/NRCS, One Credit Union Place,

More information

Autumn semester of Prof. Kim, Joong Hoon

Autumn semester of Prof. Kim, Joong Hoon 1 Autumn semester of 2010 Prof. Kim, Joong Hoon Water Resources Hydrosystems System Engineering Laboratory Laboratory 2 A. HEC (Hydrologic Engineering Center) 1 Established in the U.S. Army Corps of Engineers(USACE)

More information

Summary of Detention Pond Calculation Canyon Estates American Canyon, California

Summary of Detention Pond Calculation Canyon Estates American Canyon, California July 15, 2015 Bellecci & Associates, Inc Summary of Detention Pond Calculation Canyon Estates American Canyon, California 1. Methodology: Method: Unit Hydrograph Software: Bentley Pond Pack Version 8i

More information

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies Chapter 5 " HYDROLOGIC SYSTEMS " CHAPTER 5 5.1 INTRODUCTION 5.1.1 Training Objectives The objectives of this module are:! to

More information

5/11/2007. WinTR-55 for Plan Reviews Small Watershed Hydrology Overview

5/11/2007. WinTR-55 for Plan Reviews Small Watershed Hydrology Overview WinTR-55 for Plan Reviews Small Watershed Hydrology Overview 1 Overview Course Outline Historical Background Program Description Model Capabilities and Limitations This is the Overview portion of the training.

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

CVEN 339 Summer 2009 Final Exam. 120 minutes allowed. 36 Students. No curve applied to grades. Median 70.6 Mean 68.7 Std. Dev High 88 Low 24.

CVEN 339 Summer 2009 Final Exam. 120 minutes allowed. 36 Students. No curve applied to grades. Median 70.6 Mean 68.7 Std. Dev High 88 Low 24. CVEN 339 Final Exam 120 minutes allowed 36 Students No curve applied to grades Median 70.6 Mean 68.7 Std. Dev. 13.7 High 88 Low 24.5 Name: CVEN 339 Water Resources Engineering Summer Semester 2009 Dr.

More information

ENGN.4010 ENGINEERING CAPSTONE DESIGN Watershed Analysis. CiA

ENGN.4010 ENGINEERING CAPSTONE DESIGN Watershed Analysis. CiA RATIONAL METHOD Q CiA Where: Q = Maximum Rate of Runoff (cfs) C = Runoff Coefficient i = Average Rainfall Intensity (in/hr) A = Drainage Area (in acres) RATIONAL METHOD Assumptions and Limitations: Watershed

More information

IJSER. within the watershed during a specific period. It is constructed

IJSER. within the watershed during a specific period. It is constructed International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-014 ISSN 9-5518 306 within the watershed during a specific period. It is constructed I. INTRODUCTION In many instances,

More information

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY)

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) Hydromodification design criteria for the North Orange County permit area are based on the 2- yr, 24-hr

More information

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257 INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals

More information

Drainage Analysis. Appendix E

Drainage Analysis. Appendix E Drainage Analysis Appendix E The existing and proposed storm drainage systems have been modeled with Bentley CivilStorm V8 computer modeling software. The peak stormwater discharge was determined for

More information

Hydrologic Calibration:

Hydrologic Calibration: Hydrologic Calibration: UPDATE OF EFFECTIVE HYDROLOGY FOR MARYS CREEK October 2010 Agenda Background Hydrologic model Calibrated rainfall Hydrologic calibration 100 year discharges, Existing Conditions

More information

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond)

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Chapter 10 Design Examples Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Example 2: Filter Design in a commercial development

More information

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy 22 April 2015 NWA, Pune Exercise Objective: To determine hydrological Response of the given

More information

Treatment Volume: Curve Numbers. Composite CN or Not? Treatment Volume: Curve Numbers. Treatment Volume: Calculation. Treatment Volume: Calculation

Treatment Volume: Curve Numbers. Composite CN or Not? Treatment Volume: Curve Numbers. Treatment Volume: Calculation. Treatment Volume: Calculation Stormwater Engineering Bioretention Design Bill Hunt, PE, Ph.D. Extension Specialist & Assistant Professor NCSU-BAE www.bae.ncsu.edu/stormwater Bioretention Design Six Step Process 1 Determine Volume to

More information

RUNOFF CALCULATIONS RATIONAL METHOD. To estimate the magnitude of a flood peak the following alternative methods are available:

RUNOFF CALCULATIONS RATIONAL METHOD. To estimate the magnitude of a flood peak the following alternative methods are available: RUNOFF CALCULATIONS To estimate the magnitude of a flood peak the following alternative methods are available: 1. Unit-hydrograph technique 2. Empirical method 3. Semi-Empirical method (such rational method).

More information

INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT MCMANUS ASH POND A (AP-1) 40 CFR

INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT MCMANUS ASH POND A (AP-1) 40 CFR INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT MCMANUS ASH POND A (AP-1) 40 CFR 257.82 EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R. Part 257 and Part

More information

Water Budget III: Stream Flow P = Q + ET + G + ΔS

Water Budget III: Stream Flow P = Q + ET + G + ΔS Water Budget III: Stream Flow P = Q + ET + G + ΔS Why Measure Streamflow? Water supply planning How much water can we take out (without harming ecosystems we want to protect) Flood protection How much

More information

Water Budget III: Stream Flow P = Q + ET + G + ΔS

Water Budget III: Stream Flow P = Q + ET + G + ΔS Water Budget III: Stream Flow P = Q + ET + G + ΔS Why Measure Streamflow? Water supply planning How much water can we take out (without harming ecosystems we want to protect) Flood protection How much

More information

Water Budget III: Stream Flow P = Q + ET + G + ΔS

Water Budget III: Stream Flow P = Q + ET + G + ΔS Water Budget III: Stream Flow P = Q + ET + G + ΔS Why Measure Streamflow? Water supply planning How much water can we take out (without harming ecosystems we want to protect) Flood protection How much

More information

Water Budget III: Stream Flow P = Q + ET + G + ΔS

Water Budget III: Stream Flow P = Q + ET + G + ΔS Water Budget III: Stream Flow P = Q + ET + G + ΔS Why Measure Streamflow? Water supply planning How much water can we take out (without harming ecosystems we want to protect) Flood protection How much

More information

Modeling Infiltration BMPs

Modeling Infiltration BMPs Modeling Infiltration BMPs CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696-4150 www.thcahill.com Design Goals for Calculations 1. Mitigate Peak Rates 2-Year to 100-Year 2. No Volume

More information

Chapter Introduction. 5.2 Computational Standard Methods HYDROLOGY

Chapter Introduction. 5.2 Computational Standard Methods HYDROLOGY Chapter 5. HYDROLOGY 5.1 Introduction The definition of hydrology is the scientific study of water and its properties, distribution, and effects on the earth s surface, in the soil and the atmosphere.

More information

SECTION IV WATERSHED TECHNICAL ANALYSIS

SECTION IV WATERSHED TECHNICAL ANALYSIS A. Watershed Modeling SECTION IV WATERSHED TECHNICAL ANALYSIS An initial step in the preparation of this stormwater management plan was the selection of a stormwater simulation model to be utilized. It

More information

2

2 1 2 3 4 5 6 The program is designed for surface water hydrology simulation. It includes components for representing precipitation, evaporation, and snowmelt; the atmospheric conditions over a watershed.

More information

SAN GORGONIO PASS CAMPUS - PHASE I

SAN GORGONIO PASS CAMPUS - PHASE I SAN GORGONIO PASS CAMPUS - PHASE I Banning, CA DRAINAGE STUDY June 16, 2010 Reference 106-195 PREPARED BY: Encompass Associates, Inc. 5699 Cousins Place Rancho Cucamonga, CA 91737 909-684-0093 Fax-909-586-6979

More information

Computation of excess stormflow at the basin scale. Prof. Pierluigi Claps. Dept. DIATI, Politecnico di Torino

Computation of excess stormflow at the basin scale. Prof. Pierluigi Claps. Dept. DIATI, Politecnico di Torino Computation of excess stormflow at the basin scale Prof. Pierluigi Claps Dept. DIATI, Politecnico di Torino Pierluigi.claps@polito.it losses include: interception, evapotranspiration, storage infiltration,

More information

STORMWATER HYDROLOGY

STORMWATER HYDROLOGY ..CHAPTER.. STORMWATER HYDROLOGY 3.1 Introduction to Hydrologic Methods Hydrology is the science dealing with the characteristics, distribution, and movement of water on and below the earth's surface and

More information

HYDROLOGY WORKSHEET 1 PRECIPITATION

HYDROLOGY WORKSHEET 1 PRECIPITATION HYDROLOGY WORKSHEET 1 PRECIPITATION A watershed is an area of land that captures rainfall and other precipitation and funnels it to a lake or stream or wetland. The area within the watershed where the

More information

APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN

APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CIVIL & GEOTECHNICAL FINAL DESIGN APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN PARSONS P:\Honeywell -SYR\44483 - Lake Detail Design\9

More information

iswm TM Technical Manual Hydrology:

iswm TM Technical Manual Hydrology: : 1.0 2.0 Downstream Assessment 3.0 Streambank Protection 4.0 Water Balance 5.0 Rainfall Tables 6.0 Hydrologic Soils Data Table of Contents 1.0... HO-1 1.1 Estimating Runoff... HO-1 1.1.1 Introduction

More information

Stormwater Review Part 2. Rainfall and Runoff. Tom Seybert, PE and Andy Bennett, PE. Pennsylvania Surveyors Conference 2019

Stormwater Review Part 2. Rainfall and Runoff. Tom Seybert, PE and Andy Bennett, PE. Pennsylvania Surveyors Conference 2019 Stormwater Review Part 2 Rainfall and Runoff Tom Seybert, PE and Andy Bennett, PE Pennsylvania Surveyors Conference 2019 1 Topics Covered 1. Rainfall characteristics and sources 2. Watershed characteristics

More information

Cumulative Precipitation

Cumulative Precipitation Problem 1: Hyetograph Construction (4 pts) Use the rainfall information below to construct both the cumulative (inch) and incremental (in/hr) hyetographs. Note: the incremental hyetograph must be formatted

More information

Engineering Hydrology

Engineering Hydrology Engineering Hydrology 040454 Introduction Instructor: Dr. Zeyad Tarawneh Course Contents Introduction, watershed and flow: Definition, hydrologic cycle, water balance, watersheds, statistical methods in

More information

HYDROLOGICAL IMPACTS OF URBANIZATION: WHITE ROCK CREEK, DALLAS TEXAS. Julie Anne Groening Vicars, B.A. Thesis Prepared for the Degree of

HYDROLOGICAL IMPACTS OF URBANIZATION: WHITE ROCK CREEK, DALLAS TEXAS. Julie Anne Groening Vicars, B.A. Thesis Prepared for the Degree of HYDROLOGICAL IMPACTS OF URBANIZATION: WHITE ROCK CREEK, DALLAS TEXAS Julie Anne Groening Vicars, B.A. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS December 25 APPROVED:

More information

HYDROLOGY CHECKLIST FOR LAND DISTURBANCE PERMITS

HYDROLOGY CHECKLIST FOR LAND DISTURBANCE PERMITS HYDROLOGY CHECKLIST FOR LAND DISTURBANCE PERMITS Project Name: Project Number: Reviewed By: Date: Telephone: Email: Address all items marked with an X Minimum Submittal Requirements 1. Conceptual Review

More information

Tom Ballestero, Rob Roseen, James Houle, Tim Puls, Federico Uribe, Josh Briggs

Tom Ballestero, Rob Roseen, James Houle, Tim Puls, Federico Uribe, Josh Briggs Porous Pavement Hydrology Tom Ballestero, Rob Roseen, James Houle, Tim Puls, Federico Uribe, Josh Briggs University of New Hampshire Stormwater Center 22 nd Annual NEIWPCC Nonpoint Source Pollution Conference

More information

Water Quality Design Storms for Stormwater Hydrodynamic Separators

Water Quality Design Storms for Stormwater Hydrodynamic Separators 1651 Water Quality Design Storms for Stormwater Hydrodynamic Separators Victoria J. Fernandez-Martinez 1 and Qizhong Guo 2 1 Rutgers University, Department of Civil and Environmental Engineering, 623 Bowser

More information

EXPLICIT FUNCTIONS FOR IMPLICIT RESERVOIR ROUTING

EXPLICIT FUNCTIONS FOR IMPLICIT RESERVOIR ROUTING Guo, James C.Y. (2004). Hydrology-Based Approach to Storm Water Detention Design Using New Routing Schemes, ASCE J. of Hydrologic Engineering, Vol 9, No. 4, July/August Guo, James C.Y. (2000). Storm Hydrographs

More information

Rational Method Hydrological Calculations with Excel COURSE CONTENT

Rational Method Hydrological Calculations with Excel COURSE CONTENT Rational Method Hydrological Calculations with Excel Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Calculation of peak storm water runoff rate from a drainage area is often done with the

More information

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE by James C.Y. Guo. Professor, Civil Engineering, U. Of Colorado at Denver, James.Guo@cudenver.edu.. And Eric Hsu, Project Engineer, Parson

More information

CHAPTER 3 STORMWATER HYDROLOGY. Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF

CHAPTER 3 STORMWATER HYDROLOGY. Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF CHAPTER 3 STORMWATER HYDROLOGY Table of Contents SECTION 3.1 METHODS FOR ESTIMATING STORMWATER RUNOFF 3.1.1 Introduction to Hydrologic Methods...3.1-1 3.1.2 Symbols and Definitions...3.1-3 3.1.3 Rainfall

More information

Calibration of Hydrologic Design Inputs for a Small Urban Watershed

Calibration of Hydrologic Design Inputs for a Small Urban Watershed Research Project Proposal for Johnson County Stormwater Management Program and City of Overland Park, Kansas Calibration of Hydrologic Design Inputs for a Small Urban Watershed Bruce M. McEnroe & C. Bryan

More information

Run-on and Run-off Control System Plan

Run-on and Run-off Control System Plan Run-on and Run-off Control System Plan For Compliance with the Coal Combustion Residuals Rule (40 CFR 257.81) Pawnee Station CCR Landfill Public Service Company of Colorado Denver, Colorado October 17,

More information

HYDROLOGIC AND HYDRAULIC TABLES AND CURVES

HYDROLOGIC AND HYDRAULIC TABLES AND CURVES APPENDIX C HYDROLOGIC AND HYDRAULIC TABLES AND CURVES PRECIPITATION TABLES Table C-1, page C-2, provides local data for use in designing drainage systems as discussed in Chapter 6. HYDROLOGIC SUPPLY CURVES

More information

Design of Stormwater Wetlands

Design of Stormwater Wetlands Hydraulic & Hydrologic Stormwater Engineering Design of Stormwater Wetlands Jon Hathaway, EI Extension Associate NCSU Bio. And Ag. Engineering 6 Step Process 1. Watershed Analysis (Runoff Volume and Peak

More information

Section 2: Hydrology. Introduction. What is the Return Period? Intensity-Duration-Frequency Data. Generating a runoff hydrograph 85 Minutes

Section 2: Hydrology. Introduction. What is the Return Period? Intensity-Duration-Frequency Data. Generating a runoff hydrograph 85 Minutes Section 2: Hydrology Generating a runoff hydrograph 85 Minutes Press Space, PageDown, or Click to advance. Press PageUp to reverse. Esc to exit. Right-Click for other options. Copyright 2004 HydroCAD Software

More information

CIVE22 BASIC HYDROLOGY Jorge A. Ramírez Homework No 7

CIVE22 BASIC HYDROLOGY Jorge A. Ramírez Homework No 7 Hydrologic Science and Engineering Civil and Environmental Engineering Department Fort Collins, CO 80523-1372 (970) 491-7621 CIVE22 BASIC HYDROLOGY Jorge A. Ramírez Homework No 7 1. Obtain a Unit Hydrograph

More information

DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO

DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO Prepared by Dr. James C.Y. Guo, P.E., Professor and Director, Civil Engineering, U of Colorado Denver James.Guo@UCDenver.edu

More information

UPDATE OF ARC TP108 RUN-OFF CALCULATION GUIDELINE

UPDATE OF ARC TP108 RUN-OFF CALCULATION GUIDELINE UPDATE OF ARC TP108 RUN-OFF CALCULATION GUIDELINE Bodo Hellberg, Stormwater Action Team, Auckland Regional Council Matthew Davis, Stormwater Action Team, Auckland Regional Council ABSTRACT This paper focuses

More information

SECTION III: WATERSHED TECHNICAL ANALYSIS

SECTION III: WATERSHED TECHNICAL ANALYSIS Trout Creek Watershed Stormwater Management Plan SECTION III: WATERSHED TECHNICAL ANALYSIS A. Watershed Modeling An initial step this study of the Trout Creek watershed was the selection of a stormwater

More information

Surface Skimmer and Baffle Sediment Basins, Modeling the Benefits

Surface Skimmer and Baffle Sediment Basins, Modeling the Benefits Surface Skimmer and Baffle Sediment Basins, Modeling the Benefits J.P. Johns, PE Woolpert Ray Vaughan Stormwater Manager SCDOT Brandon Wagner -Woolpert Background o SCDOT sediment basin design required

More information

DICKINSON BAYOU WATERSHED STEERING COMMITTEE FINAL MEMBER CRITERIA COMPARISON

DICKINSON BAYOU WATERSHED STEERING COMMITTEE FINAL MEMBER CRITERIA COMPARISON DICKINSON BAYOU WATERSHED STEERING COMMITTEE FINAL MEMBER CRITERIA COMPARISON May 25, 2006 INTRODUCTION The Dickinson Bayou Watershed covers approximately 95.5 square miles and stretches from western Brazoria

More information

June 2017 C.3 Workshop Sizing Example. Section II.B Sizing Volume-Based Treatment Measures based on the Adapted CASQA Stormwater BMP Handbook Approach

June 2017 C.3 Workshop Sizing Example. Section II.B Sizing Volume-Based Treatment Measures based on the Adapted CASQA Stormwater BMP Handbook Approach SANTA CLARA VALLEY URBAN RUNOFF POLLUTION PREVENTION PROGRAM June 2017 C.3 Workshop Sizing Example Section II. Sizing for Volume-Based Treatment Measures Section II.B Sizing Volume-Based Treatment Measures

More information

DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA

DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA DEVELOPMENT OF PEAK RUNOFF HYDROGRAPHS FOR OBA AND OTIN RIVERS IN OSUN STATE, NIGERIA 1 Adejumo, L. A., 1 Adeniran, K. A., 2 Salami, A.W., 3 Abioye Tunde., and 4 Adebayo, K. R 1 Department of Agricultural

More information

Design Example Residential Subdivision

Design Example Residential Subdivision Design Example Residential Subdivision Rhode Island Stormwater Design and Installation Standards Manual December 2010 Public Training March 22, 2010 Richard Claytor, P.E. 508-833-6600 Appendix D: Site

More information

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation 1 v= R S n 2/3 1/2 DEM Flow direction Raster Spatial analyst slope DEM (%) Flow accumulation slope DEM / 100 (actual slope) 0 = no cell contributing 215 = 215 cell contributing towards that cell sqrt (actual

More information

Effect of Land Surface on Runoff Generation

Effect of Land Surface on Runoff Generation Effect of Land Surface on Runoff Generation Context: Hydrologic Cycle Runoff vs Infiltration Infiltration: Process by which water on the ground surface enters the soil Runoff: Water (from rain, snowmelt,

More information

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257 INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 HUFFAKER ROAD (PLANT HAMMOND) PRIVATE INDUSTRIAL LANDFILL (HUFFAKER ROAD LANDFILL) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion

More information

CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008

CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008 CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008 When estimating runoff for a storm event it is assumed that the storm runoff occurs from

More information