CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33

Size: px
Start display at page:

Download "CHAPTER 1. DNA: The Hereditary Molecule SECTION D. What Does DNA Do? Chapter 1 Modern Genetics for All Students S 33"

Transcription

1 HPER 1 DN: he Hereditary Molecule SEION D What Does DN Do? hapter 1 Modern enetics for ll Students S 33

2 D.1 DN odes For Proteins PROEINS DO HE nitty-gritty jobs of every living cell. Proteins are the molecules that give structure and shape to living cells and that carry out all of the chemical reactions necessary for life. he importance of DN is that it contains the information that is used to make all of the proteins on which life depends. he proteins whose structures are specified by our DN do more than carry out all of the reactions necessary to keep our cells alive; they also digest our food for us, influence how we will respond to infections, and determine what color our eyes, hair and skin will be. Proteins are made of long strings of individual building blocks known as amino acids. mino acids come in 20 different kinds that are all slightly different from one another chemically. It is not important for us to understand the details of the chemical differences that distinguish these 20 kinds of amino acids. But it is important to realize that because of these differences, the structure and function of every protein depends on the sequence in which the various kinds of amino acids are strung together. protein may contain many hundred amino acids. But if just one of these amino acid is changed, the function of the protein might change drastically. gene, which is a functional unit of DN, carries coded information indicating the precise sequence in which amino acids should be strung together to make one particular kind of protein that will play one particular role in the life of the cell. he elongated shape of collagen protein, shown in this molecular model, allows collagen to provide structural support to cells and organs. ntibodies, such as this human immunoglobulin, recognize and attack viruses, bacteria, and other foreign substances. hapter 1 Modern enetics for ll Students S 34

3 D.1 here are several different categories of proteins. Most proteins function as enzymes to regulate the speed of particular chemical reactions. Every cell contains hundreds of different enzymes that work together to release energy from food molecules and to use energy to build new cellular materials. ll enzymes are proteins. But not all proteins are enzymes. Structural proteins, as the name implies, provide structural support inside and outside cells and for the body as a whole. Defense proteins are an assortment of proteins in the blood that recognize and fight off foreign invaders, such as bacteria and viruses. ransport proteins are used to carry various molecules into and out of cells as well as through the body. he table on the next page gives a few examples of these and other kinds of proteins. Every aspect of life depends on proteins. In the next set of activities, you will learn about the processes a cell uses to convert the coded information in a bit of DN (a gene) into a particular kind of protein. hapter 1 Modern enetics for ll Students S 35

4 D.1 FEW HUMN PROEINS ND HEIR FUNIONS Protein ype What it does hemoglobin a red, iron-containing, makes your blood red transport protein picks up oxygen from the air in your lungs and releases it to cells elsewhere in your body if you don t make enough hemoglobin, or you make a type that doesn t carry oxygen well, you will be anemic insulin a hormone tells your cells when to remove sugar from your blood after a meal if you don t make enough insulin, or if your cells do not respond to it well, the concentration of sugar in your blood will get too high, and you will have diabetes antibody a defense protein fights infections from bacteria and viruses vaccination triggers production of antibodies that will fight a particular kind of infection if you couldn t make any antibodies, you would have been dead long ago! lactase an enzyme in your digestive tract digests lactose (milk sugar) in milk and dairy products into simpler sugars if you don t make enough lactase, you get diarrhea when you drink milk or eat ice cream or other diary products but you can buy lactase pills to swallow before eating dairy products collagen a structural protein provides the tough structural framework of your skin, bones, tendons, and cartilage keratin a structural protein provides the resistant outer layer of your skin and the tough structural material of your hair and nails myosin a structural protein uses energy derived from food and works that is also an enzyme together with actin to cause muscles to contract you can increase the myosin content of your muscles with exercise hapter 1 Modern enetics for ll Students S 36

5 How DN odes For Proteins Reprinted with permission from onick, L. and Wheelis, M. (1991). he artoon uide to enetics. New York: Harper ollins Publishers hapter 1 Modern enetics for ll Students S 37

6 hapter 1 Modern enetics for ll Students S 38

7 hapter 1 Modern enetics for ll Students S 39

8 hapter 1 Modern enetics for ll Students S 40

9 hapter 1 Modern enetics for ll Students S 41

10 hapter 1 Modern enetics for ll Students S 42

11 hapter 1 Modern enetics for ll Students S 43

12 hapter 1 Modern enetics for ll Students S 44

13 hapter 1 Modern enetics for ll Students S 45

14 hapter 1 Modern enetics for ll Students S 46

15 Name Date Hour QUESIONS ON HOW DN ODES FOR PROEINS FER YOU HVE read about protein synthesis in your excerpt from the artoon uide to enetics, answer the following questions. 1. What is the relationship between genes and proteins? 2. How does RN differ from DN? 3. What is the molecule that carries the information from a gene to the place where a protein will be made? 4. What is the process by which such a molecule is made? 5. What is the enzyme that mediates the process named above? 6. What is the structure on which proteins are made? 7. How many bases form one word of the RN message? 8. What is the technical name for such a group of bases found on mrn? 9. What is another term for protein synthesis? 10. What is the group of molecules that translates the genetic code? 11. What is an anticodon? 12. t the tail end of each trn molecule, an attaches the appropriate molecule to the trn. 13. What happens when two trns are side by side on a ribosome? 14. he first codon on an mrn always is. 15. his codes for the amino acid called. hapter 1 Modern enetics for ll Students S 47

16 D.3 he ene Expression Dance S YOU HVE RED in your excerpt from the artoon uide to enetics, three kinds of RN molecules cooperate to convert the coded information in DN (a gene) into a protein with a particular sequence of amino acids. he process in which the nucleotide sequence of a gene (DN) is used to specify the amino acid sequence of a protein is called gene expression, and it consists of two major phases: 1) transcription, in which a messenger RN (mrn) molecule that is complementary in nucleotide sequence to the gene is synthesized, and 2) translation, in which the message carried by that mrn molecule is used to synthesize the corresponding protein. In this exercise, your class will perform a simulation of these two processes. MERILS Your teacher will hand out the gene-expression flash cards that you will use in this dance. PROEDURE Your teacher will instruct you how to perform the dance. mrn DN 4 U mrn U DN DN 2 DN 7 U codes Isoleucine Methionine U U mrn protein U U Histidine lutamine hapter 1 Modern enetics for ll Students S 48

17 D.4 Name Date Hour Paper Proteins: Models for Simulating ene Expression MERILS For each student or pair of students: 1 set of paper-protein puzzle pieces PROEDURE Follow the directions below to model the processes of transcription and translation, and to make a paper protein. DN Figure 1 1. Place the DN strip on the desk so that the letters read properly for you (fig. 1). mrn 2. Working from left to right, find the mrn pieces that match the DN and line them up (fig. 2). What is the process in which an mrn molecule that is complementary to a DN molecule is produced? DN Figure 2 (nswer question 2 here) 3. Separate the mrn from the DN to simulate the mrn moving out of the nucleus to a ribosome in the cytoplasm of the cell. Leave the mrn pieces lined up next to one another(fig. 3). mrn U Figure 3 U U U 4. Match each of the trn pieces to the amino acid piece that fits with it (fig. 4). Lay them out so that all of them are visible. trn mino cid U Methionine Figure 4 hapter 1 Modern enetics for ll Students S 49

18 D.4 Name Date Hour 5. Search for the trn that will base pair with the first codon of the mrn (the one on the left-hand end). Move the trn with its attached amino acid into place in the mrn (fig. 5). ontinue with the second codon, and so forth. What is the name for this process in which a protein is produced that has an amino acid sequence specified by an mrn molecule? mrn trn mino cid U U Methionine Figure 5 U U U (nswer question 5 here) 6. Now pull the string of six amino acids away from the trn (fig. 6). hese six amino acids represent a new protein. (However, real proteins always contain many more amino acids than this, sometimes more than a thousand.) mino cid Methionine Figure 6 fter you have completed these steps, use the model pieces to explain the two component processes of gene expression to another student. hen write out the steps in your own words. You may refer to your notes or a book to check for scientific accuracy. hapter 1 Modern enetics for ll Students S 50

19 D.5 Name Date Hour Using the enetic ode to ranslate an mrn HE HER OF the regular and predictable relationship between the sequence of nucleotides in any gene and the sequence of amino acids present in the protein for which that gene is said to code is a fixed set of nucleotide-to-amino acid relationships that is known as the genetic code. Just as the Morse code can be printed in the form of a table indicating which letter of the English alphabet is specified by each combination of dots and dashes, the genetic code is usually printed in the form of a table indicating what kind of amino acid is specified by each possible mrn codon. o the right is a DN coding sequence that codes for part of the hemoglobin molecule. omplete the mrn strand following base-pairing rules. hen use the mrn enetic ode able on the next page to determine the amino acid sequence for which this piece of a gene codes. DN mrn mino cid ongratulations! You have just synthesized the first part (12 amino acids) of the protein called ß-globin, which is part of the hemoglobin molecules that make your blood red and carry oxygen to cells throughout your body. (Each real ß-globin molecule actually consists of a string of 147 amino acids.) hapter 1 Modern enetics for ll Students S 51

20 D.5 mrn ENEI ODE BLE 1st base 2nd base U U UUU = phe UU = ser UU = tyr UU = cys U UU = phe U = ser U = tyr U = cys UU = leu U = ser U = stop U = stop UU = leu U = ser U = stop U = trp 3rd base ala arg asn asp cys gln glu gly mino cid bbreviations = alanine = arginine = asparagine = aspartic acid = cysteine = glutamine = glutamic acid = glycine UU = leu U = pro U = his U = arg U U = leu = pro = his = arg U = leu = pro = gln = arg his ile leu lys = histidine = isoleucine = leucine = lysine U = leu = pro = gln = arg UU = ile U = thr U = asn U = ser U U = ile = thr = asn = ser U = ile = thr = lys = arg met = methionine phe = phenylalanine pro = proline ser thr trp tyr = serine = threonine = tryptophan = tyrosine U = met = thr = lys = arg val = valine UU = val U = ala U = asp U = gly U U = val = ala = asp = gly U = val = ala = glu = gly U = val = ala = glu = gly hapter 1 Modern enetics for ll Students S 52

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it Life The main actors in the chemistry of life are molecules called proteins nucleic acids Proteins: many different

More information

Basic concepts of molecular biology

Basic concepts of molecular biology Basic concepts of molecular biology Gabriella Trucco Email: gabriella.trucco@unimi.it What is life made of? 1665: Robert Hooke discovered that organisms are composed of individual compartments called cells

More information

Key Concept Translation converts an mrna message into a polypeptide, or protein.

Key Concept Translation converts an mrna message into a polypeptide, or protein. 8.5 Translation VOBLRY translation codon stop codon start codon anticodon Key oncept Translation converts an mrn message into a polypeptide, or protein. MIN IDES mino acids are coded by mrn base sequences.

More information

Granby Transcription and Translation Services plc

Granby Transcription and Translation Services plc ompany Resources ranby Transcription and Translation Services plc has invested heavily in the Protein Synthesis business. mongst the resources available to new recruits are: the latest cellphones which

More information

DNA.notebook March 08, DNA Overview

DNA.notebook March 08, DNA Overview DNA Overview Deoxyribonucleic Acid, or DNA, must be able to do 2 things: 1) give instructions for building and maintaining cells. 2) be copied each time a cell divides. DNA is made of subunits called nucleotides

More information

11 questions for a total of 120 points

11 questions for a total of 120 points Your Name: BYS 201, Final Exam, May 3, 2010 11 questions for a total of 120 points 1. 25 points Take a close look at these tables of amino acids. Some of them are hydrophilic, some hydrophobic, some positive

More information

Unit 1. DNA and the Genome

Unit 1. DNA and the Genome Unit 1 DNA and the Genome Gene Expression Key Area 3 Vocabulary 1: Transcription Translation Phenotype RNA (mrna, trna, rrna) Codon Anticodon Ribosome RNA polymerase RNA splicing Introns Extrons Gene Expression

More information

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below).

Materials Protein synthesis kit. This kit consists of 24 amino acids, 24 transfer RNAs, four messenger RNAs and one ribosome (see below). Protein Synthesis Instructions The purpose of today s lab is to: Understand how a cell manufactures proteins from amino acids, using information stored in the genetic code. Assemble models of four very

More information

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012

Bioinformatics. ONE Introduction to Biology. Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Bioinformatics ONE Introduction to Biology Sami Khuri Department of Computer Science San José State University Biology/CS 123A Fall 2012 Biology Review DNA RNA Proteins Central Dogma Transcription Translation

More information

Algorithms in Bioinformatics ONE Transcription Translation

Algorithms in Bioinformatics ONE Transcription Translation Algorithms in Bioinformatics ONE Transcription Translation Sami Khuri Department of Computer Science San José State University sami.khuri@sjsu.edu Biology Review DNA RNA Proteins Central Dogma Transcription

More information

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos

Daily Agenda. Warm Up: Review. Translation Notes Protein Synthesis Practice. Redos Daily Agenda Warm Up: Review Translation Notes Protein Synthesis Practice Redos 1. What is DNA Replication? 2. Where does DNA Replication take place? 3. Replicate this strand of DNA into complimentary

More information

GENES and the NUCLEUS

GENES and the NUCLEUS ENES and the NULEUS () DN the nucleus contains the set of that determines: (a) what each cell will become (muscle cell, nerve cell, eye cell, etc) (b) how each cell will (through the production of ) (c)

More information

Using DNA sequence, distinguish species in the same genus from one another.

Using DNA sequence, distinguish species in the same genus from one another. Species Identification: Penguins 7. It s Not All Black and White! Name: Objective Using DNA sequence, distinguish species in the same genus from one another. Background In this activity, we will observe

More information

Honors Research in Molecular Genetics Part 1

Honors Research in Molecular Genetics Part 1 Third Base Honors Research in Molecular enetics Part 1 ll bout ene Expression How do cells synthesize polypeptides and convert them to functional proteins? The message in your DN of who you are and how

More information

Gene Expression Translation U C A G A G

Gene Expression Translation U C A G A G Why? ene Expression Translation How do cells synthesize polypeptides and convert them to functional proteins? The message in your DN of who you are and how your body works is carried out by cells through

More information

ENZYMES AND METABOLIC PATHWAYS

ENZYMES AND METABOLIC PATHWAYS ENZYMES AND METABOLIC PATHWAYS This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at http://creativecommons.org/licenses/by-nc-sa/2.5/it/ 1. Enzymes build

More information

Protein Synthesis. Application Based Questions

Protein Synthesis. Application Based Questions Protein Synthesis Application Based Questions MRNA Triplet Codons Note: Logic behind the single letter abbreviations can be found at: http://www.biology.arizona.edu/biochemistry/problem_sets/aa/dayhoff.html

More information

Molecular Biology. Biology Review ONE. Protein Factory. Genotype to Phenotype. From DNA to Protein. DNA à RNA à Protein. June 2016

Molecular Biology. Biology Review ONE. Protein Factory. Genotype to Phenotype. From DNA to Protein. DNA à RNA à Protein. June 2016 Molecular Biology ONE Sami Khuri Department of Computer Science San José State University Biology Review DNA RNA Proteins Central Dogma Transcription Translation Genotype to Phenotype Protein Factory DNA

More information

Nucleic acid and protein Flow of genetic information

Nucleic acid and protein Flow of genetic information Nucleic acid and protein Flow of genetic information References: Glick, BR and JJ Pasternak, 2003, Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press, Washington DC, pages.

More information

What is necessary for life?

What is necessary for life? Life What is necessary for life? Most life familiar to us: Eukaryotes FREE LIVING Or Parasites First appeared ~ 1.5-2 10 9 years ago Requirements: DNA, proteins, lipids, carbohydrates, complex structure,

More information

Supplemental Materials

Supplemental Materials JORNL OF MIROBIOLOY & BIOLOY EDTION, May 2012, Supplemental Materials opyright 2012 merican Society for Microbiology DOI: http://dx.doi.org/10.1128/jmbe.v13i1.356 Supplemental Materials for Teaching the

More information

Problem: The GC base pairs are more stable than AT base pairs. Why? 5. Triple-stranded DNA was first observed in 1957. Scientists later discovered that the formation of triplestranded DNA involves a type

More information

DNA RNA Protein Trait Protein Synthesis (Gene Expression) Notes Proteins (Review) Proteins make up all living materials

DNA RNA Protein Trait Protein Synthesis (Gene Expression) Notes Proteins (Review) Proteins make up all living materials DNA RNA Protein Trait Protein Synthesis (Gene Expression) Notes Proteins (Review) Proteins make up all living materials Proteins are composed of amino acids there are 20 different amino acids Different

More information

Forensic Science: DNA Evidence Unit

Forensic Science: DNA Evidence Unit Day 2 : Cooperative Lesson Topic: Protein Synthesis Duration: 55 minutes Grade Level: 10 th Grade Forensic Science: DNA Evidence Unit Purpose: The purpose of this lesson is to review and build upon prior

More information

Lecture 19A. DNA computing

Lecture 19A. DNA computing Lecture 19A. DNA computing What exactly is DNA (deoxyribonucleic acid)? DNA is the material that contains codes for the many physical characteristics of every living creature. Your cells use different

More information

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks

BIOSTAT516 Statistical Methods in Genetic Epidemiology Autumn 2005 Handout1, prepared by Kathleen Kerr and Stephanie Monks Rationale of Genetic Studies Some goals of genetic studies include: to identify the genetic causes of phenotypic variation develop genetic tests o benefits to individuals and to society are still uncertain

More information

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology

6- Important Molecules of Living Systems. Proteins Nucleic Acids Taft College Human Physiology 6- Important Molecules of Living Systems Proteins Nucleic Acids Taft College Human Physiology Proteins Proteins- made from: C, H, O, N, and S. Proteins are very large molecules composed of long chains

More information

What is necessary for life?

What is necessary for life? Life What is necessary for life? Most life familiar to us: Eukaryotes FREE LIVING Or Parasites First appeared ~ 1.5-2 10 9 years ago Requirements: DNA, proteins, lipids, carbohydrates, complex structure,

More information

Proteins: Wide range of func2ons. Polypep2des. Amino Acid Monomers

Proteins: Wide range of func2ons. Polypep2des. Amino Acid Monomers Proteins: Wide range of func2ons Proteins coded in DNA account for more than 50% of the dry mass of most cells Protein func9ons structural support storage transport cellular communica9ons movement defense

More information

The combination of a phosphate, sugar and a base forms a compound called a nucleotide.

The combination of a phosphate, sugar and a base forms a compound called a nucleotide. History Rosalin Franklin: Female scientist (x-ray crystallographer) who took the picture of DNA James Watson and Francis Crick: Solved the structure of DNA from information obtained by other scientist.

More information

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS

CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS 1 CS 4491/CS 7990 SPECIAL TOPICS IN BIOINFORMATICS * Some contents are adapted from Dr. Jean Gao at UT Arlington Mingon Kang, PhD Computer Science, Kennesaw State University 2 Genetics The discovery of

More information

6-Foot Mini Toober Activity

6-Foot Mini Toober Activity Big Idea The interaction between the substrate and enzyme is highly specific. Even a slight change in shape of either the substrate or the enzyme may alter the efficient and selective ability of the enzyme

More information

Translating the Language of Heredity

Translating the Language of Heredity Learning Experience 5 ranslating the Language of Heredity Prologue How does information in DN become the proteins that are responsible for traits? What is the relationship between nucleic acids, proteins,

More information

Create a model to simulate the process by which a protein is produced, and how a mutation can impact a protein s function.

Create a model to simulate the process by which a protein is produced, and how a mutation can impact a protein s function. HASPI Medical Biology Lab 0 Purpose Create a model to simulate the process by which a protein is produced, and how a mutation can impact a protein s function. Background http://mssdbio.weebly.com/uploads/1//7/6/17618/970_orig.jpg

More information

From Gene to Protein Transcription and Translation

From Gene to Protein Transcription and Translation Name: Hour: From Gene to Protein Transcription and Translation Introduction: In this activity you will learn how the genes in our DNA influence our characteristics. For example, how can a gene cause albinism

More information

Thr Gly Tyr. Gly Lys Asn

Thr Gly Tyr. Gly Lys Asn Your unique body characteristics (traits), such as hair color or blood type, are determined by the proteins your body produces. Proteins are the building blocks of life - in fact, about 45% of the human

More information

Read and take notes on pages

Read and take notes on pages Protein Synthesis Read and take notes on pages 336-340 What is protein? Proteins Polypeptide chains of amino acids Are enzymes that catalyze biochemical reactions and are vital to metabolism. They have

More information

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF BIOTECHNOLOGY Professor Bjørn E. Christensen, Department of Biotechnology Page 1 NRWEGIAN UNIVERSITY F SCIENCE AND TECNLGY DEPARTMENT F BITECNLGY Professor Bjørn E. Christensen, Department of Biotechnology Contact during the exam: phone: 73593327, 92634016 EXAM TBT4135 BIPLYMERS

More information

Human Biology. Chapter 21 DNA Biology and Technology Lecture Outline. Sylvia S. Mader Michael Windelspecht

Human Biology. Chapter 21 DNA Biology and Technology Lecture Outline. Sylvia S. Mader Michael Windelspecht Human Biology Sylvia S. Mader Michael Windelspecht hapter 21 DN Biology and Technology Lecture Outline See separate Flexrt PowerPoint slides for all figures and tables pre-inserted into PowerPoint without

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i From Gene to Protein Transcription and Translation i How do the genes in our DNA influence our characteristics? A gene is a segment of DNA that provides the instructions for making a protein. Proteins

More information

BIOLOGY. Monday 14 Mar 2016

BIOLOGY. Monday 14 Mar 2016 BIOLOGY Monday 14 Mar 2016 Entry Task List the terms that were mentioned last week in the video. Translation, Transcription, Messenger RNA (mrna), codon, Ribosomal RNA (rrna), Polypeptide, etc. Agenda

More information

Chapter 13 From Genes to Proteins

Chapter 13 From Genes to Proteins Chapter 13 From Genes to Proteins True/False Indicate whether the sentence or statement is true(a) or false(b). 1. RNA nucleotides contain the sugar ribose. 2. Only DNA molecules contain the nitrogen base

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i How do genes influence our characteristics? From Gene to Protein Transcription and Translation i A gene is a segment of DNA that provides the instructions for making a protein. Proteins have many different

More information

MOLEBIO LAB #3: Electrophoretic Separation of Proteins

MOLEBIO LAB #3: Electrophoretic Separation of Proteins MOLEBIO LAB #3: Electrophoretic Separation of Proteins Introduction: Proteins occupy a central position in the structure and function of all living organisms. Some proteins serve as structural components

More information

Transcription & Translation notes

Transcription & Translation notes Transcription & Translation notes TRNSRIPTION The entral Dogma DN RN proteins Protein Synthesis The DN inherited by an organism leads to specific traits by dictating the synthesis of proteins The process

More information

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13 Bi190-2013 Lecture 3 Loss-of-function (Ch. 4A) Infer Gene activity from type of allele Loss-of-Function alleles are Gold Standard If organism deficient in gene A fails to accomplish process B, then gene

More information

From DNA to Protein Structure and Function

From DNA to Protein Structure and Function STO-106 From DNA to Protein Structure and Function Teacher information Summary: Students model how information in the DNA base sequences is transcribed and translated to produce a protein molecule. They

More information

From Gene to Protein via Transcription and Translation i

From Gene to Protein via Transcription and Translation i How do genes influence our characteristics? From Gene to Protein via Transcription and Translation i A gene is a segment of DNA that provides the instructions for making a protein. Proteins have many different

More information

Biology 3201 Genetics Unit #5

Biology 3201 Genetics Unit #5 Biology 3201 Genetics Unit #5 Protein Synthesis Protein Synthesis Protein synthesis: this is the process whereby instructions from DNA are used to create polypeptides that make up a protein. This process

More information

7.014 Quiz II Handout

7.014 Quiz II Handout 7.014 Quiz II Handout Quiz II: Wednesday, March 17 12:05-12:55 54-100 **This will be a closed book exam** Quiz Review Session: Friday, March 12 7:00-9:00 pm room 54-100 Open Tutoring Session: Tuesday,

More information

This is the knowledge that you should understand upon completing this section:

This is the knowledge that you should understand upon completing this section: DN 11 Syllabus hecklist This is the knowledge that you should understand upon completing this section: 11.1 DN DN occurs bound to proteins in chromosomes in the nucs and as unbound DN in the mitochondria.

More information

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L-

36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 36. The double bonds in naturally-occuring fatty acids are usually isomers. A. cis B. trans C. both cis and trans D. D- E. L- 37. The essential fatty acids are A. palmitic acid B. linoleic acid C. linolenic

More information

A Crash Course in Genetics. A Crash Course in Genetics. General Overview: General Overview: DNA Is Structured Hierarchically

A Crash Course in Genetics. A Crash Course in Genetics. General Overview: General Overview: DNA Is Structured Hierarchically DN Structure DN Structure RN RN DN Replication DN Replication Encoding Proteins Encoding Proteins Protein Folding Protein Folding Types of DN Types of DN Manipulating DN Manipulating DN DN Is Structured

More information

The Nature of Life. Some properties of life. Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

The Nature of Life. Some properties of life. Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Nature of Life Some properties of life opyright 2005 Pearson Education, Inc. publishing as Benjamin ummings Life Displays rder opyright 2005 Pearson Education, Inc. publishing as Benjamin ummings Life

More information

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below.

Problem Set Unit The base ratios in the DNA and RNA for an onion (Allium cepa) are given below. Problem Set Unit 3 Name 1. Which molecule is found in both DNA and RNA? A. Ribose B. Uracil C. Phosphate D. Amino acid 2. Which molecules form the nucleotide marked in the diagram? A. phosphate, deoxyribose

More information

Steroids. Steroids. Proteins: Wide range of func6ons. lipids characterized by a carbon skeleton consis3ng of four fused rings

Steroids. Steroids. Proteins: Wide range of func6ons. lipids characterized by a carbon skeleton consis3ng of four fused rings Steroids Steroids lipids characterized by a carbon skeleton consis3ng of four fused rings 3 six sided, and 1 five sided Cholesterol important steroid precursor component in animal cell membranes Although

More information

Molecular Biology: DNA, gene, chromosome and genome (Learning Objectives)

Molecular Biology: DNA, gene, chromosome and genome (Learning Objectives) Molecular Biology: DN, gene, chromosome and genome (Learning bjectives) Nucleic acid structure and composition ompare and contrast the structure of DN and RN: features they share and how do they differ?

More information

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.

Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2. 1. Station 1: DNA Structure Use the figure above to answer each of the following questions. 1.This is the subunit that DNA is composed of. 2.This subunit is composed of what 3 parts? 3.What molecules make

More information

Basic Concepts of Human Genetics

Basic Concepts of Human Genetics Basic Concepts of Human Genetics The genetic information of an individual is contained in 23 pairs of chromosomes. Every human cell contains the 23 pair of chromosomes. One pair is called sex chromosomes

More information

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids

THE GENETIC CODE Figure 1: The genetic code showing the codons and their respective amino acids THE GENETIC CODE As DNA is a genetic material, it carries genetic information from cell to cell and from generation to generation. There are only four bases in DNA and twenty amino acids in protein, so

More information

7.014 Solution Set 4

7.014 Solution Set 4 7.014 Solution Set 4 Question 1 Shown below is a fragment of the sequence of a hypothetical bacterial gene. This gene encodes production of HWDWN, protein essential for metabolizing sugar yummose. The

More information

Your Name. Mean ± SD = 72.3 ± 17.6 Range = out of 112 points N = Points

Your Name. Mean ± SD = 72.3 ± 17.6 Range = out of 112 points N = Points Introduction to Biochemistry Final Examination - Individual (Part I) Thursday, 24 May 2012 3:30 5:30 PM, 206 Brown Lab H. B. White Instructor Your Name Mean ± SD = 72.3 ± 17.6 Range = 23 99 out of 112

More information

A Zero-Knowledge Based Introduction to Biology

A Zero-Knowledge Based Introduction to Biology A Zero-Knowledge Based Introduction to Biology Konstantinos (Gus) Katsiapis 25 Sep 2009 Thanks to Cory McLean and George Asimenos Cells: Building Blocks of Life cell, membrane, cytoplasm, nucleus, mitochondrion

More information

DNA stands for deoxyribose nucleic acid

DNA stands for deoxyribose nucleic acid 1 DNA 2 DNA stands for deoxyribose nucleic acid This chemical substance is present in the nucleus of all cells in all living organisms DNA controls all the chemical changes which take place in cells The

More information

Period 2: Further explain transcription (page 2 to the top of page 3) and have students model transcription and answer the questions (pages 3-4).

Period 2: Further explain transcription (page 2 to the top of page 3) and have students model transcription and answer the questions (pages 3-4). From ene to Protein -- Transcription and Translation Teacher Preparation Notes By Dr. Ingrid Waldron and Jennifer Doherty, Department of Biology, niversity of Pennsylvania, opyright, 2008 1 Introduction

More information

PROTEIN SYNTHESIS WHAT IS IT? HOW DOES IT WORK?

PROTEIN SYNTHESIS WHAT IS IT? HOW DOES IT WORK? PROTEIN SYNTHESIS WHAT IS IT? HOW DOES IT WORK? Learning Outcomes All: Will be able to describe simple steps in protein synthesis: Transcription and Translation and be able to distinguish between them.

More information

Basics of Molecular Biology

Basics of Molecular Biology Lecture 1 Basics of Molecular Biology January 4, 2000 Notes: Michael ates We begin with a review of the basic molecules responsible for the functioning of all organisms cells. Much of the material here

More information

Genes. Multiple Choice Review. Slide 1 / 46. Slide 2 / 46. Slide 3 (Answer) / 46. Slide 3 / 46. Slide 4 / 46. Slide 4 (Answer) / 46

Genes. Multiple Choice Review. Slide 1 / 46. Slide 2 / 46. Slide 3 (Answer) / 46. Slide 3 / 46. Slide 4 / 46. Slide 4 (Answer) / 46 Slide 1 / 46 Slide 2 / 46 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

DNA Begins the Process

DNA Begins the Process Biology I D N A DNA contains genes, sequences of nucleotide bases These Genes code for polypeptides (proteins) Proteins are used to build cells and do much of the work inside cells DNA Begins the Process

More information

Biology: The substrate of bioinformatics

Biology: The substrate of bioinformatics Bi01_1 Unit 01: Biology: The substrate of bioinformatics What is Bioinformatics? Bi01_2 handling of information related to living organisms understood on the basis of molecular biology Nature does it.

More information

Chemistry 121 Winter 17

Chemistry 121 Winter 17 Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information

Monster Synthesis Activity

Monster Synthesis Activity Monster Synthesis ctivity Purpose: To examine how an organism s DN determines their phenotypes. Background Information: Your unique body characteristics (traits), such as hair color or blood type, are

More information

7.013 Problem Set 3 FRIDAY October 8th, 2004

7.013 Problem Set 3 FRIDAY October 8th, 2004 MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert. Weinberg, Dr. laudette ardel Name: T: 7.013 Problem Set 3 FRIDY October 8th, 2004 Problem

More information

PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION

PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION ame Biology eriod Date RTEI SYTHESIS TRSRITI D TRSLTI D is the molecule that stores the genetic information in your cells. That information is coded in the four s of D: (cytosine), (guanine), (adenine),

More information

Biochemistry and Cell Biology

Biochemistry and Cell Biology Biochemistry and Cell Biology Monomersare simple molecules that can be linked into chains. (Nucleotides, Amino acids, monosaccharides) Polymersare the long chains of monomers. (DNA, RNA, Cellulose, Protein,

More information

How life. constructs itself.

How life. constructs itself. How life constructs itself Life constructs itself using few simple rules of information processing. On the one hand, there is a set of rules determining how such basic chemical reactions as transcription,

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

NOTES Gene Expression ACP Biology, NNHS

NOTES Gene Expression ACP Biology, NNHS Name Date Block NOTES Gene Expression ACP Biology, NNHS Model 1: Transcription the process of genes in DNA being copied into a messenger RNA 1. Where in the cell is DNA found? 2. Where in the cell does

More information

The Genetic Code: Translation. Pre-class reading Chapter 17: Pages

The Genetic Code: Translation. Pre-class reading Chapter 17: Pages The Genetic Code: Translation Pre-class reading Chapter 17: Pages 336-348 Nomenclature needed: Translation RN (m, t, r) Signal peptide sequence Mutations Ribosomes + Polyribosomes Codon (triplet code)

More information

2) Which functional group is least important in biochemistry? A) amine B) ester C) hydroxyl D) aromatic E) amide

2) Which functional group is least important in biochemistry? A) amine B) ester C) hydroxyl D) aromatic E) amide 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C) carbohydrates. D) nucleic acids. E) All of the above are biomolecules. 2) Which functional group is least important

More information

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko

Chapter 10. The Structure and Function of DNA. Lectures by Edward J. Zalisko Chapter 10 The Structure and Function of DNA PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey,

More information

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 39 12-3 RNA and Protein Synthesis 2 of 39 Essential Question What is transcription and translation and how do they take place? 3 of 39 12 3 RNA and Protein Synthesis Genes are coded

More information

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 39 12-3 RNA and Protein Synthesis 2 of 39 12 3 RNA and Protein Synthesis Genes are coded DNA instructions that control the production of proteins. Genetic messages can be decoded by

More information

Protein Structure Analysis

Protein Structure Analysis BINF 731 Protein Structure Analysis http://binf.gmu.edu/vaisman/binf731/ Secondary Structure: Computational Problems Secondary structure characterization Secondary structure assignment Secondary structure

More information

A self- created drawing, collage, or computer generated picture of your creature.

A self- created drawing, collage, or computer generated picture of your creature. Protein Synthesis Project 40 pts Part I Due Date Part II Due Date Objectives: I can demonstrate how the genes in DNA are transcribed through RNA polymerase into mrna and translated by ribosomes, mrna,

More information

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein?

Do you remember. What is a gene? What is RNA? How does it differ from DNA? What is protein? Lesson 1 - RNA Do you remember What is a gene? What is RNA? How does it differ from DNA? What is protein? Gene Segment of DNA that codes for building a protein DNA code is copied into RNA form, and RNA

More information

Name. Student ID. Midterm 2, Biology 2020, Kropf 2004

Name. Student ID. Midterm 2, Biology 2020, Kropf 2004 Midterm 2, Biology 2020, Kropf 2004 1 1. RNA vs DNA (5 pts) The table below compares DNA and RNA. Fill in the open boxes, being complete and specific Compare: DNA RNA Pyrimidines C,T C,U Purines 3-D structure

More information

Transcription & Translation Practice Examination

Transcription & Translation Practice Examination Name: Date: Students must provide an explanation for all problems. Students must have parent signature prior to submission. 1. A DNA molecule with the base sequence A-G-C-T-C-A was used as a template for

More information

2. The instructions for making a protein are provided by a gene, which is a specific segment of a molecule.

2. The instructions for making a protein are provided by a gene, which is a specific segment of a molecule. From Gene to Protein Transcription and Translation By Dr. Ingrid Waldron and Dr. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 1 In this activity you will learn how

More information

Protein Synthesis: Transcription and Translation

Protein Synthesis: Transcription and Translation Review Protein Synthesis: Transcription and Translation Central Dogma of Molecular Biology Protein synthesis requires two steps: transcription and translation. DNA contains codes Three bases in DNA code

More information

Aipotu II: Biochemistry

Aipotu II: Biochemistry Aipotu II: Biochemistry Introduction: The Biological Phenomenon Under Study In this lab, you will continue to explore the biological mechanisms behind the expression of flower color in a hypothetical plant.

More information

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&!

First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins)&! 1.&! First&year&tutorial&in&Chemical&Biology&(amino&acids,&peptide&and&proteins& 1.& a. b. c. d. e. 2.& a. b. c. d. e. f. & UsingtheCahn Ingold Prelogsystem,assignstereochemicaldescriptorstothe threeaminoacidsshownbelow.

More information

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl

1/4/18 NUCLEIC ACIDS. Nucleic Acids. Nucleic Acids. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl

NUCLEIC ACIDS. ECS129 Instructor: Patrice Koehl NUCLEIC ACIDS ECS129 Instructor: Patrice Koehl Nucleic Acids Nucleotides DNA Structure RNA Synthesis Function Secondary structure Tertiary interactions Wobble hypothesis DNA RNA Replication Transcription

More information

What You ll Learn You will relate the structure of DNA to its function. You will explain the role of DNA in protein production.

What You ll Learn You will relate the structure of DNA to its function. You will explain the role of DNA in protein production. What You ll Learn You will relate the structure of DN to its function. You will explain the role of DN in protein production. You will distinguish among different types of mutations. Section Objectives:

More information

Zool 3200: Cell Biology Exam 3 3/6/15

Zool 3200: Cell Biology Exam 3 3/6/15 Name: Trask Zool 3200: Cell Biology Exam 3 3/6/15 Answer each of the following questions in the space provided; circle the correct answer or answers for each multiple choice question and circle either

More information

Additional Case Study: Amino Acids and Evolution

Additional Case Study: Amino Acids and Evolution Student Worksheet Additional Case Study: Amino Acids and Evolution Objectives To use biochemical data to determine evolutionary relationships. To test the hypothesis that living things that are morphologically

More information

Connect the dots DNA to DISEASE

Connect the dots DNA to DISEASE Teachers Material Connect the dots DNA to DISEASE Developed by: M. Oltmann & A. James. California State Standards Cell Biology 1.d. Students know the central dogma of molecular biology outlines the flow

More information

He who asks is a fool for five minutes, but he who does not ask remains a fool forever. Today. Admin Stuff. CSE527 Computational Biology

He who asks is a fool for five minutes, but he who does not ask remains a fool forever. Today. Admin Stuff. CSE527 Computational Biology CSE527 Computational Biology http://www.cs.washington.edu/527 He who asks is a fool for five minutes, but he who does not ask remains a fool forever. Larry Ruzzo Autumn 2006 -- Chinese Proverb UW CSE Computational

More information

From mechanism to medicne

From mechanism to medicne From mechanism to medicne a look at proteins and drug design Chem 342 δ δ δ+ M 2009 δ+ δ+ δ M Drug Design - an Iterative Approach @ DSU Structural Analysis of Receptor Structural Analysis of Ligand-Receptor

More information