Micro processing with laser radiation

Size: px
Start display at page:

Download "Micro processing with laser radiation"

Transcription

1 Micro processing with laser radiation Trends and perspectives Miniaturization and highly integrated functionalization are the driving factors in the production of innovative products in almost every industrial area today: Electronic components require conducting traces smaller than 100 µm und 3-dimensional interconnections, highly fuel efficient cars are only possible by micro structured functional surfaces and injection nozzles with geometries < 100 µm, medical products require selective functionalization for improved fluid control and micro optical components increase the functionality in a large variety of consumer products like mobile phones and miniaturized cameras. For all this applications manufacturing methods are needed, which are able to perform specific processing steps without influencing the overall properties of the materials the product is made from and on the other hand allow the easy integration into mass manufacturing lines at high production rates. Moreover the different processes should be used in a flexible way to be able to customize the functions and properties of the part with respect to increasing mass customizing requirements. Laser processes always have been used for highly selective processing technologies with minimized heat input to provide low distortion or material specific property changes. Recent developments on new laser sources allow even further decrease of unintentional production and extensive processing areas. New lasers like Fiber lasers with process adapted wavelengths and ultimate beam quality Ultrashort pulsed lasers in the ps and fs range and with very high repetition rates Lasers with highly desirable energy distribution in time and space allow new manufacturing methods which meet the demands of flexible micro produc- DER AUTOR ARNOLD GILLNER Arnold Gillner is heading the department of micro technology at the Fraunhofer-Institute for Laser Technology in Aachen, Germany. He is working on laser based micro structuring with UVand short pulse lasers, micro joining technologies with laser radiation and laser applications in biotechnology and medicine. Dr.-Ing. Arnold Gillner Fraunhofer Institut f. Lasertechnik Steinbachstr Aachen Germany Phone: Fax: arnold.gillner@ilt.fraunhofer.de Website: tion processes at high processing speeds. Moreover those lasers have become more reliable and efficient, so that they can be used in processing lines with high demands on yield and cost effective production. This holds especially for the manufacturing of micro parts, where packaging of single components requires the ability to join different materials with joining geometries < 50 µm or structuring is necessary in the micron and submicron range in almost all kinds of materials. Under these conditions laser processes have been established in a wide range of new applications beside the already existing use in classical fields like turbine drilling, fine mechanic parts welding, selective soldering of electronic parts and marking. Recent process developments based on the new laser sources have resulted in product optimizations with new features and higher efficiency especially in: Solar cell production Mechanical engineering with improved surface functionalities and wear resistance Biotechnical and medical products Miniaturized mechanical parts like mini motors and gears Electronic part manufacturing Moulding and forming tools and processes Most of these processes require mass manufacturing capabilities which are fulfilled by the new laser sources and high speed beam guiding and scanning devices. Micro ablation, drilling and surface functionalization with short pulse lasers and nanoscale approaches In the production of micro devices, the surface properties become more and more important for highly loaded mechanical devices, biotechnology components and medical products with respect to wear resistance, wetting properties and chemical composition of the surface. New laser processes provide appropriate solutions for the change and setting specific surface properties. Typical applications are gliders, gears, bearings for micro mechanical devices as well as micro fluidic systems or miniaturized devices for DNA- and proteome analysis (bio-chips) and implants. For the processing of metallic or ceramic parts high repetition rate short pulse lasers in the ns- and psrange with minimized heat input are used for micro structuring the surface providing lubricant containers and improved gliding characteristics. With newly designed laser technologies based on nanoscale sized UV-laser treatment of polymers for surface processing, wetting properties, cell growth behaviour and im- LTJ 21

2 mobilization of functional molecules with high spatial resolution can be set and modified. Depending on the processing parameters and used polymers either hydrophobic or hydrophilic properties can be enhanced (i.e. laser induced lotus / anti-lotus effect). Enhanced roughness and changes of the chemical composition have also influence on cell growth on polymer surfaces. Thus guiding aids for cells e.g. on medical implants can be generated by laser irradiation. Due to the outstanding properties of high quality and high energy laser light, micro and nano structured surfaces can be processed and combined with chemical modifications, which are produced by photochemical processes. By a topographic and morphologic modification of polymer surfaces, their characteristics can be changed and certain functionalities can be set, which the actual materials do not provide. Compared to conventional surface functionalization methods laser treatment allows a selective and laterally structured processing. By scanning and mask imaging, only those regions of a part can be changed in its properties, which are of interest for the later use. Depending on the type of structuring and functionalization as well as the number of parts to be produced different laser technologies can be used to process either the part direct or the tool, with which the part is manufactured. For direct processing the following laser processes can be used: Direct nano structuring of polymer surfaces by interference ablation methods THE INSTITUTE Fraunhofer Institut für Lasertechnik Aachen, Germany Fraunhofer ILT is developing for more than twenty years lasers and industrial applications for various sectors like automobile industry, mechanical engineering, chemical and electrical engineering, medical technology and optics. The four business areas cover innovative diode and solid state lasers, materials applications like cutting, ablation, drilling, welding, surface treatment and micro processing, process control and laser measurement and testing technology processes for inspection of surfaces and for materials analysis FIGURE 1: Micro structured steel replication tool (left), Wetting test at replicated polymer (right). Photochemistry based nano functionalization of polymer surfaces Combination of microscopic topographic change with functional surface photochemistry Laser based surface chemistry and molecule binding For indirect processing the following laser processes can be used: Micro scale structuring of injection molding tools Nano structuring of tools by laser ablation of surface layers and subsequent etching Especially the indirect methods allow low cost solutions for mass production and the equipment of consumer parts with functional nano structures and enhanced functionalities. Nano-structures with an extreme surface to volume ratio show a particularly high potential, since over the manufacturing processes both chemical and structural characteristics can be combined. Thus super hydrophobic surface properties can be adjusted in the sense of a synthetic lotus effect by a locally selective structuring of this surface in the submicrometer or nanometer range e.g. on certain polymers. On medical dosing equipment the adhesion of fluids can be avoided and thus an accurate dosage can be guaranteed with medical dosing assistance. In biological chips for medical analytics the flow characteristics and capillary effects can be functionally influenced. For the production of micro and nanostructures on three-dimensional replication tools a new laser-based process for the nano and micro structuring has been developed based on high speed scanning ablation using UV-lasers with interference imaging and direct focusing. With this technologies micro and nano scale structures in the size from 300 nm to several µm can be produced with which aimed functional structures can be produced on the polymer parts. In Fig. 1 the surface of a replication tool is shown, where by laser ablation in tungsten carbide micro pits with sizes between 1-5 µm have been produced. Due to the process characteristics of laser ablation sub micrometer scaled substructures are produced, which further increase the surface area. Tools like this have been successfully tested for the replication of polymers to achieve functional surfaces. In Fig. 1 the result of a wetting test shows, that by micro structuring a super hydrophobic effect can be produced. Further investigations on steel structuring are related to combined processes, where interference methods are used for nano structuring of coated surfaces. In a second process step this structured layers are used as a conformal mask within etching procedures to transfer the nano structures into the tool steel. For the use on medical implants surface structuring has been performed for improved cell growing with cell guiding structures in PDMS (Fig. 2). The structure sizes vary from 2 to 30 µm in height and distance. The analysis of cells on micro patterned polymer substrates revealed that there is an influence of laser treated zones on cell behaviour. Enhanced roughness due to ripples and recondensed debris material in the nanometer scale seem to improve the conditions for cells adherence which can be seen from the much higher cell density around the laser structured areas. The influence of laser generated patterns on polymer surfaces is clearly indicated. Using the above mentioned new short pulse lasers for micro ablation allow also the production of micro meshes for filter purposes and micro nozzles in fuel injection systems, micro dosing and micro chemistry. Spinnerets for example used in the textile industry and injection nozzles for common rail diesel injection systems are just a few examples of 22 LTJ January 2007 No. 1

3 FIGURE 2: Improved cell spreading along PDMS pillars (left), Cell Growth on nanostructured surface (in Cooperation with Brown-University). FIGURE 3: Laser drilled micro filter in stainless steel (Hole diameter 15 µm). extremely fine holes in metal parts with typical dimensions of µm at hole depths up to 2 mm. Compared to conventional hole drilling technologies laser hole drilling allow new processing capabilities and geometries because the process is non-contact and flexible. In addition, there are fewer process limitations, no need for expensive waste disposal, and tooling costs are reasonable. Compared to EDM machining laser drilling provides high aspect ratios and the capability to drill all kinds of material, including ceramics, silicon, diamond and polymers. With a flexible scanning laser beam even non circular holes with complex shapes are possible. With a newly developed drilling technology highly transparent metals with minimized thermal distortion can be produced providing hole dimensions smaller than 10 µm at drilling speeds of more than 1000 holes/ second. In Fig. 3 a sample for micro filter is shown in stainless steel with holes dimensions of 15 µm and a pitch of 50 µm. To produce high aspect ratio holes with diameters of µm at material thicknesses of 1 mm and more by means of helical drilling, a special drilling optics is necessary which rotates the laser beam with variable rotation diameters and high rotational speed. For this applications, a new type of laser drilling head has been developed by Fraunhofer-ILT using a rotating Dove-Prism, which is spinning the laser beam on a circle with frequencies up to 600 times per second. By tilting and moving the laser beam with respect to the rotational axis of the prism conical shaped holes with positive and negative taper can be produced. With this optics and a Q-switch Nd:YAG-Laser with 15 ns pulse duration and pulse energy of µj Fraunhofer-ILT researchers have processed tool-quality and highgrade steels up to two millimeter thick. The pulsed laser pierces a hole 50 micrometers in diameter through the metal sheets in less than a quarter of a minute. The residual melt FIGURE 4: Helical drilling optics and sample of laser drilled micro hole in steel, hole diameter 60 µm, material thickness 1 mm. thickness in the hole is as low as 1-2 µm and the melt on top of the material can be easily removed by ultrasound cleaning. In Fig. 4 the compact drilling optics and an example for a micro hole in steel is shown. Micro joining of metals, semiconductors and polymers with laser processes Joining in electronic device manufacturing today is still dominated by conventional joining techniques like soldering, press fitting, crimping and resistance welding. Due to the ongoing miniaturization of parts and higher required strength with respect to thermal and mechanical stability new joining processes are needed, which meet the demands of mass production and stabilities at elevated temperatures and at even smaller joining geometries. Laser beam joining techniques have been under intensive investigations leading to new processes for mass manufacturing and high accuracy assembling. Improved micro welding with modified pulsed lasers and innovative fiber lasers provide new solutions for selective joining of metals, semiconductors, polymers and even dissimilar materials. With the newly developed SHADOW welding technology technical aspects such as tensile strength, geometry and precision of the weld have been improved. This technology provides highest flexibility in weld geometry with a minimum of welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined in a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/ min produces weld seams with a length up to 30 mm using a pulsed Nd:YAG laser with a pulse duration of up to 100 ms. Due to the LTJ 23

4 low energy input, typically 1 J to 6 J, a weld width as small as 50 µm and a weld depth as small as 20 µm have been attained. This results in low distortion of the joined watch components. Fig. 5 shows an example of an electric connector from copper, which has been welded to a sintered copper alloy with ring shaped joining geometry within one pulse at pulse length of 17 ms. FIGURE 6: Fiber laser micro welding of different materials. FIGURE 5: SHADOW welding of electrical connector, welding time 17 ms. New high accuracy fiber lasers with outstanding beam quality allow even further miniaturization of the joining geometry. Due to very small fibers with 10 µm diameter spot sizes of µm can be achieved at working distances of more than 100 mm. Combined with high speed x-y-scanners the set up of flexible joining tools are possible, which easily can be integrated into manufacturing lines. Fiber lasers with powers up to 200 W can be used for micro welding steel, titanium and even copper materials at high speeds with a minimum of energy input and resulting distortion. Due to the small melt volume and deep penetration of the laser beam by using the well known key hole welding technology from macro applications joining of dissimilar materials become possible even for material combinations, which show typically the formation of brittle intermetallic phases. With this technology welding of steel-copper, copper-aluminium, steel- brass and other combinations is possible. Part combinations, where a very small component has to be joined to a large part, which hardly could be made with conventional pulsed lasers, now can be realized by fiber laser welding because of the very high intensity, leading to simultaneous melting of both parts even with totally different heat capacities. In Fig. 6 two different butt welds in steel and copper are shown, which has been performed at laser powers up to 200 W and with significant welding speed. With this technology miniaturized parts can be welded with almost no distortion proving clean and smooth surfaces of the joint even at critical dimensions as shown in Fig. 7, where a thin tube has been welded into a larger component. FIGURE 7: Micro joining of miniaturized tubes with fiber lasers. Laser welding of polymers is an already well established technology for a large variety of thermoplastic polymer parts. In principle there are currently 4 different processing technologies used like contour welding, quasi simultaneous welding, simultaneous welding and mask welding. Diode lasers and cw-nd:yag-lasers are used for contour and quasi simultaneous welding whereas diode lasers are used for the remaining two technologies. In all technologies substantial energy is deposited into the material leading to melting depth of typically several 100 µm which can be used for larger parts and wide weld seams. For thermo sensitive parts and micro joining geometries a new laser process for welding polymer parts has been developed, using an ultra fast scanned fiber laser beam. The very fine focused laser beam is scanned in the form of circles or other geometries to form the weld width while moving simultaneously the scanned laser beam across the joining geometry. With this technology the interface of the parts to be joined are heated very selective just below the degradation temperature but avoiding overheating. In this way very high welding speeds of more than 20 m/min at laser powers less than 10 W can be achieved. Due to the short interaction time, the energy deposition is concentrated to a very small volume, so that in the cross section the welding geometry almost cannot be seen (Fig 8). Also very small welding beads in the range 100 µm can be produced without degradation the FIGURE 8: Micro polymer welding of micro fluidic devices, cross section of welded area. 24 LTJ January 2007 No. 1

5 centre of the bead, which occurs when using just a fine focused Gaussian beam. Therefore this technology is well suited for packaging of micro fluidic devices (Fig. 8). For micro system applications the laser joining technology has been modified to join even silicon and glass parts without any melting, based on the formation of a thermally induced oxygen bond. For joining silicon and glass Nd:YAG radiation is transmitted through the glass part and absorbed on the silicon surface at the interface between two parts. At this interface the joining process is performed by production of oxygen bridges and adhesion. The application of this technology can be found in the assem- FIGURE 9: Laser bonded micro optical part on silicon substrate. bly of sensors and micro system components as well as the assembly of micro fluidic parts with biological components for biological essays (Fig. 9). Conclusions Laser processes has been shown as a versatile tool for high precision manufacturing of small parts and geometries in the micrometer and sub micrometer range. The main advantages of all laser processes minimized energy input with a maximum of selectivity allows new design principles and product features. Due to new laser developments with ultra precision continuous fiber lasers, high repetition rate short pulse lasers with ps- and fs-pulse duration and compact high power laser diode sources production rate and quality for manufacturing micro scale parts can be increased continuously under economic conditions. 2-AXIS LASER BEAM DEFLECTION UNIT SUPERSCAN -9 NEW & COMPACT RAYLASE AG Fon: +49-(0)8153/ info@raylase.com DON T MISS OUT. ORDER A TEST UNIT TODAY! Extremely compact design perfect for small laser systems Low drift and high accuracy High throughput matched with stability and reliability Robust and dust proof (CE) for industrial conditions PLEASE VISIT US AT PHOTONICS WEST! JANUARY 23 25, 2007 BOOTH # LTJ 25

11.3 Polishing with Laser Radiation

11.3 Polishing with Laser Radiation 196 E. Willenborg 11.3 Polishing with Laser Radiation Edgar Willenborg The surface roughness of a part or product strongly influences its properties and functions. Among these can be counted abrasion and

More information

Laser Welding of Engineering Plastics

Laser Welding of Engineering Plastics Laser Welding of Engineering Plastics Technical Information Further information on individual products: www.ultramid.de www.ultradur-lux.basf.com www.ultrason.de www.plasticsportal.eu/ultraform 2 LASER

More information

MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405)

MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405) Proceedings of the 3 rd Pacific International Conference on Application of Lasers and Optics 2008 MANUFACTURE AND REPAIR OF AERO ENGINE COMPONENTS USING LASER TECHNOLOGY (INVITED PAPER) Paper (405) Ingomar

More information

Laser Micromachining - Market Focus. Dr. Andrew Kearsley

Laser Micromachining - Market Focus. Dr. Andrew Kearsley Laser Micromachining - Market Focus Dr. Andrew Kearsley Oxford Lasers Ltd. Moorbrook Park, Didcot OX11 7HP andrew.kearsley@oxfordlasers.com 5th CIR HVM-UK: South East Conference Harwell, 17 November 2005

More information

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures

Leveraging the Precision of Electroforming over Alternative Processes When Developing Nano-scale Structures VOLUME 4 - ELECTROFORMING Leveraging the Precision of over Alternative Processes When Developing Nano-scale Structures Electrical and mechanical component and subsystem designers generally have five techniques

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Ultra-short pulse laser structuring of molding tools

Available online at  ScienceDirect. Physics Procedia 56 (2014 ) Ultra-short pulse laser structuring of molding tools Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 1041 1046 8 th International Conference on Photonic Technologies LANE 2014 Ultra-short pulse laser structuring of molding

More information

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Victor Usov, Graham Cross, Neal O Hara, Declan Scanlan, Sander Paulen, Chris de Ruijter, Daniel Vlasveld,

More information

High Throughput Laser Processing of Guide Plates for Vertical Probe Cards Rouzbeh Sarrafi, Dana Sercel, Sean Dennigan, Joshua Stearns, Marco Mendes

High Throughput Laser Processing of Guide Plates for Vertical Probe Cards Rouzbeh Sarrafi, Dana Sercel, Sean Dennigan, Joshua Stearns, Marco Mendes High Throughput Laser Processing of Guide Plates for Vertical Probe Cards Rouzbeh Sarrafi, Dana Sercel, Sean Dennigan, Joshua Stearns, Marco Mendes IPG Photonics - Microsystems Division Outline Introduction

More information

3 Pulsed laser ablation and etching of fused silica

3 Pulsed laser ablation and etching of fused silica 3 Pulsed laser ablation and etching of fused silica 17 3 Pulsed laser ablation and etching of fused silica Material erosion caused by short laser pulses takes place far from equilibrium and may be based

More information

High Density Perforation of Thin Al-Foils with Ultra Short Pulse Lasers in Dependence on the Repetition Rate

High Density Perforation of Thin Al-Foils with Ultra Short Pulse Lasers in Dependence on the Repetition Rate High Density Perforation of Thin Al-Foils with Ultra Short Pulse Lasers in Dependence on the Repetition Rate Nelli Hambach *1, Claudia Hartmann *1,2, Stephan Keller *1, Arnold Gillner *1,2 *1 Fraunhofer

More information

Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses

Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses Available online at www.sciencedirect.com Physics Procedia 12 (2011) 60 66 LiM 2011 Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses Manuel Pfeiffer a *, Andy Engel a, Steffen Weißmantel

More information

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION Prepared by S. SENTHIL KUMAR AP / MECH SVCET INTRODUCTION Conventional machining process Metal is removed by means of tool which is harder than work

More information

Nontraditional Machining Processes

Nontraditional Machining Processes Nontraditional Machining Processes The NTM processes can be divided into four basic categories: I. Chemical (Chemical reaction), II. Electrochemical (Electrolytic dissolution), III. Mechanical (Multipoint

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

Aluminum / Copper oscillation welding with a 500 W direct diode laser

Aluminum / Copper oscillation welding with a 500 W direct diode laser Application Note Issued: 2016-06-01 Aluminum / Copper oscillation welding with a 500 W direct diode laser SUMMARY The performance of the 500 W DirectProcess direct diode laser for oscillating welding by

More information

Lasers and Laser Systems for Micro-machining

Lasers and Laser Systems for Micro-machining Lasers and Laser Systems for Micro-machining Martyn Knowles Oxford Lasers Ltd Unit 8, Moorbrook Park Didcot, Oxfordshire, OX11 7HP Tel: +44 (0) 1235 810088 www.oxfordlasers.com Lasers and Laser Systems

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

Innovative Laser Processing Technologies

Innovative Laser Processing Technologies Innovative Laser Processing Technologies Reinhard Ferstl Director Sales & Marketing EMEA / Asia Corning Laser Technologies September 21, 2016 2016 Corning Incorporated Corning Market Segments and Additional

More information

LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA)

LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA) LASER GUIDED AND STABILIZED GAS METAL ARC WELDING PROCESSES (LGS-GMA) Jörg Hermsdorf Laser Zentrum Hannover, Germany OUTLINE Motivation Innovation Technology Project Concept Welding and Cladding Results

More information

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser Yousuke KAWAHITO*, Masaharu KAWASAKI* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

3D Laser Lithography in Biotechnology and Medical Technology

3D Laser Lithography in Biotechnology and Medical Technology 3D Laser Lithography in Biotechnology and Medical Technology High-Precision, Piezo-Based Nanopositioning Systems Advance Technology Page 1 of 6 Laser technology makes it possible to create even very complex

More information

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES PD Dr. Alexander Horn, V. Schütz, J. Gonzalez, C.C. Kalmbach Photovoltaics Group Dpt. for Production and

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

REVIEW OF LASER PLASTIC WELDING PROCESS

REVIEW OF LASER PLASTIC WELDING PROCESS REVIEW OF LASER PLASTIC WELDING PROCESS Kalpesh More 1, Rushikesh Aher 2, Makrand Bharaskar 3 1,2,3 Mechanical, Sandip Institute Technology and Research Centre/Pune University, (India) ABSTRACT There are

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

Optimizing the processing of sapphire with ultrashort laser pulses

Optimizing the processing of sapphire with ultrashort laser pulses Optimizing the processing of sapphire with ultrashort laser pulses Geoff Lott 1, Nicolas Falletto 1, Pierre-Jean Devilder, and Rainer Kling 3 1 Electro Scientific Industries, Eolite Systems, 3 Alphanov

More information

Laser printing and curing/sintering of silver paste lines for solar cell metallization

Laser printing and curing/sintering of silver paste lines for solar cell metallization Lasers in Manufacturing Conference 2015 Laser printing and curing/sintering of silver paste lines for solar cell metallization D. Munoz-Martin a *, Y. Chen a, A. Márquez a, M. Morales a, C. Molpeceres

More information

Applications of Systems for Beam Shaping in Material Processing Pulsar Photonics GmbH

Applications of Systems for Beam Shaping in Material Processing Pulsar Photonics GmbH LASER World of Photonics 2015 Workshop Using Diffractive Optics Applications of Systems for Beam Shaping in Material Processing Pulsar Photonics GmbH Speaker Dipl. Phys. Stephan Eifel, Pulsar Photonics

More information

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS Jayanth N PG Student PSG College of Technology jayanthnagaraj@gmail.com Ravi K R Associate Professor PSG College of Technology Krravi.psgias@gmail.com

More information

LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109

LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109 LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109 Ralph Delmdahl, Rainer Paetzel Coherent GmbH, Hans-Boeckler-Str.12, Goettingen, 37079, Germany Abstract Lasers with ultraviolet (UV) output offer

More information

Laser Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress

Laser Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress Oliver HAUPT, Frank SIEGEL, Aart SCHOONDERBEEK, Lars RICHTER, Rainer KLING, Andreas OSTENDORF Zentrum

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Joohan Lee, Joseph J. Griffiths, and James Cordingley GSI Group Inc. 60 Fordham Rd. Wilmington, MA 01887 jlee@gsig.com

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser Transactions of JWRI, Vol.36 (2007), No. 2 Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser KAWAHITO Yousuke*, KITO Masayuki** and KATAYAMA Seiji*** Abstract The gap is one of the most important

More information

Surface Coating of Tungsten Carbide by Electric Exploding of Contact

Surface Coating of Tungsten Carbide by Electric Exploding of Contact Surface Coating of Tungsten Carbide by Electric Exploding of Contact Evgeny G. Grigoryev General Physics Department, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia Abstract.

More information

Discharge systems for difficult to handle bulk materials

Discharge systems for difficult to handle bulk materials Discharge systems for difficult to handle bulk materials Difficult to handle bulk materials SHW Schwäbische Hüttenwerke is a traditional company that has been trading for 640 years and since the 1960s

More information

Laser MicroJet. a technology for - prototyping - design innovation - mass customization - small / mid-sized manufacturing runs.

Laser MicroJet. a technology for - prototyping - design innovation - mass customization - small / mid-sized manufacturing runs. Innovative Laser Systems Laser MicroJet a technology for - prototyping - design innovation - mass customization - small / mid-sized manufacturing runs Eric Krause EPMT EPHJ Swissphotonics seminar June

More information

Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets

Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets N. SIVA SHANMUGAM 1*, G. BUVANASHEKARAN 2 AND K. SANKARANARAYANASAMY 1 1 Department of Mechanical Engineering, National

More information

Automotive joining of light-weight materials enabled by fiber lasers

Automotive joining of light-weight materials enabled by fiber lasers Automotive joining of light-weight materials enabled by fiber lasers 26 APR 2017, GALM, Birmingham, UK Mark Thompson Director of Sales & Service, UK T h e P o w e r t o T r a n s f o r m TM Nasdaq: IPG

More information

INFLUENCE OF LASER ABLATION ON STAINLESS STEEL CORROSION BEHAVIOUR

INFLUENCE OF LASER ABLATION ON STAINLESS STEEL CORROSION BEHAVIOUR INFLUENCE OF LASER ABLATION ON STAINLESS STEEL CORROSION BEHAVIOUR Michal ŠVANTNER a, Martin KUČERA b, Šárka HOUDKOVÁ c, Jan ŘÍHA d a University of West Bohemia, Univerzitní 8, 306 14 Plzeň, msvantne@ntc.zcu.cz

More information

Three-Dimensional Laser Writing on the Nanometer Scale

Three-Dimensional Laser Writing on the Nanometer Scale Three-Dimensional Laser Writing on the Nanometer Scale Piezo Drives are Driving Technology Forward Page 1 of 5 The best possible positioning accuracy is now mandatory in many fields of application. The

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany.

U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany. UDC 621.791/621.792 Welding or Adhesive Bonding Is this a question for the future? U. REISGEN, M. SCHLESER RWTH Aachen University, ISF Welding and Joining Institute, Germany. E-mail: office@isf.rwth-aachen.de

More information

Pollution Prevention in Machining and Metal Fabrication

Pollution Prevention in Machining and Metal Fabrication ... Pollution Prevention in Machining and Metal Fabrication A Manual for Technical Assistance Providers Excerpts March 2001... CHAPTER 5 Innovative Pollution Prevention Technologies Industry vendors have

More information

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets JLMN-Journal of Laser Micro/Nanoengineering, Vol.1, No. 1, 2006 In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets Yousuke KAWAHITO * and Seiji

More information

Chancen und Grenzen von 3D-Druckern in der industriellen Produktion

Chancen und Grenzen von 3D-Druckern in der industriellen Produktion 26 th of November 2013 Chancen und Grenzen von 3D-Druckern in der industriellen Produktion Prof. Dr. Reinhart Poprawe, M.A. Lehrstuhl für Lasertechnik RWTH Aachen University Fraunhofer Institut für Lasertechnik,

More information

Cladding with High Power Diode Lasers

Cladding with High Power Diode Lasers White Paper Cladding with High Power Diode Lasers Cladding is a well established process used in a variety of industries for improving the surface and near surface properties (e.g. wear, corrosion or heat

More information

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T.

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel, L. Lagrange,& T. Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T. Marchione^ f^, BID de /a rzcfozre ^7000 France ABSTRACT The interaction

More information

NovoPlan. The Coating Experts. PlanoTek Functional layers. Quality. Perfection. Expertise. Consulting

NovoPlan. The Coating Experts. PlanoTek Functional layers. Quality. Perfection. Expertise. Consulting The Coating Experts NovoPlan Quality Perfection Expertise Consulting PlanoTek Functional layers for plastics processors, injection moulders, tool and mould makers and mechanical engineers PlanoTek The

More information

Rapid Microtooling with laser based methods

Rapid Microtooling with laser based methods Hochschule Mittweida University of Applied Sciences Rapid Microtooling with laser based methods R. Ebert, U. Löschner, A. Streek, J. Schille, T. Süß, L. Hartwig, U. Klötzer, H. Exner ISL 2008 Chemnitz

More information

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG 3D-Micromac AG Symposium on Smart Integrated Systems in Chemnitz 1 1 microdice - TLS-Dicing for separation of SiC 2 microprep - for high-throughput microstructure diagnostics 3 About 3D-Micromac AG 2 microdice

More information

Challenges for Embedded Device Technologies for Package Level Integration

Challenges for Embedded Device Technologies for Package Level Integration Challenges for Embedded Device Technologies for Package Level Integration Kevin Cannon, Steve Riches Tribus-D Ltd Guangbin Dou, Andrew Holmes Imperial College London Embedded Die Technology IMAPS-UK/NMI

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium Yousuke KAWAHITO*, Masayuki KITO* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

1 Cutting Tool Materials of common use

1 Cutting Tool Materials of common use 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development of cutting tool materials.

More information

SMART MACHINES MADE IN GERMANY PRECISION IN A NEW DIMENSION MICROGANTRY MICROMASTER CUTTING EDGE TECHNOLOGY IN MICRO MACHINING

SMART MACHINES MADE IN GERMANY PRECISION IN A NEW DIMENSION MICROGANTRY MICROMASTER CUTTING EDGE TECHNOLOGY IN MICRO MACHINING PRECISION IN A NEW DIMENSION MICROGANTRY MICROMASTER PRECISION FOR SUCCESS PRECISION FOR SUCCESS SMART MACHINES MADE IN GERMANY CUTTING EDGE TECHNOLOGY IN MICRO MACHINING www.kugler-precision.com PRECISION

More information

Applications 4. Highlights 6. Machining envelope 8. The basic machine 12. Hightech-Spindle 13

Applications 4. Highlights 6. Machining envelope 8. The basic machine 12. Hightech-Spindle 13 MIKRON HPM 1850U 2 Contents Applications 4 Highlights 6 Machining envelope 8 The basic machine 12 Hightech-Spindle 13 Automation 14 Options 16 smart machine 17 GF AgieCharmilles 18 High performance milling

More information

MACHINING CHARACTERISTICS OF LASER ASSISTED MICRO MILLING (LAµM) ON Ti6Al4V USING MICRO BALL MILLING TOOL

MACHINING CHARACTERISTICS OF LASER ASSISTED MICRO MILLING (LAµM) ON Ti6Al4V USING MICRO BALL MILLING TOOL VOL. 11, NO. 12, JUNE 16 ISSN 1819-668 6-16 Asian Research Publishing Network (ARPN). All rights reserved. MACHINING CHARACTERISTICS OF LASER ASSISTED MICRO MILLING (LAµM) ON Ti6Al4V USING MICRO BALL MILLING

More information

FABRICATION AND RELIABILITY OF ULTRA-FINE RDL STRUCTURES IN ADVANCED PACKAGING BY EXCIMER LASER ABLATION

FABRICATION AND RELIABILITY OF ULTRA-FINE RDL STRUCTURES IN ADVANCED PACKAGING BY EXCIMER LASER ABLATION FABRICATION AND RELIABILITY OF ULTRA-FINE RDL STRUCTURES IN ADVANCED PACKAGING BY EXCIMER LASER ABLATION NCCAVS Joint Users Group Technical Symposium San Jose, June 7 th, 2017 Markus Arendt, SÜSS MicroTec

More information

D Eggenstein-Leopoldshafen, Germany 2 University of Karlsruhe (TH), Institute for Microstructure Technology (IMT),

D Eggenstein-Leopoldshafen, Germany 2 University of Karlsruhe (TH), Institute for Microstructure Technology (IMT), Sub-µ structured Lotus Surfaces Manufacturing M. Worgull 1, M. Heckele 1, T. Mappes 2, B. Matthis 1, G. Tosello 3, T. Metz 4, J. Gavillet 5, P. Koltay 4, H. N. Hansen 3 1 Forschungszentrum Karlsruhe (FZK),

More information

12.0 Materials for Missile, Space, and Launch Systems

12.0 Materials for Missile, Space, and Launch Systems 12.0 Materials for Missile, Space, and Launch Systems 12.1 Introduction Affordability is the key criterion for assessing the value of a new technology and its potential incorporation into military applications.

More information

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser.

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser. Title Author(s) In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser KAWAHITO, Yousuke; KATAYAMA, Seiji Citation Transactions of JWRI. 38(2) P.5-P.11 Issue Date 2009-12

More information

2890 Ligonier St. Latrobe, PA Phone Fax Toll Free

2890 Ligonier St. Latrobe, PA Phone Fax Toll Free Your Best Choice For Carbide Components 2890 Ligonier St. Latrobe, PA 15650 Phone 724.532.3041 Fax 724.532.3043 Toll Free 800.862.7066 www.extramet.net OUR HISTORY OUR MISSION Extramet s Primary Objective

More information

Bystronic: Best choice.

Bystronic: Best choice. COLLECTION LASER 4 COLLECTION LASER Laser cutting Laser cutting is a thermal cutting process for processing sheet metal. The laser beam is created by the laser source (resonator), conducted by mirrors

More information

A Novel Extrusion Microns Embossing Method of Polymer Film

A Novel Extrusion Microns Embossing Method of Polymer Film Modern Mechanical Engineering, 2012, 2, 35-40 http://dx.doi.org/10.4236/mme.2012.22005 Published Online May 2012 (http://www.scirp.org/journal/mme) A Novel Extrusion Microns Embossing Method of Polymer

More information

Precision Electroforming in High-Strength NiColoy

Precision Electroforming in High-Strength NiColoy Taking the Stress out of Electroforming www.nicoform.com Precision Electroforming in High-Strength NiColoy Copyright 2007 NiCoForm, Inc. (Rochester, NY) Electroforming What is it? What is it good for?

More information

IJETST- Vol. 03 Issue 05 Pages May ISSN

IJETST- Vol. 03 Issue 05 Pages May ISSN International Journal of Emerging Trends in Science and Technology Parametric Study Of Hole Taper In Laser Micro-Drilling Of Copper Sheet K. K. Mandal 1, B. Chatterjee 2, A. S. Kuar 3 and S. Mitra 4 1

More information

TruMicro: Power meets precision. Machine tools / Power tools Laser technology / Electronics

TruMicro: Power meets precision. Machine tools / Power tools Laser technology / Electronics TruMicro: Power meets precision. Machine tools / Power tools Laser technology / Electronics Great results on a small scale. Contents Great results on a small scale. 2 Cold material processing. 4 Our expertise

More information

Introduction to Joining Processes

Introduction to Joining Processes 4. TEST METHODS Joints are generally designed to support a load, and must be tested to evaluate their load-supporting capabilities. However, it is also important to evaluate, not the joint, but rather

More information

Laser Synthesis of Metal Oxide Crystals with the Use of Carbon Nanotubes

Laser Synthesis of Metal Oxide Crystals with the Use of Carbon Nanotubes Open Journal of Composite Materials, 2013, 3, 16-20 http://dx.doi.org/10.4236/ojcm.2013.32a003 Published Online April 2013 (http://www.scirp.org/journal/ojcm) Laser Synthesis of Metal Oxide Crystals with

More information

Laser Polymer Welding - No Limits for Colors

Laser Polymer Welding - No Limits for Colors Press Release 'K 2004' BASF, TREFFERT and ROFIN present new laser additives for welding polymers in any color combination: Laser Polymer Welding - No Limits for Colors LUDWIGSHAFEN / BINGEN / STARNBERG

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Hollow core waveguide for simultaneous laser plastic welding Original Citation: Catania, F.; Scaltrito, L.; Sirianni, P.; Messere, M.;

More information

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining SPECIAL ISSUE Development of New SUMIBORON for Cast Iron and Ferrous Powder Metal Machining Yusuke Matsuda*, Katsumi OKaMura, shinya uesaka and tomohiro FuKaYa SUMIBORON P (polycrystalline cubic boron

More information

Laser High Tech on River Maas

Laser High Tech on River Maas Laser High Tech on River Maas MARECO From overhauling ship motors to 3D laser welding of polymers 1939 Heavy shipping traffic on river Maas. The river is an important transport route for the European land-locked

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push

Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push EU Project Merlin New Challenges and Perspectives for LAM Processes Carl Hauser,

More information

Dicing Glass Optical Devices

Dicing Glass Optical Devices Glass Applications Dicing Glass Optical Devices -Blade Characteristics 2,, 4 4 Resin Type Q Diamond grit size: 15-45 mic. Thickness: 0.006-0.012 0.012 (0.15mm 0.3mm) Metal Sintered E08 & New matrices 8-258

More information

Resistance Welding. Resistance Welding (RW)

Resistance Welding. Resistance Welding (RW) Resistance Welding (RW) Resistance Welding 1 Resistance Welding is a welding process, in which work pieces are welded due to a combination of a pressure applied to them and a localized heat generated by

More information

Powder-Metal Processing and Equipment

Powder-Metal Processing and Equipment Powder-Metal Processing and Equipment Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 17 Powder Metallurgy Metal powders are compacted into desired and

More information

Cu/synthetic and impact-diamond composite heatconducting

Cu/synthetic and impact-diamond composite heatconducting Journal of Physics: Conference Series PAPER OPEN ACCESS Cu/synthetic and impact-diamond composite heatconducting substrates To cite this article: E N Galashov et al 2016 J. Phys.: Conf. Ser. 690 012043

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009 Powder Metallurgy Powder-Metal Processing and Equipment Metal powders are compacted into desired and often complex shapes and sintered* to form a solid piece * Sinter: To heat without melting Text Reference:

More information

Model based planning of complex micromanufacturing

Model based planning of complex micromanufacturing Model based planning of complex micromanufacturing strategies Daniel Zdebski, Shukri Afazov, Svetan Ratchev, Joel Segal Precision Manufacturing Centre, The University of Nottingham, University Park, Nottingham,

More information

Industrial 3D-Printing of Metal Parts on a Micron Scale

Industrial 3D-Printing of Metal Parts on a Micron Scale Optonet Industrial 3D-Printing of Metal Parts on a Micron Scale Jena, 2013/11/06 www.3dmicroprint.com joachim.goebner@3dmicroprint.com +49 (0)172 / 842 5378 Additive Manufacturing Miniaturization Overall

More information

The most efficient way of transforming sunlight into heat

The most efficient way of transforming sunlight into heat The most efficient way of transforming sunlight into heat TiNOX, The Energy Trap Decisive for highest performance of a solar absorber plate is: - highest possible absorption of solar radiation - minimum

More information

Laser damage threshold of AR coatings on phosphate glass

Laser damage threshold of AR coatings on phosphate glass Laser damage threshold of AR coatings on phosphate glass Optical Coatings for Laser Applications Wednesday, 12 th April 2017, Buchs SG, Switzerland dirk.apitz@schott.com, SCHOTT Suisse SA, Advanced Optics,

More information

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Transactions of JWRI, Vol.42 (2013), No. 1 Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Su-Jin LEE Su-Jin*, LEE*,

More information

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Introduction to Electron Beam Melting Arcam AB EBM process

More information

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM Adrian P. POP 1, Petru UNGUR 1, Gheorghe BEJINARU MIHOC 2 1 University of Oradea, e-mail: adippop@yahoo.com; petru_ungur@yahoo.com; 2 Transilvania University

More information

Modern Methods of Surface Engineering

Modern Methods of Surface Engineering LVIV POLYTECHNIC NATIONAL UNIVERSITY Modern Methods of Surface Engineering Institute of Engineering Mechanics and Transport Department of Applied Materials Science and Materials Engineering Asssistant

More information

Precision Engineered Parts

Precision Engineered Parts Precision Engineered Parts Photoetching Laser Cutting Forming Finishing Thin Metal Parts Flexible Circuits EMI Shielding Gaskets www.tech-etch.com PHOTOETCHING Tech-Etch specializes in the manufacture

More information

So What Is Nanotechnology

So What Is Nanotechnology So What Is Nanotechnology Science of Technology 2011 Project Lead The Way, Inc. What Is Nanotechnology? Nanotechnology allows the manipulation of atoms or molecules to create or modify materials at the

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

The application of nano metal powder

The application of nano metal powder The application of nano metal powder Nano material and nanotechnology respectively belong to the new material and advanced technology that emerged in the late 20 th century. Due to the small size effect,

More information