SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENTARY INFORMATION Investigating and Understanding the Initial Growth Mechanisms of Catalyst-Free Growth of 1D SiC Nanostructures Yoo Youl Choi and Doo Jin Choi *, Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno, Sudaemun-Gu, Seoul , Republic of Korea *Corresponding author. Tel: , Fax: Supplementary Information Table S1. Deposition conditions for catalyst-free growth of SiC NWs. Diluent gas species Deposition temp. ( C) Deposition time (min) H 2, N 2, Ar Input gas ratio (α) MTS flow rate (sccm) Total pressure (Torr) Table S1. Deposition conditions for catalyst-free growth of SiC NWs. Each factor was carefully controlled by fixing the other factors to a default condition. The default conditions were as follows: 1200 C, α = 30, 5 Torr, MTS = 10 sccm, H 2 ambient, and total flow rate = 300 sccm. 1

2 Supplementary Information Figure S1. Microanalysis of an NW was performed using an FIB/FE-SEM dual-beam system to obtain a crosssectional view of NW. First, an NW that grew vertically from the surface was selected (Figure S1a). To prevent any structural collapse of the NW and prevent any damage caused by the Ga + ion beam during the TEM sampling process, Pt deposition was performed in the entire region near the selected NW (Figure S1b). Then, the center of the Pt-covered NW was sliced down to a constant thickness and shifted to a copper TEM half-grid. Finally, the TEM sample with the exposed cross-section of the NW was carefully thinned to less than 40 nm using FIB milling, to allow for a clear analysis in the TEM observation (Figure S1c). Figure S1d shows the final cross-sectional view of the sample after the FIB process was carried out. Figure S1. TEM sampling process using FIB. (a) Selection of a SiC NW. (b) Observation of the area around the NW before Pt deposition. (c) Slicing the Pt-covered NW. (d) Final side view of the NW sample attached on a TEM grid. 2

3 Supplementary Information Figures S2 S4. Figures S2 and S3 display many images of the NWs in the initial stages of catalyst-free growth under different deposition conditions. To investigate the various aspects of the initial growth of the NWs, the deposition time was set to only 3 min. The controlled deposition factors were the temperature, input gas ratio (α), pressure, total flow rate, and diluent gas. To understand the exclusive effect of each deposition factor, other conditions were kept fixed when a particular factor was being controlled. The default conditions were as follows: 1200 C, α = 30, 5 Torr, MTS = 10 sccm, H 2 ambient atmosphere, and total flow rate = 300 sccm. In Figure S4, the measured growth densities of NWs and the deposited film area coverage are displayed. To measure the density of NWs and the deposited film area, Imagejpc software (IF 1.45m, Tiago Ferreira & Wayne Rasband) was used. First, as shown in Figure S2a d, as the deposition temperature increased, the thickness of the NWs increased and the density of the NWs increased up to 1200 C. In addition, the surface area coverage increased as the deposition temperature increased. This result corresponds relatively well to the finding that the source decomposition and surface diffusion increase at higher temperatures, inducing higher deposition rates. 1 The surface morphologies of the structures are observed to change from granular to facet forms. When the input gas ratio (α) is changed, since the amount of MTS gas and the total pressure are maintained, the total flow rate must be increased. This causes the density of NWs to rapidly decrease as the surface area is covered with films. Figure S2e h shows that the NW density decreases and area coverage increases as α increases. In general, if the total flow rate increases when the flow rate of the source gas MTS is fixed, the deposition rate can decrease because of source dilution. However, in this case, the amount of film deposition increased as α increased. This phenomenon can be explained in terms of the boundary layer thickness. In our previous study, the total deposition rate at 1200 C is controlled by the mass transfer rate. 1 Comparison of the thickness of each boundary layer in Figure S2e h shows that the thickness decreases as α increases, because the boundary layer thickness is inversely proportional to the flow rate factor. 2 Therefore, gas molecules travelling through the boundary layer to reach the surface arrive earlier when the boundary layer is thinner. Thus, the concentration of adatoms on the surface increases, which causes film growth to predominate instead of NW growth as α increases. However, the amount of deposition slightly decreased when α increased from 50 to 100. This result proves that the source dilution effect slowly becomes important after α = 50. In addition, the results obtained when α was controlled correlate well with the experimental results obtained when the total flow rate was controlled (Figure S3a-c): when the total flow rate is increased and the α ratio is fixed at 30, the density of NWs rapidly decreases and the deposited structure changes NWs to films. Therefore, it is evident that the main growth factor determining whether NW growth or film growth occurs is the boundary layer thickness rather than gas source dilution. 3

4 When the pressure conditions are controlled, the density of NWs abruptly increases when the pressure is increased, whereas the area coverage decreases, as shown in Figure S2i l. In particular, a large quantity of striation-patterned NWs was synthesized when the pressure was over 50 Torr. This tendency can also be explained by the changes in boundary layer thickness. If the total pressure in the reactor increases, the total flow rate spontaneously decreases, and the increased boundary layer thickness induces lower deposition rate conditions. Thus, NW growth is preferred. Finally, when the diluent gas was changed from H 2 to N 2 or Ar, the deposited structure completely changed from NWs to films (Figure S3d-f). Because H 2, N 2, and Ar do not prefer to bond with SiC, this sudden morphology change is necessarily related to the kinetic boundary layer thickness. Consequently, the experimental result shows that when the deposition temperature is fixed and the degree of source decomposition and surface diffusion are equal, catalyst-free growth NWs occurs under conditions with relatively large boundary layers. Figure S2. Typical SEM images of SiC NWs grown on a graphite substrate for 3 min with different deposition factors. Each controlled factor is varied from fixed default conditions defined as follows: 1200 C, α = 30, 5 Torr, MTS = 10 sccm, total flow rate = 300 sccm, and H 2 ambient. (a-d) Temperatures were increased from 1000, to 1100, to 1200, to 1300 C, respectively. (e-h) Input gas ratios (α) were increased from 5, to 30, to 50, to 100, respectively. (i-l) Total pressures were increased from 2.5, to 5, to 50, to 100 Torr, respectively. The white lines indicate 1 µm. 4

5 Figure S3. Typical SEM images of SiC NWs grown on a graphite substrate for 3 min with different deposition factors. Each controlled factor varied from fixed default conditions defined as follows: 1200 C, α = 30, 5 Torr, MTS = 10 sccm, total flow rate = 300 sccm, and H 2 ambient (a-c) Total flow rates were changed to 150, 300, and 600 sccm, respectively. (d-f) Diluent gases were chosen as H 2, N 2, and Ar, respectively. The white lines indicate 1 µm. Figure S4. Behavior of the density of NWs and area coverage of deposited films obtained under each condition. The data correspond to the conditions in (a) Figure S2a-d, (b) Figure S2e-h, (c) Figure S2i-l, and (d) Figure S3a-c. 5

6 Supplementary Information Figure S5. The boundary layer is a region close to the substrate surface where the gas flux, concentration of gas species, and temperature are different from those in the major gas stream. 3 The thickness of this boundary layer can be predicted based on the boundary layer model. 4 This model assumes that no gas flux exists on the substrate surface, which is defined as a stagnant layer (boundary layer), and that the deposition reaction occurs via atomic diffusion through this boundary layer. Here, the thickness of the boundary layer is given as follows: 5 where a is the proportionality constant, η is the viscosity of the gas, υ is the linear velocity of the gas, and ρ is the density of the gas. If deposition rate is determined by the mass transfer rate, the boundary layer thickness (δ) becomes a critical factor, since the total deposition rate depends on the rate at which reactants are transported to the substrate surface. In this study, the variation of the thickness of the boundary layers in the reactor was investigated for different diluent gases, gas flow rates, and temperatures. Figure S5 shows the calculated boundary layer thickness obtained when the gas flow rate and temperature are increased in each considered diluent gas (H 2, N 2, and Ar). The result in Figure S5a shows that the boundary layer thickness increases slightly as the deposition temperature increases. In addition, the boundary layer thickness in H 2 is two times larger than in N 2 or Ar. Therefore, at the same deposition temperature, the diluent gases of N 2 or Ar produce much shorter boundary layer thicknesses than does H 2, in which mass transfer is faster. 1,6 Thus a higher deposition rate is induced. Likewise, Figure S5b shows the boundary layer thickness as a function of the flow rate. The thickness decreases exponentially as the gas flow rate increases. Moreover, the boundary layer thickness is obviously short when N 2 or Ar is used instead of H 2 as the diluent gas. According to Eversteyn, the boundary layer thickness and mean velocity of the gas flow are related as follows: 7 Thus, as the velocity of the gas flow increases (V T ), the boundary layer thickness (δ) decreases. If the temperature and pressure used during deposition are fixed, the gas flow rate will increase and the boundary layer thickness will decrease as the amount of input gas increases. In addition, the gas densities of N 2 and Ar are higher than that of H 2 ; thus, the gas flow rate increases when they are used instead. Therefore, the boundary layer thicknesses are smaller when N 2 or Ar is used compared to when H 2 is used. Consequently, because of these differences between gas flow rates and diluent gas densities, the deposition rate of SiC NWs can be critically influenced by the boundary layer thickness. 6

7 Figure S5. Comparison of boundary layer thicknesses obtained with different diluent gases for different (a) deposition temperatures and (b) total flow rates. The practical deposition conditions used for the calculation are given at the top right of each figure. 7

8 Supplementary Information Figure S6. Figure S6 shows the branching NWs grown under the conditions of 1300 C temperature and with 7.5 sccm of MTS for 3 min. The result proves that if the NW growth is preferred over island nucleation because the surface energy of the CP-IBs region is much higher than the normal surface energy, continuous growth of NWs at the root region dominates instead of new island nucleation. This can be explained when surface diffusion is sufficient for adatoms on the surface to be transported toward the root of the NW such that they participate in the NW growth instead of forming a new island. This phenomenon is similar with Frank s explanation that at lower supersaturation stage, instead of few nucleation initiates, perfect seeds actually grow. 8 Thus, these branch-like NWs occur at higher temperatures under conditions wherein a relatively low amount of the source is provided. Figure S6. Typical SEM image of branched NWs grown at 1300 C with MTS = 7.5 sccm for 3 min. The critical island sizes and nucleation points for NW growth are indicated in the figure. 8

9 References (1) Y. Lee, D. Choi, J. Park, G. Hong, J. Mater. Sci., 2000, 5, (2) S. K. Ghandhi, R. J. Field, J. Cryst. Growth, 1984, 69, 619. (3) Bunshah, Handbook of deposition technologies for films and coatings 2nd Edit. Noyes Publications, 1994, 402. (4) J. L. Vossen, W. Kern, Thin Films Processes Ⅱ. Academic Press, 1992, 281. (5) A. S. Grove, Physics and Technology of Semiconductor Devices. John Wiley and Sons, Inc., 1967, chap. 1. (6) H. S, Kim, D. J. Choi, J. Am. Ceram. Soc., 1999, 82, 331. (7) F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel, H. L. Peek, J. Electrochem. Soc., 1970, 117, 925. (8) F. C Frank, Discuss. Faraday Soc., 1949, 5, 48. 9

Supporting information. In-situ TEM observation of phase transition of nanoscopic patterns on. baroplastic block copolymer film during nanoindentation

Supporting information. In-situ TEM observation of phase transition of nanoscopic patterns on. baroplastic block copolymer film during nanoindentation Supporting information In-situ TEM observation of phase transition of nanoscopic patterns on baroplastic block copolymer film during nanoindentation Ara Jo, Gil Ho Gu, Hong Chul Moon, Sung Hyun Han, Sang

More information

Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2

Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2 Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2 based devices. (a) TEM image of the conducting filament in a SiO 2 based memory device used for SAED analysis. (b)

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Room-Temperature Pressureless Bonding with Silver Nanowire. Paste: Towards Organic Electronic and Heat-Sensitive Functional

Room-Temperature Pressureless Bonding with Silver Nanowire. Paste: Towards Organic Electronic and Heat-Sensitive Functional Supplementary Materials Room-Temperature Pressureless Bonding with Silver Nanowire Paste: Towards Organic Electronic and Heat-Sensitive Functional Devices Packaging Peng Peng, a,b Anming Hu,* a Hong Huang,

More information

This journal is The Royal Society of Chemistry S 1

This journal is The Royal Society of Chemistry S 1 2013 S 1 Thermochemical analysis on the growth of NiAl 2 O 4 rods Sang Sub Kim, a Yong Jung Kwon, b Gunju Sun, a Hyoun Woo Kim,* b and Ping Wu* c a Department of Materials Science and Engineering, Inha

More information

Anomaly of Film Porosity Dependence on Deposition Rate

Anomaly of Film Porosity Dependence on Deposition Rate Anomaly of Film Porosity Dependence on Deposition Rate Stephen P. Stagon and Hanchen Huang* Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 J. Kevin Baldwin and Amit Misra

More information

Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer

Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer , pp.47-51 http://dx.doi.org/10.14257/astl.2015.117.11 Relationship between Microstructure and Vacuum Leak Characteristics of SiC Coating Layer Yootaek Kim 1 and Junwon Choi 2 1 Dept. of Materials Engineering,

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods Y. Kim Professor, Department of Materials Science and Engineering, College of Engineering, Kyonggi

More information

Observations of Intermetallic Compound Formation of Hot Dip Aluminized Steel

Observations of Intermetallic Compound Formation of Hot Dip Aluminized Steel Materials Science Forum Vols. 519-521 (2006) pp. 1871-1875 online at http://www.scientific.net (2006) Trans Tech Publications, Switzerland Observations of Intermetallic Compound Formation of Hot Dip Aluminized

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Effect of nanoimprinted surface relief on Si and Ge nucleation and ordering

Effect of nanoimprinted surface relief on Si and Ge nucleation and ordering Microelectronics Journal 37 (2006) 1481 1485 www.elsevier.com/locate/mejo Effect of nanoimprinted surface relief on Si and Ge nucleation and ordering T.I. Kamins a,, A.A. Yasseri a,1, S. Sharma a,2, R.F.W.

More information

SiC nanorods prepared from SiO and activated carbon

SiC nanorods prepared from SiO and activated carbon JOURNAL OF MATERIALS SCIENCE 37 (2002)2023 2029 SiC nanorods prepared from SiO and activated carbon Y. H. GAO, Y. BANDO, K. KURASHIMA, T. SATO Advanced Materials Laboratory and Nanomaterials Laboratory,

More information

Characterization of Polycrystalline SiC Films Grown by HW-CVD using Silicon Tetrafluoride

Characterization of Polycrystalline SiC Films Grown by HW-CVD using Silicon Tetrafluoride Characterization of Polycrystalline SiC Films Grown by HW-CVD using Silicon Tetrafluoride Katsuya Abe, Yohei Nagasaka, Takahiro Kida, Tomohiko Yamakami, Rinpei Hayashibe and Kiichi Kamimura, Faculty of

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Poster FVS Workshop 2002 Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Texture etching of sputtered ZnO:Al films has opened up a variety of possibilities

More information

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Korean J. Chem. Eng., 17(3), 299-303 (2000) Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Seung-Min Oh and Dong-Wha Park Department of Chemical Engineering, Inha University, 253 Yonghyun-Dong,

More information

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Researcher: Kunbae (Kevin) Noh, Graduate Student, MAE Dept. and CMRR Collaborators: Leon Chen,

More information

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Mat. Res. Soc. Symp. Proc. Vol. 686 2002 Materials Research Society Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Jae-Hoon Song, Duck-Kyun Choi

More information

Annealing Behavior of Bi 2 Te 3 Thermoelectric Semiconductor Electrodeposited for Nanowire Applications

Annealing Behavior of Bi 2 Te 3 Thermoelectric Semiconductor Electrodeposited for Nanowire Applications Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 670 676 Annealing Behavior of Bi 2 Te 3 Thermoelectric Semiconductor Electrodeposited for Nanowire Applications Min-Young Kim and

More information

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani

Grain Sizes and Surface Roughness in Platinum and Gold Thin Films. L.L. Melo, A. R. Vaz, M.C. Salvadori, M. Cattani Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 623-628 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland Grain Sizes and Surface Roughness in Platinum

More information

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat 1.1149/1.2727414, The Electrochemical Society A New Liquid Precursor for Pure Ruthenium Depositions J. Gatineau, C. Dussarrat Air Liquide Laboratories, Wadai 28, Tsukuba city, Ibaraki Prefecture, 3-4247,

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING International Journal of Nanoscience Vol. 10, Nos. 1 & 2 (2011) 13 17 #.c World Scienti c Publishing Company DOI: 10.1142/S0219581X11007594 EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

Growth of SiC thin films on graphite for oxidation-protective coating

Growth of SiC thin films on graphite for oxidation-protective coating Growth of SiC thin films on graphite for oxidation-protective coating J.-H. Boo, a) M. C. Kim, and S.-B. Lee Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea S.-J. Park and J.-G.

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIX METAL/METAL-SELENIDE PRECURSORS Rui Kamada, William N. Shafarman, and Robert W. Birkmire Institute of Energy Conversion University of Delaware, Newark,

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

Atomic Layer Deposition(ALD)

Atomic Layer Deposition(ALD) Atomic Layer Deposition(ALD) AlO x for diffusion barriers OLED displays http://en.wikipedia.org/wiki/atomic_layer_deposition#/media/file:ald_schematics.jpg Lam s market-leading ALTUS systems combine CVD

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(1):163-167 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis and Characterization of Carbon Nano Spheres

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes, and Yuepeng Deng Department of Materials Science and Engineering University

More information

ALD and CVD of Copper-Based Metallization for. Microelectronic Fabrication. Department of Chemistry and Chemical Biology

ALD and CVD of Copper-Based Metallization for. Microelectronic Fabrication. Department of Chemistry and Chemical Biology ALD and CVD of Copper-Based Metallization for Microelectronic Fabrication Yeung Au, Youbo Lin, Hoon Kim, Zhengwen Li, and Roy G. Gordon Department of Chemistry and Chemical Biology Harvard University Introduction

More information

SYNTHESIS OF NANOSIZE SILICON CARBIDE POWDER BY CARBOTHERMAL REDUCTION OF SiO 2

SYNTHESIS OF NANOSIZE SILICON CARBIDE POWDER BY CARBOTHERMAL REDUCTION OF SiO 2 2nd International Conference on Ultrafine Grained & Nanostructured Materials (UFGNSM) International Journal of Modern Physics: Conference Series Vol. 5 (2012) 263 269 World Scientific Publishing Company

More information

Specimen configuration

Specimen configuration APPLICATIONNOTE Model 1040 NanoMill TEM specimen preparation system Specimen configuration Preparing focused ion beam (FIB) milled specimens for submission to Fischione Instruments. The Model 1040 NanoMill

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD)

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Ciprian Iliescu Conţinutul acestui material nu reprezintă in mod obligatoriu poziţia oficială a Uniunii Europene sau a

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Hydrophobic Metallic Nanorods coated with Teflon Nanopatches by Glancing Angle Deposition

Hydrophobic Metallic Nanorods coated with Teflon Nanopatches by Glancing Angle Deposition Mater. Res. Soc. Symp. Proc. Vol. 1188 2009 Materials Research Society 1188-LL09-03 Hydrophobic Metallic Nanorods coated with Teflon Nanopatches by Glancing Angle Deposition Wisam J. Khudhayer, Rajesh

More information

Water Vapor and Carbon Nanotubes

Water Vapor and Carbon Nanotubes Water Vapor and Carbon Nanotubes Published technical papers on carbon nanotube fabrication point out the need to improve the growth rate and uniformity of Carbon Nanotubes. CNT faces major hurdles in its

More information

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB ME 141B: The MEMS Class Introduction to MEMS and MEMS Design Sumita Pennathur UCSB Outline today Introduction to thin films Oxidation Deal-grove model CVD Epitaxy Electrodeposition 10/6/10 2/45 Creating

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Analysis of the Intermetallic Compound Formed in Hot Dip Aluminized Steel

Analysis of the Intermetallic Compound Formed in Hot Dip Aluminized Steel Advanced Materials Research Vols. 15-17 (2007) pp. 159-163 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland Analysis of the Intermetallic Compound Formed in Hot Dip Aluminized

More information

Superionic Solid State Stamping (S4)

Superionic Solid State Stamping (S4) Superionic Solid State Stamping (S4) Lead Faculty Researcher: Placid Ferreira Department: Materials Science & Engineering Hsu et al, Nano Letters, 2007 1. Description: This dry, single step, electrochemical

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

PHYSICAL REVIEW LETTERS 107,

PHYSICAL REVIEW LETTERS 107, Real-time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon M. J. Chon, 1 V.A. Sethuraman, 1 A. McCormick, 1 V. Srinivasan, 2 P. R. Guduru 1,* 1 School of Engineering,

More information

Microstructural study of titanium carbide coating on cemented carbide

Microstructural study of titanium carbide coating on cemented carbide JOURNAL OF MATERIALS SCIENCE 17 (1982) 589-594 Microstructural study of titanium carbide coating on cemented carbide S. VUORINEN, A. HORSEWELL* Laboratory of Applied Physics I, Technical University of

More information

Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films

Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films Co-Evolution of Stress and Structure During Growth of Polycrystalline Thin Films Carl V. Thompson and Hang Z. Yu* Dept. of Materials Science and Engineering MIT, Cambridge, MA, USA Effects of intrinsic

More information

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

AC Reactive Sputtering with Inverted Cylindrical Magnetrons AC Reactive Sputtering with Inverted Cylindrical Magnetrons D.A. Glocker, Isoflux Incorporated, Rush, NY; and V.W. Lindberg and A.R. Woodard, Rochester Institute of Technology, Rochester, NY Key Words:

More information

COOLING EFFECT ENHANCEMENT IN MAGNETRON SPUTTERING SYSTEM

COOLING EFFECT ENHANCEMENT IN MAGNETRON SPUTTERING SYSTEM Fifth International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia 13-15 December 2006 COOLING EFFECT ENHANCEMENT IN MAGNETRON SPUTTERING SYSTEM Jae-Sang BAEK and Youn J. KIM*

More information

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Friðrik Magnus 1, Árni S. Ingason 1, Ólafur B. Sveinsson 1, S. Shayestehaminzadeh 1, Sveinn Ólafsson 1 and Jón Tómas Guðmundsson 1,2 1 Science

More information

Effects of Lead on Tin Whisker Elimination

Effects of Lead on Tin Whisker Elimination Effects of Lead on Tin Whisker Elimination Wan Zhang and Felix Schwager Rohm and Haas Electronic Materials Lucerne, Switzerland inemi Tin Whisker Workshop at ECTC 0 May 30, 2006, in San Diego, CA Efforts

More information

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Xidong Duan, Chen Wang, Jonathan Shaw, Rui Cheng, Yu Chen, Honglai Li, Xueping Wu, Ying Tang, Qinling Zhang, Anlian Pan,

More information

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Sang-Hoon Jang 1, GiSoo Shin 1, Hana Hwang 1, Kap-Seung Choi 1, Hyung-Man Kim 1,* 1 Department of Mechanical Engineering

More information

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode? Outline Corrosion - Introduction Corrosion of Metals - e.g. Rusting of iron in water Electrochemical Cell Electrode Potential in Electrochemical Cell Standard Electromotive Force Example Relative Corrosion

More information

The Effect of Cu and Ni on the Structure and Properties of the IMC Formed by the Reaction of Liquid Sn-Cu Based Solders with Cu Substrate

The Effect of Cu and Ni on the Structure and Properties of the IMC Formed by the Reaction of Liquid Sn-Cu Based Solders with Cu Substrate WDS'08 Proceedings of Contributed Papers, Part III, 220 224, 2008. ISBN 978-80-7378-067-8 MATFYZPRESS The Effect of Cu and Ni on the Structure and Properties of the IMC Formed by the Reaction of Liquid

More information

Failure Analysis of Coating Adhesion: Peeling of Internal Oxidation Layer over Electrical Steel after Stress Relief Annealing

Failure Analysis of Coating Adhesion: Peeling of Internal Oxidation Layer over Electrical Steel after Stress Relief Annealing China Steel Technical Report, No. 30, pp.27-33, (2017) Hsin-Wei Lin 27 Failure Analysis of Coating Adhesion: Peeling of Internal Oxidation Layer over Electrical Steel after Stress Relief Annealing HSIN-WEI

More information

Via Fill in Small Trenches using Hot Aluminum Process. By Alice Wong

Via Fill in Small Trenches using Hot Aluminum Process. By Alice Wong Via Fill in Small Trenches using Hot Aluminum Process By Alice Wong Goals for Project Good Via Fill in Small contact holes using hot aluminum process Be able to get good images of the contact holes using

More information

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,

More information

High Thermal Conductivity Silicon Nitride Ceramics

High Thermal Conductivity Silicon Nitride Ceramics Journal of the Korean Ceramic Society Vol. 49, No. 4, pp. 380~384, 2012. http://dx.doi.org/10.4191/kcers.2012.49.4.380 Review High Thermal Conductivity Silicon Nitride Ceramics Kiyoshi Hirao, You Zhou,

More information

Aging Treatment Characteristics of Shear Strength in Micro Solder Bump

Aging Treatment Characteristics of Shear Strength in Micro Solder Bump Materials Transactions, Vol. 43, No. 2 (22) pp. 3234 to 3238 c 22 The Japan Institute of Metals Aging Treatment Characteristics of Shear Strength in Micro Solder Bump Chong-Hee Yu, Kyung-Seob Kim 2, Yong-Bin

More information

Investigation of overpotential and seed thickness on damascene copper electroplating

Investigation of overpotential and seed thickness on damascene copper electroplating Surface & Coatings Technology 200 (2006) 3112 3116 www.elsevier.com/locate/surfcoat Investigation of overpotential and on damascene copper electroplating K.W. Chen a, Y.L. Wang b, *, L. Chang a, F.Y. Li

More information

THE INTERFACE MICROSTRUCTURE OF SIC f /AL COMPOSITES

THE INTERFACE MICROSTRUCTURE OF SIC f /AL COMPOSITES ID-1153 THE INTERFACE MICROSTRUCTURE OF SIC f /AL COMPOSITES Sheng Liang Yang Yue Zhuo De Ming Yang Department of Material Engineering & Applied Chemistry, National University of Defence Technology, Changsha,

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3

Section 4: Thermal Oxidation. Jaeger Chapter 3 Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation

Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation Hyun-Gil Kim*, Il-Hyun Kim, Jeong-Yong Park, Yang-Hyun Koo, KAERI, 989-111 Daedeok-daero, Yuseong-gu,

More information

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and

More information

Synthesis and characterization of single crystalline GdB 44 Si 2 nanostructures

Synthesis and characterization of single crystalline GdB 44 Si 2 nanostructures DOI 10.1007/s10853-012-6911-3 Synthesis and characterization of single crystalline GdB 44 Si 2 nanostructures Jinshi Yuan Han Zhang Jie Tang Norio Shinya Yuexian Lin Lu-Chang Qin Received: 23 July 2012

More information

IN-SITU ANNEALING OF Cu(In,Ga)Se 2 FILMS GROWN BY ELEMENTAL CO- EVAPORATION

IN-SITU ANNEALING OF Cu(In,Ga)Se 2 FILMS GROWN BY ELEMENTAL CO- EVAPORATION IN-SITU ANNEALING OF Cu(In,Ga)Se 2 FILMS GROWN BY ELEMENTAL CO- EVAPORATION James D. Wilson, Robert W. Birkmire, William N. Shafarman Institute of Energy Conversion, University of Delaware, Newark, DE

More information

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

The influence of Mn Content on the wettability of dual-phase high-strength steels by liquid Zn 0.23 % Al

The influence of Mn Content on the wettability of dual-phase high-strength steels by liquid Zn 0.23 % Al DOI 10.1007/s10853-012-6737-z HTC 2012 The influence of Mn Content on the wettability of dual-phase high-strength steels by liquid Zn 0.23 % Al Yunkyum Kim Joonho Lee Sun-Ho Jeon Kwang-Geun Chin Received:

More information

Development of different copper seed layers with respect to the copper electroplating process

Development of different copper seed layers with respect to the copper electroplating process Microelectronic Engineering 50 (2000) 433 440 www.elsevier.nl/ locate/ mee Development of different copper seed layers with respect to the copper electroplating process a, a a b b b K. Weiss *, S. Riedel,

More information

Stability of Surface Films Formed on Mg by Exposure Aqueous Solutions

Stability of Surface Films Formed on Mg by Exposure Aqueous Solutions Stability of Surface Films Formed on Mg by Exposure Aqueous Solutions By: Mehdi Taheri Supervisor: Dr. Joseph Kish Walter W. Smeltzer Corrosion Lab McMaster University 1 2 nd MSE 702 Graduate Seminar Sept

More information

Low Temperature Synthesis of Single-crystal Alpha Alumina Platelets by Calcining Bayerite and Potassium Sulfate

Low Temperature Synthesis of Single-crystal Alpha Alumina Platelets by Calcining Bayerite and Potassium Sulfate J. Mater. Sci. Technol., 2011, 27(11), 1011-1015. Low Temperature Synthesis of Single-crystal Alpha Alumina Platelets by Calcining Bayerite and Potassium Sulfate Xinghua Su 1) and Jiangong Li 2) 1) School

More information

Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides

Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Abstract Roy Gordon Gordon@chemistry.harvard.edu, Cambridge, MA To achieve ALD s unique characteristics, ALD precursors must

More information

MANUSCRIPT COVER PAGE

MANUSCRIPT COVER PAGE MANUSCRIPT COVER PAGE Abstract ID: yclee11 or Program ID: EP406 Title of Paper: Microstructure and Phase Transformation of Zinc Titanate Thin Films Keywords: ZnTiO 3 ; thin film; amorphous; magnetron sputtering;

More information

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals

More information

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique IOP Publishing Journal of Physics: Conference Series 61 (2007) 369 373 doi:10.1088/1742-6596/61/1/074 International Conference on Nanoscience and Technology (ICN&T 2006) Application of ultra-thin aluminum

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

RightCopyright 2006 American Vacuum Soci

RightCopyright 2006 American Vacuum Soci Title Gallium nitride thin films deposite magnetron sputtering Author(s) Maruyama, T; Miyake, H Citation JOURNAL OF VACUUM SCIENCE & (2006), 24(4): 1096-1099 TECHNOL Issue Date 2006 URL http://hdl.handle.net/2433/43541

More information

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION PROCEEDINGS OF ASME 2011 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY & 9TH FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY CONFERENCE ESFUELCELL2011 AUGUST 7-10, 2011, WASHINGTON, DC, USA ESFUELCELL2011-54369

More information

Fabrication of CdTe thin films by close space sublimation

Fabrication of CdTe thin films by close space sublimation Loughborough University Institutional Repository Fabrication of CdTe thin films by close space sublimation This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Interreactions of TiAl 3 Thin Film on Bulk -TiAl and on Bulk 2 -Ti 3 Al Alloys at C

Interreactions of TiAl 3 Thin Film on Bulk -TiAl and on Bulk 2 -Ti 3 Al Alloys at C Materials Transactions, Vol. 5, No. () pp. 19 to 19 # The Japan Institute of Metals Interreactions of Thin Film on Bulk -TiAl and on Bulk -Ti 3 Al Alloys at 7 1 C Min-Sheng Chu and Shyi-Kaan Wu* Department

More information

Chapter 5 Epitaxial Growth of Si 1-y C y Alloys

Chapter 5 Epitaxial Growth of Si 1-y C y Alloys Chapter 5 Epitaxial Growth of Si 1-y C y Alloys 5.1 Introduction Traditionally, the incorporation of substitutional carbon into silicon and silicongermanium alloys during growth is of great interest for

More information

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate

Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(100) Substrate Morphology of Thin Aluminum Film Grown by DC Magnetron Sputtering onto SiO 2 on Si(1) Substrate Fan Wu Microelectronics Center, Medtronic Inc., Tempe, AZ 85261 James E. Morris Department of Electrical

More information

The Role of Physical Defects in Electrical Degradation of GaN HEMTs

The Role of Physical Defects in Electrical Degradation of GaN HEMTs The Role of Physical Defects in Electrical Degradation of GaN HEMTs Carl V. Thompson Dept. of Materials Science and Engineering, MIT Faculty Collaborators: Chee Lip Gan 2,3, Tomas Palacios 1, Jesus Del

More information

Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

Slow DNA Transport through Nanopores in Hafnium Oxide Membranes Slow DNA Transport through Nanopores in Hafnium Oxide Membranes Joseph Larkin, Robert Henley, David C. Bell, Tzahi Cohen-Karni, # Jacob K. Rosenstein, and Meni Wanunu * Departments of Physics and Chemistry/Chemical

More information

Supplementary Information

Supplementary Information Supplementary Information Negative voltage modulated multi-level resistive switching by using a Cr/BaTiO x /TiN structure and quantum conductance through evidence of H 2 O 2 sensing mechanism Somsubhra

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst

Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst NANO LETTERS 2003 Vol. 3, No. 9 1315-1320 P. X. Gao, Y. Ding, and Z. L. Wang* School of Materials Science and Engineering, Georgia

More information

Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge

Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge R. Chanson a, E. Pargon a, M. Darnon a, C. Petit Etienne a, S. David a, M. Fouchier a, B. Glueck b, P. Brianceau

More information

Experimental O 3. Results and discussion

Experimental O 3. Results and discussion Introduction Surface coatings to protect against oxidation extend the service temperature and the service life of basic metals. The commercially used coating systems can be divided into three main groups:

More information

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann Efficiency improvement in solar cells MSc_TI Winter Term 2015 Klaus Naumann Agenda Introduction Physical Basics Function of Solar Cells Cell Technologies Efficiency Improvement Outlook 2 Agenda Introduction

More information

FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM

FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM ORAL REFERENCE:ICF100266OR FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM Yuji KIMURA 1 and Hirotsugu SAITO 1 1 Dept. of Materials Science and

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information