Photovoltaics Challenges and Opportunities in Materials, Machines and Manufacturing

Size: px
Start display at page:

Download "Photovoltaics Challenges and Opportunities in Materials, Machines and Manufacturing"

Transcription

1 Photovoltaics Challenges and Opportunities in Materials, Machines and Manufacturing K.V. Ravi Applied Materials Inc. 1

2 What s Your Mindset? Tough Guy Tree Hugger The energy content of all the crude oil left in the ground = 15 hours of sunlight hitting the earth Who s the girly man now? From: Brent Nelson - NREL 2

3 Driving forces for Solar 1. Increasing costs of conventional energy - Oil > $11/barrel; top tier pricing for electricity in the PG&E territory today - > 3 cents/kwh 2. Climate change, environmental issues - CO2 emissions 3. Energy security - political instabilities in oil producing regions, terrorism 4. Increasing demand for energy from China, India and other emerging economies 5. Increasing levels of government support feed in tariffs, tax credits 3

4 What is needed to make solar happen? Government Policies Active promotion of this energy source Incentives, tax breaks, legislative initiatives- give solar the same advantages as have been given to carbon/nuclear/hydro based energy generation options Education, public awareness, sustained political will Avoid irrational response to fluctuating oil prices Sustained policies over decades Invest in education Science/Technology/Manufacturing Very large scale manufacture GW scale factories Highly automated, efficient manufacturing capability machines, processes, factory automation, --- Continuing and accelerating research in materials, processes, devices, machines 4

5 All Path s Lead to Solar Pure Economist s Path: Use what s cheapest, no environmental concern tar sands coal oil Solar s hal e gas All Other Renewables Low CO2 Path: Invest in the future now Invest in Solar before it s too Late: tar Intelligent Solar Investment Now sa Solar neducation: public & future techies coal ds oil gas All Other Renewables From: Brent Nelson - NREL 5

6 Global crystalline silicon solar cell production 5 15 to 25 GW MW % % % % % % % 25 4% Year From: Photon International, 28 6

7 Billions of square inches of silicon Area of silicon used per year Photovoltaics ICs Year Metric Tons (X 1) $/Kg Projection by Photon International Year Polysilicon Capacity Direct selling price Indirect selling price Year 2 Polysilicon Pricing 7

8 Key market inflection point is coming $/kwh $1.2 $1. $.8 $.6 $.4 $.2 US Residential $/kwh OR/WA AZ/TX/NM Bay Area, CA $ Source: Solarbuzz, NREL, RWE Schott, EIA Utility costs Until crossover, subsidy bridges gap between PV and Utility cost PV Costs/Watt falling Efficiency improvements Learning Curve Scale manufacturing Utility Rates Increasing Modeled at 25 yr CAGR of 2.4% Additional upward bias from external factors PG&E service territory Time of use rates as high as $.4/kWh Top pricing tier at $.32/kWh Average Price Parity Coming Crossover in US: ~3-1 yrs Crossover in Europe; 6-8 yrs Crossover in Japan: Now PV increasingly cost competitive with residential utility power 8

9 Today: Production Cost of Electricity 25 (in the U.S. in 22) Cost, /kw-hr Cost Coal Gas Oil Wind Nuclear Solar 9

10 Scale manufacturing and cost reduction 1 Historical Module Cost ($/W) * $21.83/W 1985 $11.2/W 199 $6.7/W 1995 $4.9/W 2 $3.89/W Projected Scale to Enable Learning Curve 25 $2.7/W , 1, 1E5 Cumulative Volume (MW) Production line size (Megawatts per Year):.5 (198) 5 (2) 5 (25) 1 (21) Lines Per Factory * 22 Dollars Source: Navigant Consulting 1

11 Market share of different Technologies- 27 α-si -4% Ribbon silicon - 3% CdTe 6% CIGS/CIS <1% Single Crystal (CZ) 33% Crystalline Silicon represents ~9% of the PV market The ratio between single crystal and multicrystal may change as we go forward: Multicrystal - 53% In favor of single crystal as higher efficiency cell processing concepts can be more easily implemented with single crystal silicon and advances, such as silicon recharge between ingot growth runs, may further shrink the cost differential between multicrystal and single crystal silicon. From: Navigant Consulting, 28 In favor of multicrystalline ingots if quality improvements narrow efficiency gap with Cz and further cost reductions are achieved as cast ingot technology is easier to scale and easier to wafer ( no OD grinding-less waste and time) 11

12 Crystalline Silicon PV manufacturing Value Chain Summary Definitions Polysilicon manufacture Ingot manufacture Wafering Cell manufacture Laminate Module and BoS Installation Saw Damage Emitter Formation Passivation Metallization Edge Isolation Test and Sort Poly Silicon Ingots Wafering Saw Damage/ Texture etch Emitter Formation Cell Production / Manufacture Passivation/ AR coating Metallization Edge Isolation Inspect / Test Cell interconenct/ Laminate Module Installation Materials Production Materials Processing Packaging Deployment 12

13 Module cost breakdown - $/W based on multicrystalline silicon technology (Current) $.15 $.6 $.17 Materials Depreciation Labor OH $.15 $.19 $1.37 (65%) Interest SG&A Modules $.4/W 3 % Wafers $.73/W 53 % Total cost - $ 2.9/W Cells $.23/W 17 % Materials cost breakdown 13

14 Czochralski process intrinsically limited to ~25 mm ( for solar) and, perhaps, 3 mm for ICs Cast ingot approach not limited in size due to fundamentally different method of heat extraction during crystal growth Heat Extraction Czochralski Heat Extraction 3 mm ingot Wafers per year per tool Czochralski 2 mm ingots Cast ingots Ingot weight- Kg Ingot dimensions- mm (dia. or square) Heat Extraction 6 mm square ingot ~2 mm square bricks Cast Ingots Heat exchanger method 14

15 Watts/Gram of Silicon Efficiency 15% 17% 19% 21% Wafer thickness - Microns Efficiency calculations of n + p c-si solar cell vs. wafer thickness at different rear surface recombination velocities. L n is diffusion length. Aberle, Prog. Photovolt: Res. Appl. 8, pg 473 (2) 15

16 Crystalline Silicon Junction/surface lifetime/ recombination dominated Bulk lifetime dominated Relative External Quantum Efficiency, % a-si:h/μc-si:h Cell Spectral Response a-si:h junction μc-si:h junction AM 1.5 global spectrum Wavelength, microns Number of Sunlight Photons (m -2 s -1 micron -1 ) E+19 16

17 Typical Solar Cell Structure Ag Grid SiN x AR Coating Efficiency loss mechanisms 1. ohm-cm n + emitter p-si Al-BSF Ag Contact Energy 1 3 Thermalisation losses photo excited pairs lose energy in excess of band gap low energy photons pass through the device without doing useful work - limits efficiency to ~ 44% Junction and contact voltage losses Recombination of photo excited electron - hole pairs Bulk recombination Surface recombination Theoretical upper efficiency limit of a silicon solar cell ~ 33% Usable energy (qv) 17

18 Materials and Cell efficiency where are we today? Attributes of Silicon: Availability Efficiency Cost Reliability Non-toxicity Manufacturability Highest reported cell efficiency - % Lab cells not in production Production cells Multjunction Concentrator Cells Single crystal silicon Multicrystalline Silicon Single crystal Silicon, production Multicrystalline Silicon, production Cu(In,Ga)Se2 CdTe Amorphous silicon Organic solar cells 18

19 Efficiency (%) Best c-si Cell efficiencies-impact of materials quality and device design (Data from NREL) No. Carolina State University Solarex Crystalline Si Cells Large area ( > 14 cm 2 ) (Small area) Single crystal Single crystal Multicrystalline Westing-ARChouse Rear junction/interdigitated device Multicrystalline Spire c-si (n-type) n p n p Inter-digitated contacts to inter-digitated junctions Stanford Varian UNSW UNSW Georgia Tech Sharp Contacts Grain boundaries α-si Emitter UNSW α-si BSF n-type, high lifetime, single crystal silicon UNSW UNSW Georgia Tech UNSW Homojunction device Hetrojunction device c-si (n-type) N+ P P+ Contacts Contacts Sunpower Sanyo (27) FhG-ISE Kyocera (26) p-type, multicrystalline silicon

20 Efficiency! - Extrapolations, Exaggerations and Downright lies!! Best module efficiency-% Single Crystal Multi Crystal Average module efficiencies: Single Crystal % Multi crystal % a-si CGS First Solar -CdTe Sharp Suntec Motec Solar world Kyocera Device structures that take advantage of the higher quality of single crystal silicon JA Solar BP Schott Sanyo Sunpower Best reported cell efficiencies Reported conversion efficiency numbers are all over the map! Not everyone follows a standardized test method* Best cell efficiencies reported at technical and trade conferences do not translate into production module efficiencies Module efficiencies, based on volume manufacturing, are substantially lower then the best reported cell efficiencies Large gap between R&D and manufacturing * For example see - IEEE Spectrum April 28 p 37 Thin Films Crystalline Silicon Selected PV manufacturers From: Photon International, 28 2

21 PV industry today is characterized by: Machines/Manufacturing Small volume ( 5 to ~ 2 MW/year) factories Crystalline silicon (wafer based) technology has not changed substantially for over 3 years (with some notable exceptions) Non silicon thin film technologies (E.G. CdTe, CIGS, etc.) are characterized by proprietary processes with home built/one of a kind tools, practiced by a few, mostly single, companies Thin film silicon ( α-si, tandem structures) beginning to emerge with integrated, turn key factories AMAT Sunfab Thin Film Lines Very high efficiency concepts based on single crystal compound semiconductors and complex multijunction structures are even further away from volume manufacturing 21

22 Benchmarking? C-Si PV industry today No standards, no industry road map Low volume factories Minimal inter-tool automation Little factory automation (software) No SPC Low yields, large bin splits Large companies integrating individual tools purchased from different tool manufacturers Small and new companies getting state of the art turnkey lines from several manufacturers Contrast with the Semiconductor industry Industry standards (SEMI) Industry road maps (ITRS) Common tools differentiation in design, integration, applications, markets Very high yields Very complex materials systems and processes Sophisticated, automated mega fabs PV industry needs to intelligently copy from the semiconductor and display industries A big issue is differentiation if common tools and processes become prevalent Differentiation cannot be based on design, process and equipment but needs to be based on scale manufacturing, lower cost of manufacture ( higher yields, efficiencies), applications and market development 22

23 SunFab Thin Film Line 23 23

24 SunFab PECVD 5.7 Enable new 5.7m2 glass substrate standard (2.2m x 2.6m) 24 24

25 Where is silicon going? Significant opportunity for thin film silicon α-si and tandem structures Low efficiency offset by low cost Large integrated modules 5.7 meters square Application in large power systems, BIPV not constrained by area Two directions to date with c-si based on traditional thinking Low cost multicrystalline silicon wafers derived from directionally solidified silicon ingots lower efficiency Higher cost, higher efficiency single crystal silicon Future directions Efficiency enhancements with thin film silicon multiband gap structures, light trapping etc. Continuing cost reductions with multicrystalline ingots/wafers Larger ingots up to 1 Ton (1Kg), thinner wafers Efficiency advancements thru material and process innovation Cost reduction and efficiency enhancements with single crystal silicon n-type silicon, thinner wafers Advanced device structures Convergence between thin films and c-si ( hetrojunctions; multi band gap devices --) 25

26 PV trajectory of the future? Silicon today α-si integrated factories at 6 to 1% efficiency emerging Multicrystalline silicon dominates, Single crystal for high efficiency - Efficiency range for conventional homojunction devices 15 to 17% Silicon tomorrow Efficiency and price pressures from thin film technologies CdTe, α-si Increasing drive towards high efficiency devices with crystalline silicon 25 Efficiency-% Rear junction /interdigitated device c-si (n-type) n p n p α-si Emitter α-si BSF Hetrojunction device c-si (n-type) a-si a-si/c-si CdTe c-si(m) c-si(cz) c-si (backcont) c-si (HIT) Inter-digitated contacts to inter-digitated junctions n-type, high lifetime, single crystal silicon Contacts 26

27 Extending Core Nanomanufacturing Competencies into Solar 1.E-1 1.E-2 $ per Transistor $/Transistor 1.E-3 1.E-4 1.E-5 1.E Experience from Semiconductor Manufacturing Cost / Area (relative) m 2 1.4m 2 Substrate Area 2.8m 2 Cost/Area 4.4m 2 5.2m Experience from LCD Manufacturing German Advisory Council on Global Change (WBGU), 24 27

28 28

29 Energy Consumption (kwh/wp) Energy Paybeck Period (y) Energy Consumption (kwh/wp) Energy payback period, Germany (y) Energy payback period, California (y) Cell efficiency % Wafer thickness - μm Hess et. al. 22 nd European Photovoltaic Solar Energy Conference, Sept 27, Milan, Italy 29

R&D needs in solar photovoltaic energy conversion

R&D needs in solar photovoltaic energy conversion R&D needs in solar photovoltaic energy conversion Hubert Fechner IEA PVPS IEA REWP Joint R&D Seminar, Paris, 3 March 2005 Solar energy radiated to the earth ~ 10.000 x world energy demand Photovoltaic

More information

Solar cell technologies present and future

Solar cell technologies present and future Solar cell technologies present and future Joachim LUTHER, Armin ABERLE and Peter Wuerfel Solar Energy Research Institute of Singapore (SERIS) Nature Photonics Technology Conference, Tokyo, Japan 20 October

More information

Photovoltaics and the Epoch of Renewable Energy

Photovoltaics and the Epoch of Renewable Energy Photovoltaics and the Epoch of Renewable Energy Emanuel Sachs Fred Fort Flowers and Daniel Fort Flowers Professor of Mechanical Engineering MIT sachs@mit.edu U.S. Historical Energy Use 100% 80% Wood Wood

More information

Renewable Energy in China Challenge and Opportunity

Renewable Energy in China Challenge and Opportunity Renewable Energy in China Challenge and Opportunity Zheng Xu, Ph.D. CEO and Founder Sierra Solar Power Inc. October 3, 2007 Sierra Solar Power / NASCA Teamwork Environmentalist Entrepreneur Political Climate

More information

The Energy Challenge. Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego.

The Energy Challenge. Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego. The Energy Challenge Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego November 7, 2007 Units of Power 0.1 kw (100 W) Light Bulb, Laptop Power Supply

More information

Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing

Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing Kristopher Davis 1,3, Andrew C. Rudack 2,3, Winston Schoenfeld 1,3 Hubert Seigneur 1,3, Joe Walters 1,3, Linda Wilson 2,3

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe Gerhard Rauter, COO Q-CELLS SE Leading edge photovoltaic technologies for Europe Q-CELLS SE Foundation: November 1999 Core business: Si-Solar Cells Start of production: 2001 Production (2007): 389 MW Number

More information

Solar energy for electricity production: Photovoltaics (PV)

Solar energy for electricity production: Photovoltaics (PV) Solar energy for electricity production: Photovoltaics (PV) Chiara Candelise Doctoral researcher Imperial Centre for Energy Policy and Technology (ICEPT) Page 1 Energy from the Sun HEAT (Solar thermal

More information

Crystalline Silicon Solar Cells Future Directions. Stuart Bowden BAPVC January Stuart Bowden BAPVC January 12,

Crystalline Silicon Solar Cells Future Directions. Stuart Bowden BAPVC January Stuart Bowden BAPVC January 12, Crystalline Silicon Solar Cells Future Directions Stuart Bowden BAPVC January 2011 Stuart Bowden BAPVC January 12, 2011 1 Stuart Bowden Co-Director of Solar Power Labs at ASU Work relevant to BAPVC: Pilot

More information

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Atlanta, January 30, 2012 Introduction In the 1 st Quarter of 2011, renewable energy generated production has surpassed

More information

Observations for Building a PV roadmap panel Doug Rose, SunPower Corp. NAS PV Manufacturing Symposium, 7/29/09

Observations for Building a PV roadmap panel Doug Rose, SunPower Corp. NAS PV Manufacturing Symposium, 7/29/09 Observations for Building a PV roadmap panel Doug Rose, SunPower Corp. NAS PV Manufacturing Symposium, 7/29/09 Safe Harbor Statement This presentation contains forward-looking statements within the meaning

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Technologies Lecture-33 Prof. C.S. Solanki Energy Systems Engineering IIT Bombay Contents Brief summary of the previous lecture Various Thin film solar cell technologies a-si CdTe, CIGS

More information

SEMI Northeast Forum The Impact of Materials on PV Technology. Stanley Merritt Global Business Development Manager DuPont Photovoltaic Solutions

SEMI Northeast Forum The Impact of Materials on PV Technology. Stanley Merritt Global Business Development Manager DuPont Photovoltaic Solutions SEMI Northeast Forum The Impact of Materials on PV Technology Stanley Merritt Global Business Development Manager DuPont Photovoltaic Solutions September 28, 2011 The Vision of DuPont To be the world s

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Solar Cells Fabrication Technologies

Solar Cells Fabrication Technologies Solar Cells Fabrication Technologies Crystalline Si Cell Technologies Amorphous Si Cell Technologies Thin Film Cell Technologies For a comprehensive tutorial on solar cells in general, see www.udel.edu/igert/pvcdrom

More information

A technology Roadmap for PV manufacturing

A technology Roadmap for PV manufacturing A technology Roadmap for PV manufacturing Dr. Winfried Hoffmann, Applied Materials, Vice President and CTO Energy and Environmental Solutions President European Photovoltaic Industry Association (EPIA)

More information

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9 INTRODUCTION... XVII STUDY GOALS AND OBJECTIVES... XVII REASONS FOR DOING THIS STUDY... XVII CONTRIBUTIONS TO THE STUDY AND FOR WHOM... XVII SCOPE AND FORMAT... XVIII METHODOLOGY... XVIII INFORMATION SOURCES...

More information

Solar photovoltaic devices

Solar photovoltaic devices ME 217: Energy, Environment & Society Fall 2015 Solar photovoltaic devices ME217 Energy, Environment & Society The first modern PV device 1954: first solar panel, manufactured by Bell Labs ME217 Energy,

More information

Amorphous silicon / crystalline silicon heterojunction solar cell

Amorphous silicon / crystalline silicon heterojunction solar cell Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-9 "Amorphous Silicon / Cyrstalline Silicon Heterojunction Solar Cell" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy Amorphous

More information

Solar electricity from and for buildings

Solar electricity from and for buildings Solar electricity from and for buildings Solar electricity from and for buildings The silent revolution of photovoltaic technology Wim C. Sinke ECN Solar Energy, Utrecht University & European Photovoltaic

More information

PROSPECTS AND POTENTIAL FOR COST REDUCTIONS IN PV SYSTEMS

PROSPECTS AND POTENTIAL FOR COST REDUCTIONS IN PV SYSTEMS PROSPECTS AND POTENTIAL FOR COST REDUCTIONS IN PV SYSTEMS Daniele Poponi Department of Economics, University of Bari (Italy) Center for Energy and Environmental Policy, University of Delaware (USA) After

More information

SunPower Overview in Japan

SunPower Overview in Japan SunPower Overview in Japan Takashi Sugihara November 10 th, 2010 Safe Harbor This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

Empowering a Solar Tomorrow Dr. ZhengRong Shi Chairman & Chief Executive Officer October 17, 2011

Empowering a Solar Tomorrow Dr. ZhengRong Shi Chairman & Chief Executive Officer October 17, 2011 Empowering a Solar Tomorrow Dr. ZhengRong Shi Chairman & Chief Executive Officer October 17, 2011 2002 2008 2001 2005 2011 10 years from inception to solar leadership Founded by Dr. ZhengRong Shi with

More information

Will Solar-Generated Electricity Fulfill Its Promise?

Will Solar-Generated Electricity Fulfill Its Promise? Will Solar-Generated Electricity Fulfill Its Promise? Mort Cohen, MBA RevGen Group Mort.Cohen@RevGenGroup.com Technology Overview Solar Market Crystalline Silicon Thin Film Concentrating PV and Concentrating

More information

Solar and Wind Energy

Solar and Wind Energy Jerry Hudgins Solar and Wind Energy Department of Electrical Engineering 1 Average Irradiation Data (Annual) from Solarex. The units on the map are in kwh/m 2 /day and represent the minimum case values

More information

Photovoltaics Outlook for Minnesota

Photovoltaics Outlook for Minnesota Photovoltaics Outlook for Minnesota Saving dollars, not polar bears Steve Campbell scampbell@umn.edu University of Minnesota Department of Electrical and Computer Engineering Outline Why solar? Solar technologies

More information

3SUN: Innovative Advanced Technology Factory for PV Module R(e)volution

3SUN: Innovative Advanced Technology Factory for PV Module R(e)volution 3SUN: Innovative Advanced Technology Factory for PV Module R(e)volution A. Canino 3SUN May 19, 2017 Outline EGP positioning and key figures Modules cost reduction Enel Green Power Core Business Business

More information

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence Solar Photovoltaics We are on the cusp of a new era of Energy Independence Broad Outline Physics of Photovoltaic Generation PV Technologies and Advancement Environmental Aspect Economic Aspect Turkish

More information

H. Aülich PV Silicon AG Erfurt, Germany

H. Aülich PV Silicon AG Erfurt, Germany Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-28 "Technology of Solar-grade Silicon" H. Aülich PV Silicon AG Erfurt, Germany Silicon for the PV Industry Hubert A. Aulich PV Crystalox

More information

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

ET3034TUx High efficiency concepts of c- Si wafer based solar cells ET3034TUx - 4.4 - High efficiency concepts of c- Si wafer based solar cells In the previous block we have discussed various technological aspects on crystalline silicon wafer based PV technology. In this

More information

PV System Components

PV System Components PV System Components PV modules each containing many PC cells. Connected in series or parallel arrays. Charge Controllers Optimally charges a storage battery for an off grid system, or Grid tie Inverters

More information

ETIP-PV Manufacturing Conference Brussels, May 19 th Epitaxial Wafers: A game-changing technology on its way to mass production

ETIP-PV Manufacturing Conference Brussels, May 19 th Epitaxial Wafers: A game-changing technology on its way to mass production ETIP-PV Manufacturing Conference Brussels, May 19 th 2017 Epitaxial Wafers: A game-changing technology on its way to mass production NexWafe: producer of high-quality silicon wafers NexWafe will supply

More information

Aparna Sawhney. Centre for International Trade and Development, JNU

Aparna Sawhney. Centre for International Trade and Development, JNU Aparna Sawhney Centre for International Trade and Development, JNU Global and national policy focus on lowcarbon growth in the run-up to the post- Kyoto negotiations. The multilateral trade negotiation

More information

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS MATERIALS FOR SOLAR ENERGY: SOLAR CELLS ROBERTO MENDONÇA FARIA PRESIDENT OF Brazil-MRS (SBPMat) The concentration of CO 2 in Earth s atmosphere (2011) is approximately 392 ppm (parts per million) by volume,

More information

Photovoltaics: Status and Perspectives. Paul Wyers

Photovoltaics: Status and Perspectives. Paul Wyers Photovoltaics: Status and Perspectives Paul Wyers Photovoltaic conversion: typical device structure of silicon solar cell anti-reflection coating sunlight _ front contact n-type Si solar cell heat electricity

More information

Solar Photovoltaic Technologies: Past, Present and Future

Solar Photovoltaic Technologies: Past, Present and Future Solar Photovoltaic Technologies: Past, Present and Future Xihua Wang, Ph.D., P.Eng. Assistant Professor of Electrical & Computer Engineering University of Alberta April 18, 2018 Outline History of photovoltaic

More information

SunPower Overview SunPower Corporation SunPower Corporation

SunPower Overview SunPower Corporation SunPower Corporation SunPower Overview 2011 Established and Proven Technology Innovator Founded in 1985 Publicly traded company: NASDAQ 5,000 employees, 100% solar 25 years of R&D, 120 patents Diversified portfolio: residential,

More information

Solar Power--The Future is Now An In depth look at Solar PV... So Far

Solar Power--The Future is Now An In depth look at Solar PV... So Far Solar Power--The Future is Now An In depth look at Solar PV... So Far March 4, 2015 Presented by: Jim Duncan, Founder & President North Texas Renewable Energy Inc. 1 Something new under the sun indeed.

More information

Solar energy technologies and markets. Eero Vartiainen, Solar Technology Manager, Fortum Solar Business Development

Solar energy technologies and markets. Eero Vartiainen, Solar Technology Manager, Fortum Solar Business Development Solar energy technologies and markets Eero Vartiainen, Solar Technology Manager, Fortum Solar Business Development 9.11.2012 1 5 statements on solar energy true or false? Solar energy is utopy true false

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Crystalline Silicon Solar Cells With Two Different Metals Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588,

More information

Developing high efficiency thin film silicon photovoltaics for the urban environment.

Developing high efficiency thin film silicon photovoltaics for the urban environment. Developing high efficiency thin film silicon photovoltaics for the urban environment. Bruce Hamilton University of Manchester, UK 1 Energy Security Symposium Qatar 2011 Research could impact on energy

More information

Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics)

Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics) Photovoltaic Solar: Market and Technology Trends (Industrial Application of Organic Photonics) June 24, 2008 Fachri Atamny Photovoltaic Solar Environment and Issues: Outline Solar Cell Market Environment

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

Photovoltaic Systems Engineering

Photovoltaic Systems Engineering Photovoltaic Systems Engineering Ali Karimpour Associate Professor Ferdowsi University of Mashhad Reference for this lecture Mrs. Golmakanion Thesis Feb 2010 Ferdowsi University of Mashhad lecture 2 Lecture

More information

Photovoltaics in our Energy Future

Photovoltaics in our Energy Future Photovoltaics in our Energy Future Marc Landry National Center for Photovoltaics Presented to IEEE May 17, 2008 The opinions expressed are those of Marc Landry and do not represent the opinions of the

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

Thin Film TECHNOLOGY ADVANTAGE

Thin Film TECHNOLOGY ADVANTAGE TECHNOLOGY ADVANTAGE RECORD-SETTING PERFORMANCE Get superior efficiency, higher energy yield, and long-term reliability from an affordable, fieldproven module. Cadmium Telluride (CdTe) photovoltaic (PV)

More information

Prepare(d) for impact photovoltaics on its way to terawatt-scale use

Prepare(d) for impact photovoltaics on its way to terawatt-scale use Prepare(d) for impact photovoltaics on its way to terawatt-scale use Wim Sinke www.ecn.nl Contents The photovoltaic technology portfolio - wafer-based silicon in perspective Meeting expectations: from

More information

It has been 50 years since Gerald Pearson invented the solar cell. The solar cell is a non-polluting primary

It has been 50 years since Gerald Pearson invented the solar cell. The solar cell is a non-polluting primary PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog Photovolt: Res Appl 2005; 13:463 470 Published online in Wiley InterScience (wwwintersciencewileycom) DOI: 101002/pip648 Special Issue The Present

More information

Solar energy. Energy Centre summer school in Energy Economics February Kiti Suomalainen

Solar energy. Energy Centre summer school in Energy Economics February Kiti Suomalainen Solar energy Energy Centre summer school in Energy Economics 19-22 February 2018 Kiti Suomalainen k.suomalainen@auckland.ac.nz Outline The resource The technologies, status & costs (Solar heating) Solar

More information

Critical Considerations for Metrology and Inspection in Solar Manufacturing. Jeff Donnelly, Group VP - Growth & Emerging Markets July 2011

Critical Considerations for Metrology and Inspection in Solar Manufacturing. Jeff Donnelly, Group VP - Growth & Emerging Markets July 2011 Critical Considerations for Metrology and Inspection in Solar Manufacturing Jeff Donnelly, Group VP - Growth & Emerging Markets July 2011 Outline Process Control in Manufacturing Solar PV Trends Benefits

More information

Rough primary energy portfolio, exemplary path of WBGU

Rough primary energy portfolio, exemplary path of WBGU Report from the lecture presented by Joachim Luther Report written by Christian Azar, Energy and environment, Chalmers University of Technology,Göteborg (frtca@fy.chalmers.se) Joachim Luther is the director

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG

PHOTOVOLTAICS REPORT. Prepared by. Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG PHOTOVOLTAICS REPORT Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE AG Freiburg, 12 July 2017 www.ise.fraunhofer.de CONTENT Quick Facts Topics: PV Market Solar Cells

More information

PV Primer. building science.com. Building America Report June-2002 Building Science Corporation. Abstract:

PV Primer. building science.com. Building America Report June-2002 Building Science Corporation. Abstract: building science.com 2008 Building Science Press All rights of reproduction in any form reserved. PV Primer Building America Report - 0212 June-2002 Building Science Corporation Abstract: PV systems have

More information

Utility Scale Solar Power for Saskatchewan

Utility Scale Solar Power for Saskatchewan Utility Scale Solar Power for Saskatchewan Presentation to the The Standing Committee on Crown and Central Agencies Inquiry into the Province's Energy Needs Wade Zawalski October 16, 2009 Saskatchewan

More information

Oerlikon Solar Solutions for a Solar Powered World

Oerlikon Solar Solutions for a Solar Powered World Oerlikon Solar Solutions for a Solar Powered World Jeannine Sargent, CEO Oerlikon Solar Oerlikon Capital Market Days 2008 Zurich, September 25-26, 2008 Disclaimer This presentation is based on information

More information

Japan s Sunshine Project and PV roadmaps

Japan s Sunshine Project and PV roadmaps Japan s Sunshine Project and PV roadmaps First 1MW PV demonstration site (1986) Izumi KAIZUKA and Dr. Fukuo Aratani, RTS corporation 0 RTS Corporation founded in 1983, 35-year experience Comprehensive

More information

Solar Cells. Mike McGehee Materials Science and Engineering

Solar Cells. Mike McGehee Materials Science and Engineering Solar Cells Mike McGehee Materials Science and Engineering Why solar cells are likely to provide a significant fraction of our power We need ~ 30 TW of power, the sun gives us 120,000 TW. Solar cells are

More information

SILIZIUM-PHOTOVOLTAIK STATUS UND NEUE ENTWICKLUNGEN

SILIZIUM-PHOTOVOLTAIK STATUS UND NEUE ENTWICKLUNGEN SILIZIUM-PHOTOVOLTAIK STATUS UND NEUE ENTWICKLUNGEN Stefan Glunz Fraunhofer Institute for Solar Energy Systems ISE Seminarreihe Erneuerbare Energien 27. Juni 2018, Hochschule Karlsruhe Fraunhofer ISE PV

More information

Crystalline Silicon PV Technology

Crystalline Silicon PV Technology Crystalline Silicon PV Technology April 4, 2013 Principles and Varieties of Solar Energy (PHYS 4400) The University of Toledo, Department of Physics and Astronomy Crystalline/Polycrystalline Silicon PV

More information

Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots

Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots Ronald A. Sinton Sinton Instruments, Inc. Boulder, Colorado USA SEMI Standards Meeting Hamburg, 21 September,

More information

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang Research on high efficiency and low cost thin film silicon solar cells Xiaodan Zhang 2013 China-America Frontiers of Engineering, May 15-17, Beijing, China Institute Institute of of photo-electronics

More information

Repetition. Universität Karlsruhe (TH)

Repetition. Universität Karlsruhe (TH) Repetition 1 Repetition 2 Repetition 3 Repetition 4 Typical Ru complex sensitziers developed by Grätzel s group Course schedule 5 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

Production of PV cells

Production of PV cells Production of PV cells MWp 1400 1200 Average market growth 1981-2003: 32% 2004: 67% 1000 800 600 400 200 0 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 rest 1.0 1.0 1.0 2.0 4.0

More information

NANOMANUFACTURING TECHNOLOGY

NANOMANUFACTURING TECHNOLOGY NANOMANUFACTURING TECHNOLOGY NAS/SSSC Spring Meeting April 2, 2009 Moore's Law and Transistor Scaling Bits/Chip 1T 45nm 90nm 1G 0.25um 1um 1M 1K 1975 1985 1995 2005 2015 DSP AA Battery Hours 100 50 0 0

More information

An Evaluation of Solar Photovoltaic Technologies

An Evaluation of Solar Photovoltaic Technologies An Evaluation of Solar Photovoltaic Technologies 15.965 Technology Strategy Paper 1, February 23, 2009 Introduction: Green thinking is the in topic these days. Companies are all claiming to be going green.

More information

Sun to Market Solutions. June 16 18, 2014 IFC Washington, DC

Sun to Market Solutions. June 16 18, 2014 IFC Washington, DC Sun to Market Solutions June 16 18, 2014 IFC Washington, DC Schedule 1 PV Technology Overview, Market Analysis, and Economics PV Project Development, Implementation, and Financing Case Study Schedule 2

More information

The Competitive Cost Position of Thin Film Module Technologies In High Temperature and Low Light Conditions

The Competitive Cost Position of Thin Film Module Technologies In High Temperature and Low Light Conditions The Competitive Cost Position of Thin Film Module Technologies In High Temperature and Low Light Conditions IBIS Associates, Inc. is a management consulting company that specializes in assisting clients

More information

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool Lecture 8 : Solar cell technologies, world records and some new concepts Prof Ken Durose University of Liverpool Review papers on PV there are lots do read one or two! Materials Today 2007 NREL efficiency

More information

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018 ME 432 Fundamentals of Modern Photovoltaics Discussion 30: Contacts 7 November 2018 Fundamental concepts underlying PV conversion input solar spectrum light absorption carrier excitation & thermalization

More information

1 Introduction 1.1 Solar energy worldwide

1 Introduction 1.1 Solar energy worldwide 1 Introduction 1.1 Solar energy worldwide Solar energy, the earth s source of life, has an enormous potential to also become earth s inexhaustible and clean energy/electricity source. Each year the earth

More information

Prepare(d) for impact Global trends in solar energy

Prepare(d) for impact Global trends in solar energy Prepare(d) for impact Global trends in solar energy Wim Sinke ECN Solar Energy & European Photovoltaic Technology Platform Tekes Solar Energy Seminar Helsinki, Finland 11 February 2013 www.ecn.nl Solar

More information

KNOW ALL ABOUT SOLAR

KNOW ALL ABOUT SOLAR KNOW ALL ABOUT SOLAR Brief History of PV Solar Power The first conventional photovoltaic cells were produced in the late 1950s, and throughout the 1960s were principally used to provide electrical power

More information

Solar Energy Engineering

Solar Energy Engineering Online Training Modules in Photovoltaics Solar Energy Engineering Starting June 2, 2014 the University of Freiburg in cooperation with Fraunhofer will be offering free special training modules in Solar

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Technologies Lecture-29 Prof. C.S. Solanki Energy Systems Engineering IIT Bombay Contents Brief summary of the previous lecture Production of Si MG-Si, EG-Si Siemens Process, FBR process

More information

162 Solar Energy. front contact (metal grid) serial connections (to the back contact of the next cell) p-type wafer back contact

162 Solar Energy. front contact (metal grid) serial connections (to the back contact of the next cell) p-type wafer back contact 162 Solar Energy serial connections (to the back contact of the next cell) front contact (metal grid) antireflective coating n + -type emitter p + -type layer p-type wafer back contact 200 μm Figure 12.8:

More information

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS Emmanuelle ROUVIERE CEA Grenoble (France) emmanuelle.rouviere@cea.fr Outline Introduction Photovoltaic technologies and market Applications Promising Thin

More information

Advanced Materials Development for Printed Photovoltaic Devices. Prof. Darren Bagnall : APAC Innovation Summit 2016

Advanced Materials Development for Printed Photovoltaic Devices. Prof. Darren Bagnall : APAC Innovation Summit 2016 Advanced Materials Development for Printed Photovoltaic Devices Prof. Darren Bagnall : APAC Innovation Summit 2016 Conclusions Silicon-wafer based solar technologies are set to dominate the photovoltaic

More information

International Technology Roadmap for Photovoltaic (ITRPV) - 4 th Edition - Results 2012

International Technology Roadmap for Photovoltaic (ITRPV) - 4 th Edition - Results 2012 International Technology Roadmap for Photovoltaic (ITRPV) - 4 th Edition - Results 2012 Stephan Raithel, SEMI Europe, Director PV Europe 10 July, San Francisco AGENDA Introduction of the 4 th edition of

More information

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany.

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany. STATUS OF N-TYPE SOLAR CELLS FOR LOW-COST INDUSTRIAL PRODUCTION Arthur Weeber*, Ronald Naber, Nicolas Guillevin, Paul Barton, Anna Carr, Desislava Saynova, Teun Burgers, Bart Geerligs ECN Solar Energy,

More information

The critical role of gas and chemical suppliers in PV cell manufacture

The critical role of gas and chemical suppliers in PV cell manufacture The critical role of gas and chemical suppliers in PV cell manufacture Gases and chemicals contribute a significant part of the bill of materials for PV cells, and as the industry grows, material suppliers

More information

Recent Developments in the Field of Silicon Solar Cell Technology

Recent Developments in the Field of Silicon Solar Cell Technology Recent Developments in the Field of Silicon Solar Cell Technology Daniel Biro Fraunhofer Institute for Solar Energy Systems ISE World of Energy Solutions Stuttgart 30. September 2013 Agenda Market Development

More information

Reasons for the installation of a global sustainable energy system

Reasons for the installation of a global sustainable energy system Reasons for the installation of a global sustainable energy system Protection of the natural life-support system Eradication of energy poverty in developing countries Promote peace by reducing dependence

More information

Fundamentals of photovoltaic energy conversion and conventional solar cells. A.Martí September 2018, MATENER ICMAB, Campus UAB, Barcelona

Fundamentals of photovoltaic energy conversion and conventional solar cells. A.Martí September 2018, MATENER ICMAB, Campus UAB, Barcelona Fundamentals of photovoltaic energy conversion and conventional solar cells A.Martí 17-20 September 2018, MATENER 2018 ICMAB, Campus UAB, Barcelona Outline Fundamentals of photovoltaic energy conversion

More information

Cleantech. abc. Alternative Energy Team

Cleantech. abc. Alternative Energy Team Alternative Energy Team Jenny Cosgrove*, CFA Head of Utilities and Alternative Energy, Asia-Pacific The Hongkong and Shanghai Banking Corporation Limited +852 2996 6619 jennycosgrove@hsbc.com.hk Gloria

More information

Energy Photovoltaics - A Disruptive Technology: Changing Global Markets, Policies, Players and Technology Prospects

Energy Photovoltaics - A Disruptive Technology: Changing Global Markets, Policies, Players and Technology Prospects Energy Photovoltaics - A Disruptive Technology: Changing Global Markets, Policies, Players and Technology Prospects Ruggero Schleicher-Tappeser, consultant, Berlin AHK, Tel Aviv, April 12, 2011 Urging

More information

Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells

Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells Mark John Kerr June 2002 A thesis submitted for the degree of Doctor of Philosophy of The Australian

More information

AGENDA. I. Photovoltaics Basics: What is really going on in a Solar Cell?

AGENDA. I. Photovoltaics Basics: What is really going on in a Solar Cell? AGENDA I. Photovoltaics: Semiconductor Basics II. Grid Connected Photovoltaic Systems III. Instantaneous and Average Power in the Wind IV. Extracting Energy from the Wind I. Photovoltaics Basics: What

More information

Technical Talk on HK s Largest Solar Power System at Lamma Power Station

Technical Talk on HK s Largest Solar Power System at Lamma Power Station 15 June 2011 Technical Talk on HK s Largest Solar Power System at Lamma Power Station for HKIE EV Division by C.K. Lau Agenda Fundamentals of PV Project Background Feasibility Study and Site Selection

More information

Click to edit Master text styles. Third level. Fifth level. PHOTOVOLTAICS from. in PV Manufacturing. May 6, 2010 Golden, CO

Click to edit Master text styles. Third level. Fifth level. PHOTOVOLTAICS from. in PV Manufacturing. May 6, 2010 Golden, CO PHOTOVOLTAICS from Second a VC level Perspective Fourth NSF Workshop level on Innovation in PV Manufacturing May 6, 2010 Golden, CO John Torvik Novus Energy Partners 201 N. Union St, Alexandria, VA, 22314,

More information