Study on the impurities segregation behaviour during zone refining of indium

Size: px
Start display at page:

Download "Study on the impurities segregation behaviour during zone refining of indium"

Transcription

1 Study on the impurities segregation behaviour during zone refining of indium V. N. Mani* and K. Balaraju Centre for Materials for Electronics Technology (C-MET), Cherlapally, Hyderabad , India ABSTRACT In this study, we report the results pertaining to the segregation behavior of the selected metallic,,,,, and impurities during multi-pass zone refining of 4N+/5N pure indium metal. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and dynamic depth profiling were employed to measure and ascertain the impurities level in the starting material and the refined indium ingot. Segregation trend of said typical impurities has been studied for different regions of the refined ingot. It was observed that, majority of the selected impurities under study were traveled towards one end of the ingot, thus leading the other end in pure form. Key words: Ultra High Pure Indium, Zone Refining, Segregation, Impurities, Purity Analysis 1. INTRODUCTION InP and its related materials inherent and tailor-able properties, such as physico-chemical, electro-optical, high radiation and temperature tolerance, lattice match, band gap, and available superior doping, fabrication technologies make them as special candidates for smart micro-optoelectronic applications [1-2]. In view of this, InP based epi-structures, devices and gadgets are selectively used in the aerospace, defence, communication related instruments, control and navigation systems. Ultra high pure (7N) indium is one of the primary starting materials required for the preparation of InP bulk single crystals (substrates) as also for the epitaxy and fabrication of binary (InP/InP, InAs/InAs, InSb/ InSb), ternary (InAs/InP, InP/InP, InSb/InSb) and quaternary (InAsP/InP, InAsSb/InAs) device structures. The metallic impurities of most concern in 7N pure indium for above applications include,,,,, Bi, Si, Sn, Hg, Ca, Te and Pb. Presence of impurities in the starting materials results in the formation of chemical, electronic, energy related and other micro-level defects, which are very detrimental to end use application and overall device performance. Therefore ultra high pure materials such as indium and phosphorus are analyzed and certified very stringently, in the range of pbb levels. These ultra high purity In and P are used as starting materials to prepare device quality InP and related epitaxial structures. Zone refining (vacuum/inert), crystallization, gradient freezing and vapor refining techniques are widely used to purify 4N/5N indium to 7N /8N purity level and both Glow Discharge Mass Spectrometry (GD-MS) and Residual Resistivity Ratio (RRR) techniques are employed to analyze the ultra high pure (7N/8N) metal 3. Pre and post processing and packaging of material under class clean and inert environment are also the most crucial steps. Development of cost effective and environment friendly refining and purification processes suiting to the source and grade of input raw indium, yield improvement, packaging, recycling of impure metal from both the discarded and already processed metal ingots and InP scraps, design and development of fully automated and modular type refining and purification systems are the major current technological problems and challenges. In this direction, much progress has been made to prepare ultra high pure (8N) indium in the form of crystalline rods. 2. PURITY REQUIREMENT AND TESTING Optoelectronics device applications demand indium and phosphorus purity in the level of (7N), which is referred to as integrated circuit(ic) grade. For 7N pure metal, the total amount of the impurities in gallium must be less than 100 parts per billion (ppb). The metallic impurities of ut-most concern in IC

2 grade indium are,,,,, Bi, Si, Sn, Hg, Ca, Te and Pb. These elements along with carbon, oxygen and gaseous impurities should be present in concentrations ranging from 1 to 10 parts per billion( ppb), in both the indium and phosporus. The impurities contribute shallow and deep energy levels in the energy gap (InP), which are detrimental and eventually leads to common device failure, when used for bulk or epitaxial crystal growth for fabrication of As wafer and final device. Impurities are analyzed with atomic absorption spectrometry with graphite furnace (AASGF), inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma quadrupole mass spectrometry (ICPQMS), glow discharge mass spectrometry (GD-MS) and residual resistivity ratio(rrr) analysis. 3. ZONE REFINING AND SEGREGATION OF IMPURITIES IN INDIUM Materials can be purified (segregation) or given desired composition (doping) or variations of composition (leveling) by zone refining or melting. In zone-refining, a narrow liquid (or molten) zone travels through a relatively longer charge (or ingot) of solid carrying with it to a position of the solute impurities in the charge, since, the concentration of the impurities in the solid crystallizing from the molten zone is different from that of the remaining in the liquid, the impurities are swept to one end of the sample [3]. Factors that are affecting the refining process include (a) direction and rate of zone movement, (b) zone size and length of sample, (c) diameter, thickness, conductivity and compatibility to extreme temperature of the sample tube, (d) temperature gradient, (e) thermal conductivity of phases, (f) latent heat of fusion, (g) density differences between the solid and liquid, (h) speed of crystal formation, (i) surface tension of the liquid and (j) tendency of the liquid to super-cool. In practice, using a narrow zone and increasing number of passes leads to efficient refining effect. 4. EXPERIMENTAL DETAILS Upgraded version of the Basic Zone Refiner with nine narrow ring type resistive heaters and eight coolers has been used in the present study for zone refining of 3N+ pure indium. The instrumentation and other technical details of the system were discussed elsewhere [4]. 3N+/4N pure indium was chemically treated with supra pure acids (pickled, washed and cleaned). The cleaned sample was heated to C for three hours under gentle stirring using a hot plate in a clean environment for homogenization. Liquid indium was loaded into a cleaned special polymeric-plastic-glass tube of 10 mm i.d., 12 mm o.d. and 500 mm length. Further the same sample was super-cooled to (-) 30 0 C and kept for 48 hours. This super-cooled and solidified sample was again subjected to further homogenization by following a re-melting (200 0 C)-cooling (-10 0 C)-super-cooling (-30 0 C) scheme for duration of 6, 24 and 36 hours respectively using vertical type deep freezer. A pre-stage fifteen-pass cycle (each pass of three hours duration) zone refining experiment with circulation of coolant at (10 to 250C) on the homogenized sample has been carried out in order to sensitize the system parameters and establish the suitable experimental conditions and narrow zone(s). Final 65 pass zoning experiment on the zone-leveled sample was conducted by following the pre calibrated experimental conditions and parameters. Coolant with required flow rate and temperature range of (10 to 15 0 C) was maintained. Drive mechanism then started at a first cycle and the sample tube was allowed to traverse. The zone length of 3.5 to 4.5 mm and width of 25 to 30 mm was maintained and experiment continued to complete sixty-five refining cycles of duration of each three hours. Each completed cycle was recorded through a cycle counter. The ingot was cut into three portions every time analyzing the top (~150mm length), middle (~150mm) and bottom end (~150mm) portions separately for the trace impurities content. The sample tubes, PTFE beakers used for sample homogenization, preparation for analysis and sample storage boxes were cleaned with ultra pure acids. 5. RESULTS AND DISCUSSION Movement trend of selected impurities segregation along the zone-refined bar(s) has been mapped (Figs.1-3) using dynamic depth profiling analysis. From the qualitative results, it was observed that most of the impurities traveled along the melt-interface direction (towards ingot bottom portion), thus, leading to top portion in purest form. It was seen that, there was a significant improvement in purity of the refined sample (5N-top region) with respect to targeted impurities as compared to starting 3N+ /4Npure indium. Sampling and analysis were also repeated for bottom, middle and top portions for the three batches of the zone-

3 refined bar. The segregation trend and consistency of the purity test results respectively, were thus ascertained and confirmed. Effect of experimental conditions such as, number of passes, zone width and interdependence of heater and coolant temperature on zone refining of indium was studied. The inferences lead to suggest that these parameters and pre and post stage sample cutting, cleaning procedures and environmental conditions play role in reducing the impurity and contamination levels. In this study we have mainly concentrated on the segregation aspects of major metallic impurities present in 3N+/4N indium. Purity control and test aspects with specific reference to O, N, C elements and other gaseous impurities by oxidation, heating under vacuum and using exclusive carbon-nitrogen-oxygen (CHNOS) analyzer needs to be further researched. 6. CONCLUSION Segregation behavior of the metallic impurities present in Indian 3N+/4N grade indium has been studied through multi-pass zone refining. Movement trend of some of the selected impurities along the ingot show that, they are driven to and get concentrated at one end of the ingot leading other end in 5N pure form with reference to the targeted impurities, namely,,,,,, Pb, and B. The purity of the refined samples was confirmed by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. ACKNOWLEDGEMENTS One of the authors (VNM) thank Analysis Group for purity analysis and Smt.P.K.Girija for useful discussions on instrumentation aspects; C-MET authorities for extending the logistic support for implementation of the Project and Instrument Development Division, DST, Govt. of India, New Delhi for sponsoring the project on Automation and Upgradition of Zone-Refiner. REFERENCES 1. J.S. Jr.; Harris, Indium Phosphide and Related Materials, Vol.1, 333(2003) 2. K.Hashio, N. Hosaka, S. Fujiwara, T. Sakurada, R. Nakai, N.Hara, Y. Tsusaka and J. Matsui, Indium Phosphide and Related Materials, Vol.1, 542(2003) 3. W.G. PFANN in ``Zone Melting (New York: John Wiley &Sons, 2nd edn.1964). 4. V.N.Mani and K.Balaraju, Procs. Intl.Workshop on Preparation and Characterization of Technologically Important Single Crystals, Vol.1, 177(2001), Eds. S.K.Gupta et al., Delhi * vnm_crystal272001@yahoo.com; phone ; fax

4 Concentration(arb.units) Position from top(cm) Fig. 1. Bottom region sample - impurities segregation trend

5 Concentration(arb.units) Position from top(cm ) Fig. 2. Middle region sample - Impurities segregation trend C oncentration(arb.units) P osition from top(cm ) Fig. 3. Top region sample impurities segregation trend

Preparation of Gallium Antimonide and its Characterization

Preparation of Gallium Antimonide and its Characterization Material Science Research India Vol. 12(1), 31-35 (2015) Preparation of Gallium Antimonide and its Characterization J.Chidanandappa 1, K. Eswara Prasad 2, K. Balaraju 3 and V. N. MANI 3 1 National Remote

More information

Bulk crystal growth. A reduction in Lg will increase g m and f oper but with some costs

Bulk crystal growth. A reduction in Lg will increase g m and f oper but with some costs Bulk crystal growth The progress of solid state device technology has depended not only on the development of device concepts but also on the improvement of materials. A reduction in Lg will increase g

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PY2N20 Material Properties and Phase Diagrams Lecture 9 P. Stamenov, PhD School of Physics, TCD PY2N20-9 Semiconductor Wafer Production - Si Czochralski Growth Growth from melt Melt 99.999999% pure polycrystalline

More information

Gallium Arsenide monocrystalline

Gallium Arsenide monocrystalline Gallium Arsenide CMK manufacture Semi-insulating and Semiconducting Gallium Arsenide wafers and ingots by LEC (Liquid Encapsulated Czochralsky) or VGF (Vertical Gradient Freeze) growth method. Required

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Today Bulk semiconductor growth Single crystal techniques Nanostructure fabrication Epitaxial

More information

EE CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a

EE CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a 1 EE 1 FALL 1999-00 CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3 z a B Crystal Structure z a z a C y y y A x x Cubic BCC FCC x Crystals are characterized by a unit cell

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a

CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3 Crystal Growth, Si Wafers- Chapter 3 z a C y B z a y Crystal Structure z a y Crystals are characterized by a unit cell which

More information

Crystal Growth and Wafer Fabrication. K.Sivasankaran, Assistant Professor (Senior), VLSI Division, School of Electronics Engineering, VIT

Crystal Growth and Wafer Fabrication. K.Sivasankaran, Assistant Professor (Senior), VLSI Division, School of Electronics Engineering, VIT Crystal Growth and Wafer Fabrication K.Sivasankaran, Assistant Professor (Senior), VLSI Division, School of Electronics Engineering, VIT Crystal growth Obtaining sand Raw Polysilicon Czochralski Process

More information

The lowest quality of silicon is the so- called metallurgical silicon. The source material of making metallurgical silicon is quartzite.

The lowest quality of silicon is the so- called metallurgical silicon. The source material of making metallurgical silicon is quartzite. ET3034TUx - 4.2 - Manufacturing of crystalline silicon We have various types of silicon wafers such as monocrystalline silicon and polycrystalline silicon. In this block I will give an answer to the question:

More information

Reduction of Micro-Cracks in Large Diameter In x Ga 1-x Sb Bulk Crystals

Reduction of Micro-Cracks in Large Diameter In x Ga 1-x Sb Bulk Crystals Mat. Res. Soc. Symp. Proc. Vol. 763 2003 Materials Research Society B8.28.1 Reduction of Micro-Cracks in Large Diameter In x Ga 1-x Sb Bulk Crystals Juliet Vogel * and Partha S. Dutta ** * Department of

More information

Semiconductor Optical Communication Components and Devices Lecture 8: Epitaxial growth - I (Techniques)

Semiconductor Optical Communication Components and Devices Lecture 8: Epitaxial growth - I (Techniques) Semiconductor Optical Communication Components and Devices Lecture 8: Epitaxial growth - I (Techniques) Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

Slurry-Based Semi-Solid Die Casting

Slurry-Based Semi-Solid Die Casting Accepted for Publication in Advanced Materials and Processes, 159(10), October 2001 Slurry-Based Semi-Solid Die Casting Chris S. Rice and Patricio F. Mendez A new approach to semi-solid forming is described.

More information

Chapter 2 Crystal Growth and Wafer Preparation

Chapter 2 Crystal Growth and Wafer Preparation Chapter 2 Crystal Growth and Wafer Preparation Professor Paul K. Chu Advantages of Si over Ge Si has a larger bandgap (1.1 ev for Si versus 0.66 ev for Ge) Si devices can operate at a higher temperature

More information

X-Ray Fluorescence Measurements of Molten Aluminum Elemental Composition

X-Ray Fluorescence Measurements of Molten Aluminum Elemental Composition B.2 Recycling Technologies X-Ray Fluorescence Measurements of Molten Aluminum Elemental Composition Leigh C. Duren (MS Candidate Industrial Intern) Advisors: D. Apelian & D. Backman Sponsor: wte Corporation

More information

Vacuum Arc Remelting (VAR)

Vacuum Arc Remelting (VAR) ALD Vacuum Technologies High Tech is our Business Vacuum Arc Remelting (VAR) Vacuum Arc Remelting Processes and Furnaces VAR Vacuum Arc Remelting (VAR) ALD is one of the leading suppliers of vacuum melting

More information

GDMS. High Resolution GDMS.

GDMS. High Resolution GDMS. GDMS astrum ES High Resolution GDMS www.nu-ins.com Astrum ES Glow discharge mass spectrometry (GD-MS) is recognised as one of the ultimate techniques for the characterisation of conductive and non-conductive

More information

Solidification. Nov. 2010

Solidification. Nov. 2010 Solidification Nov. 2010 Rapid Solidification (10 5 K/s) Rapidly cool or quench to produce amorphous or glassy structure (metallic glass) Rapid Solidification Cooling

More information

Analysis of Cast Iron Using Shimadzu PDA-7000

Analysis of Cast Iron Using Shimadzu PDA-7000 Analysis of Cast Iron Using Shimadzu PDA-7000 C112-0510M The analysis of low and high alloy cast iron by optical emission spectrometry is presented. Cast iron alloys are classified by their mechanical

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information

Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum

Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum Materials Transactions, Vol. 47, No. 1 (2006) pp. 156 to 161 #2006 The Japan Institute of Metals Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum Seiichi

More information

Certificate of Analysis

Certificate of Analysis Brammer Standard Company, Inc. Certificate of Analysis BS 625A Certified Reference Material for Inconel 625 - UNS Number N06625 1 Certified Estimate of Certified Estimate of 2 3 2 Value Uncertainty Value

More information

Certificate of Analysis BS 110B

Certificate of Analysis BS 110B Brammer Standard Company, Inc. Certificate of Analysis BS 110B 1 Certified Reference Material for Grade 11000 Electronic Tough Pitch Copper (UNS Number C11000) Certified Estimate of Certified Estimate

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000

Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000 C112-0514M Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000 Copper alloys are designated by their chemical composition with characteristic properties such as high corrosion resistance,

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Graphite and C/C Products for Semiconductor & Solar Applications

Graphite and C/C Products for Semiconductor & Solar Applications Graphite and C/C Products for Semiconductor & Solar Applications Graphite and C/C Products for Semiconductor & Solar Applications www.schunk-group.com SCHUNK GROUP HIGH TEMPERATURE APPLICATIONS Schunk

More information

Introduction. 1. Sputtering process, target materials and their applications

Introduction. 1. Sputtering process, target materials and their applications Sputtering is widely used in the production of electronic devices such as liquid crystal displays (LCDs), optical media, magnetic media and semiconductors. The Kobelco Research Institute, Inc. has been

More information

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica Microelettronica Planar Technology for Silicon Integrated Circuits Fabrication 26/02/2017 A. Neviani - Microelettronica Introduction Simplified crosssection of an nmosfet and a pmosfet Simplified crosssection

More information

Semiconductors. The essential materials for microelectronics technology A key property: conductivity (or resistivity) - large dynamic range

Semiconductors. The essential materials for microelectronics technology A key property: conductivity (or resistivity) - large dynamic range Semiconductors The essential materials for microelectronics technology A key property: conductivity (or resistivity) - large dynamic range - controllable (or engineerable) Example of controllable conductivity

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Realization of ITS-90 from K through K: One Company s Approach

Realization of ITS-90 from K through K: One Company s Approach Realization of ITS-90 from 273.15 K through 1234.93 K: One Company s Approach Xumo Li, Steve Iman, Mike Hirst, Mingjian Zhao Hart Scientific, Inc. Abstract All of the fixed points of the International

More information

SIC3 Specification. Vacuum Heating Technology. General Properties XRD

SIC3 Specification. Vacuum Heating Technology. General Properties XRD Vacuum Heating Technology Thermic Edge Ltd are the sole manufacturers of SiC 3, short for cubic silicon carbide. The process is unique as it combines a well defined crystal size, isotropic structure and

More information

Quartz Glass for Ultra High Pressure and High Intensity Discharge Lamps. Heraeus Quarzglas

Quartz Glass for Ultra High Pressure and High Intensity Discharge Lamps. Heraeus Quarzglas Quartz Glass for Ultra High Pressure and High Intensity Discharge Lamps Heraeus Quarzglas 1 Advanced Material for Highest Demands Improved lighting performance and efficiency, a compact size and long lifetime

More information

Processing of Semiconducting Materials Prof. Pallab Benerji Department of Materials Science Center Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Benerji Department of Materials Science Center Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Benerji Department of Materials Science Center Indian Institute of Technology, Kharagpur Lecture - 11 Compound Semiconductors (Refer Slide Time: 00:20)

More information

Development of Low Activation Structural Materials

Development of Low Activation Structural Materials Materials Challenge for Clean Nuclear Fusion Energy Development of Low Activation Structural Materials T. Muroga National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan Symposium on Materials

More information

Materials Aspects of GaAs and InP Based Structures

Materials Aspects of GaAs and InP Based Structures AT&T Materials Aspects of GaAs and InP Based Structures V. Swaminathan AT&T Belt Laboratories Breinigsvil/e, Pennsylvania A. T. Macrander Argonne National Laboratory Argonne, Illinois m Prentice Hall,

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

STUDY OF ELEMENT FINGERPRINTING IN GOLD DORÉ BY GLOW DISCHARGE MASS SPECTROMETRY

STUDY OF ELEMENT FINGERPRINTING IN GOLD DORÉ BY GLOW DISCHARGE MASS SPECTROMETRY STUDY OF ELEMENT FINGERPRINTING IN GOLD DORÉ BY GLOW DISCHARGE MASS SPECTROMETRY MICHAEL W. HINDS, Ph.D. 1 ELEMENT FINGERPRINTING In 1994, John Whatling* used laser ablation inductively coupled mass spectrometry

More information

InGaAs p-i-n photodiodes for fibre-optic communication

InGaAs p-i-n photodiodes for fibre-optic communication Sadhan~, Vol. 17, Parts 3 & 4, September 1992, pp. 385-389. O Printed in India. InGaAs p-i-n photodiodes for fibre-optic communication D N BOSE and ARVIND KUMAR Semiconductor Division, Materials Science

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Coreless Vacuum Induction Furnace

Coreless Vacuum Induction Furnace 1/8 High tech furnaces for high tech alloys and processes www.otto-junker.de Coreless Vacuum Induction Furnace Coreless Vacuum Induction Furnace Blaise Pascal 1623-1662 The vacuum treatment of molten steel

More information

EFFECT OF CRYSTALORIENTATIONIN OXIDATION PROCESS OF VLSI FABRICATION

EFFECT OF CRYSTALORIENTATIONIN OXIDATION PROCESS OF VLSI FABRICATION International Journal of Research in Engineering, Technology and Science, Volume VII, Special Issue, Feb 2017 www.ijrets.com, editor@ijrets.com, ISSN 2454-1915 EFFECT OF CRYSTALORIENTATIONIN OXIDATION

More information

Scholars Research Library. Characterization of InSbBi Bulk Crystals Grown at Various Growth-rates by Vertical Directional Solidification (VDS)

Scholars Research Library. Characterization of InSbBi Bulk Crystals Grown at Various Growth-rates by Vertical Directional Solidification (VDS) Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 212, 3 (1):15-2 (http://scholarsresearchlibrary.com/archive.html) ISSN : 976-97 CODEN (USA): APRRC7 Characterization of

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

SiC crystal growth from vapor

SiC crystal growth from vapor SiC crystal growth from vapor Because SiC dissolves in Si and other metals can be grown from melt-solutions: Liquid phase epitaxy (LPE) Solubility of C in liquid Si is 0.029% at 1700oC high T process;

More information

Ceramic and glass technology

Ceramic and glass technology 29 Glass Properties Glass is an inorganic, nonmetallic material which cools to a rigid solid without crystallization. Glassy, or noncrystalline, materials do not solidify in the same sense as do those

More information

METALLURGICAL SILICON REFINING BY TRANSIENT DIRECTIONAL SOLIDIFICATION

METALLURGICAL SILICON REFINING BY TRANSIENT DIRECTIONAL SOLIDIFICATION METALLURGICAL SILICON REFINING BY TRANSIENT DIRECTIONAL SOLIDIFICATION Moyses L. LIMA 1,2, Marcelo A. MARTORANO 2, João B. F. NETO 1 1 Laboratory of Metallurgical Processes - Institute for Technological

More information

High RRR Niobium Material Studies. Ganapati Myneni and Peter Kneisel Jefferson Lab Newport News VA23606

High RRR Niobium Material Studies. Ganapati Myneni and Peter Kneisel Jefferson Lab Newport News VA23606 High RRR Niobium Material Studies Ganapati Myneni and Peter Kneisel Jefferson Lab Newport News VA23606 Introduction: Superconducting rf cavities used as accelerating structures in particle accelerators

More information

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Introduction Lecture - 2 Classification of Welding Processes -

More information

Metal Powder - the Raw Material of Future Production

Metal Powder - the Raw Material of Future Production Metal Powder - the Raw Material of Future Production BY GÜNTER BUSCH* SYNOPSIS Alongside Mobile Internet, Cloud Computing, Robotics, Energy Storage and Autonomous Vehicles, Additive Manufacturing is one

More information

Reducing iron content in molten aluminum by super-gravity segregation

Reducing iron content in molten aluminum by super-gravity segregation Reducing iron content in molten aluminum by super-gravity segregation Shitong SUN 1), Jingwei LI 1), Zhancheng GUO 1), Huiqing TANG 1) and Zhi WANG 2) 1) State Key Laboratory of Advanced Metallurgy, University

More information

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are:

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: Chapter 4 1 CHAPTER 4: Oxidation Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: 1. mask against implant or diffusion of dopant into silicon 2. surface passivation

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

Chapter 2 MOS Fabrication Technology

Chapter 2 MOS Fabrication Technology Chapter 2 MOS Fabrication Technology Abstract This chapter is concerned with the fabrication of metal oxide semiconductor (MOS) technology. Various processes such as wafer fabrication, oxidation, mask

More information

Degassing Components Unique Oxidation Resistance Treatment

Degassing Components Unique Oxidation Resistance Treatment Page 1/7 CGT Carbon is supplier of Carbon Graphite Materials and their Components including carbon graphite felt, rigid graphite felt, carbon-carbon composite and also quartz crucible. We offer these products

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Induction Skull Melting Furnaces

Induction Skull Melting Furnaces Induction Skull Melting Furnaces ISM The Process A B C D Induction Skull Melting ISM is a method of melting metals in a segmented, water-cooled copper vessel while under vacuum or controlled atmosphere

More information

SPI Supplies Brand MgO Magnesium Oxide Single Crystal Substrates, Blocks, and Optical Components

SPI Supplies Brand MgO Magnesium Oxide Single Crystal Substrates, Blocks, and Optical Components SPI Supplies Brand MgO Magnesium Oxide Single Crystal Substrates, Blocks, and Optical Components Used by high temperature thin film superconductor researchers worldwide! Purity better than 99.9%! Choose

More information

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline:

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: Fabrication of p-n junctions Contact Potential Things you should know when you leave Key Questions What are the necessary steps to fabricate

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

VITROBRAZE. Advanced Materials The Key to Progress. vitrobraze

VITROBRAZE. Advanced Materials The Key to Progress. vitrobraze VITROBRAZE Amorphous Brazing Foils Advanced Materials The Key to Progress vitrobraze 1 The Company VACUUMSCHMELZE We are a global company with our headquarters in Hanau, Germany. We currently have over

More information

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch

Chapter 1.6. Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table. Diameter 100 mm 4-inch 150 mm 6-inch Chapter 1.6 I - Substrate Specifications Polished Single-Crystal Silicon, Prime Wafers (all numbers nominal) Wafer Specification Table Diameter 100 mm 4-inch 150 mm 6-inch Thickness 525 µm 20.5 mils 675

More information

Controlling Heat and Mass Transport during the Vertical Bridgman Growth of Homogeneous Ternary III-V Semiconductor Alloys

Controlling Heat and Mass Transport during the Vertical Bridgman Growth of Homogeneous Ternary III-V Semiconductor Alloys Trans. Indian Inst. Met. Vol.60, Nos. 2-3, April-June 2007, pp. 155-160 TP 2117 Controlling Heat and Mass Transport during the Vertical Bridgman Growth of Homogeneous Ternary III-V Semiconductor Alloys

More information

Molecular Beam Epitaxy (MBE) BY A.AKSHAYKRANTH JNTUH

Molecular Beam Epitaxy (MBE) BY A.AKSHAYKRANTH JNTUH Molecular Beam Epitaxy (MBE) BY A.AKSHAYKRANTH JNTUH CONTENTS Introduction What is Epitaxy? Epitaxy Techniques Working Principle of MBE MBE process & Epitaxial growth Working conditions Operation Control

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Continuous Rheocasting for Aluminum-Copper Alloys

Continuous Rheocasting for Aluminum-Copper Alloys Materials Transactions, Vol. 43, No. 9 (2002) pp. 2285 to 2291 c 2002 The Japan Institute of Metals Continuous Rheocasting for Aluminum-Copper Alloys Kiyoshi Ichikawa, Masahito Katoh and Fumio Asuke Ecology-Oriented

More information

TOWARD MEMS!Instructor: Riadh W. Y. Habash

TOWARD MEMS!Instructor: Riadh W. Y. Habash TOWARD MEMS!Instructor: Riadh W. Y. Habash Students are presented with aspects of general production and manufacturing of integrated circuit (IC) products to enable them to better liaise with and participate

More information

Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs

Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs 6.1. Overview Previous chapters described an AlGaAs-GaAs-GaN HBT, in which an epitaxially grown AlGaAs-GaAs emitter-base was wafer-fused to a GaN collector.

More information

High Purity. Your return on investment

High Purity. Your return on investment High Purity Your return on investment Hydro our company High Purity worldwide Hydro is a Fortune 500 energy and aluminium supplier founded in 1905, with 36,000 employees in nearly 40 countries. We are

More information

G8 GALILEO. Innovation with Integrity. High-End Melt-extraction Analyzer. Inert Gas Method

G8 GALILEO. Innovation with Integrity. High-End Melt-extraction Analyzer. Inert Gas Method G8 GALILEO High-End Melt-extraction Analyzer Innovation with Integrity Inert Gas Method Determination of O, N and H The market demands Metals, minerals, and inorganic compound markets demand high-quality

More information

This Appendix discusses the main IC fabrication processes.

This Appendix discusses the main IC fabrication processes. IC Fabrication B B.1 Introduction This Appendix discusses the main IC fabrication processes. B.2 NMOS fabrication NMOS transistors are formed in a p-type substrate. The NMOS fabrication process requires

More information

Epitaxy techniques - overview

Epitaxy techniques - overview 6.772SMA5111 - Compound Semiconductors Lecture 7 - Epitaxy Techniques and Considerations - Outline Lattice-matching considerations Natural lattice-matching 1. Review of lattice-matched material systems

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi. Lecture - 10 Semiconductor Materials

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi. Lecture - 10 Semiconductor Materials Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 10 Semiconductor Materials Today we will discuss about semiconductor materials in

More information

Advance Tech. Silicon2Solar

Advance Tech. Silicon2Solar Advance Tech Silicon2Solar 24 Hour x 7 Day/Week Surveillance Location: 312 Main, Caldwell, ID 83605 Products/Services: Profile What we do Solar module recycling Semiconductor silicon recovery, IP obliteration,

More information

Evaluation of Effects of Stirring in a Melting Furnace for Aluminum

Evaluation of Effects of Stirring in a Melting Furnace for Aluminum Temperature ( ) Evaluation of Effects of Stirring in a Melting Furnace for Aluminum Kunio Matsuzaki 1,Toru Shimizu 1, Yoichi Murakoshi 1 and Kenzo Takahashi 2 1 Japanese National Institute of Advanced

More information

id : class06 passwd: class06

id : class06 passwd: class06 http://wwwee.stanford.edu/class_directory.php http://ocw.mit.edu/ocwweb/index.htm http://nanosioe.ee.ntu.edu.tw id : class06 passwd: class06 Display and OLED Market OLED on glass only ~US$ 0.5B in 04,

More information

CdTe and CdZnTe Detectors I

CdTe and CdZnTe Detectors I CdTe and CdZnTe Detectors I Mater. Res. Soc. Symp. Proc. Vol. 1164 2009 Materials Research Society 1164-L03-02 Development of THM Growth Technology for CdTe Radiation Detectors and the Applications Minoru

More information

ILA Berlin Timothy Ellis, Ph.D. President, RSR Technologies, Dallas TX Chairman Advanced Lead Acid Battery Consortium (ALABC)

ILA Berlin Timothy Ellis, Ph.D. President, RSR Technologies, Dallas TX Chairman Advanced Lead Acid Battery Consortium (ALABC) ILA Berlin 2017 Timothy Ellis, Ph.D. President, RSR Technologies, Dallas TX Chairman Advanced Lead Acid Battery Consortium (ALABC) Purity of Base Metal (Pb) 170 W-hrs/Kg Evolution of Compositional Requirements

More information

From sand to silicon wafer

From sand to silicon wafer From sand to silicon wafer 25% of Earth surface is silicon Metallurgical grade silicon (MGS) Electronic grade silicon (EGS) Polycrystalline silicon (polysilicon) Single crystal Czochralski drawing Single

More information

Electron Beam Melting (EB)

Electron Beam Melting (EB) ALD Vacuum Technologies High Tech is our Business Electron (EB) Electron Processes and Furnaces Metallurgy of the Electron Process Large EBCHR Furnace for Titanium Electron beam melting is distinguished

More information

Improved Quality by Electro Slag Re-Melting

Improved Quality by Electro Slag Re-Melting Improved Quality by Electro Slag Re-Melting BY GÜNTER BUSCH* SYNOPSIS Electro Slag Re-Melting is a process performed after the primary melting steps in electro arc, induction or vacuum induction furnaces.

More information

DEVELOPMENT OF DIRECTIONAL SOLIDIFICATION SYSTEM AND SYNTHESIS OF GALLIUM ANTIMONIDE AND ITS CHARACTERISATION

DEVELOPMENT OF DIRECTIONAL SOLIDIFICATION SYSTEM AND SYNTHESIS OF GALLIUM ANTIMONIDE AND ITS CHARACTERISATION DEVELOPMENT OF DIRECTIONAL SOLIDIFICATION SYSTEM AND SYNTHESIS OF GALLIUM ANTIMONIDE AND ITS CHARACTERISATION J. Chidanandappa 1, K.Eswara Prasad 2, Balaraju 3, V.N Mani 4 1 Scientist/ Engineer SD, National

More information

Proposed Rule Control of Emissions of Toxic Air Contaminants from Chromium Alloy Melting Operations. Working Group Meeting #5 June 6, 2018

Proposed Rule Control of Emissions of Toxic Air Contaminants from Chromium Alloy Melting Operations. Working Group Meeting #5 June 6, 2018 Proposed Rule 1407.1 Control of Emissions of Toxic Air Contaminants from Chromium Alloy Melting Operations Working Group Meeting #5 June 6, 2018 Agenda Summary of Working Group Meeting #4 for PAR 1407

More information

CS744 Series: Carbon/Sulfur by Combustion

CS744 Series: Carbon/Sulfur by Combustion CS744 Series: Carbon/Sulfur by Combustion Delivering the Right Results CS744 Series: Carbon/Sulfur by Combustion LECO's CS744 Series will redefine the way you determine carbon and sulfur in primary steels,

More information

CS744 Series: Carbon/Sulfur by Combustion

CS744 Series: Carbon/Sulfur by Combustion CS744 Series: Carbon/Sulfur by Combustion Delivering the Right Results CS744 Series: Carbon/Sulfur by Combustion LECO's CS744 Series will redefine the way you determine carbon and sulfur in primary steels,

More information

SUMMARY AND CONCLUSION

SUMMARY AND CONCLUSION 5 SUMMARY AND CONCLUSION Energy in the form of heat is required for diverse applications in various sectors including domestic, agricultural, commercial and industrial sectors. As there is a gap between

More information

Introduction. 1 Method for making work rolls for cold rolling and characteristics required for rolls

Introduction. 1 Method for making work rolls for cold rolling and characteristics required for rolls Because cold rolling requires work rolls of high quality in their surfaces and interiors, the rolls are generally made from electro-slag-remelting (ESR) ingots which ensure a stable outcome. In order to

More information

Brammer Standard Company, Inc.

Brammer Standard Company, Inc. Brammer Standard Company, Inc. Certificate of Analysis BS 625E Certified Reference Material for Inconel 625 - UNS Number N06625 Certified Estimate of Certified Values 3 Certified Estimate of Value 1 Uncertainty

More information

P.S. Dutta Introduction

P.S. Dutta Introduction 1 12 Crystal-Growth Technology for Ternary III-V Semiconductor Production by Vertical Bridgman and Vertical Gradient Freezing Methods with Accelerated Crucible Rotation Technique P.S. Dutta 12.1 Introduction

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 13: THERMAL- OXIDATION of SILICON 2004 by LATTICE PRESS Chapter 13: THERMAL-OXIDATION of SILICON n CHAPTER CONTENTS Applications of Thermal Silicon-Dioxide Physical

More information

Principals of Billet Making

Principals of Billet Making Billet quality directly controls the quality of extrusions and affects productivity, in term profitability. The quality of billets& cost are the two important considerations for extrusion producers. Day

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC C COOPERATIVE PATENT CLASSIFICATION CHEMISTRY; METALLURGY (S omitted) METALLURGY C30 CRYSTAL GROWTH (separation by crystallisation in general B01D 9/00) SINGLE-CRYSTAL-GROWTH (by using ultra-high pressure,

More information

Advances and Results in Multi-Sheet EFG-Based Sapphire Crystal Growth

Advances and Results in Multi-Sheet EFG-Based Sapphire Crystal Growth Saint-Gobain Group, Ceramic Materials Division, Crystals Department : Advances and Results in Multi-Sheet EFG-Based Sapphire Crystal Growth John FRANK Guilford MACK Drew HAVEN Jan BUZNIAK Michel BOYER-CHAMMARD

More information

CHEMICAL DEPTH PROFILING OF TOOL MATERIALS USING GLOW DISCHARGE OPTICAL EMISSION SPECTROSCOPY (GD-OES)

CHEMICAL DEPTH PROFILING OF TOOL MATERIALS USING GLOW DISCHARGE OPTICAL EMISSION SPECTROSCOPY (GD-OES) CHEMICAL DEPTH PROFILING OF TOOL MATERIALS USING GLOW DISCHARGE OPTICAL EMISSION SPECTROSCOPY (GD-OES) T. Björk Swedish Institute for Metals Researc Drottning Kristinas väg 48 114 28 Stockholm Sweden Abstract

More information

Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING

Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING Rolled billets FOR THE AUTOMOTIVE INDUSTRY, MINING, THE OIL AND GAS INDUSTRY AND GENERAL MECHANICAL ENGINEERING Buderus Edelstahl Buderus Edelstahl CONTENTS Buderus Edelstahl 2 Products 4 Production 5

More information

Lecture 2 Silicon Properties and Growth

Lecture 2 Silicon Properties and Growth Lecture 2 Silicon Properties and Growth Chapters 1 & 2 Wolf and Tauber 1/63 Lecture 2 Why Silicon? Crystal Structure. Defects. Sand to Electronic Grade Polysilicon. Polycrystalline to Single Crystal Silicon.

More information

MATERIALS. Silicon Wafers... J 04 J 01. MATERIALS / Inorganics & thin films guide

MATERIALS. Silicon Wafers... J 04 J 01. MATERIALS / Inorganics & thin films guide J MATERIALS SUBSTRATES Silicon Wafers... J 04 J J 01 MATERIALS SUBSTRATES NEYCO has a complete range of crystal substrates for a wide variety of applications, including Semiconductor, Biotechnology, Nanotechnology,

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information