GEOLOGY 585: OPTICAL MINERALOGY & PETROLOGY

Size: px
Start display at page:

Download "GEOLOGY 585: OPTICAL MINERALOGY & PETROLOGY"

Transcription

1 Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2009 GEOLOGY 585: OPTICAL MINERALOGY & PETROLOGY

2 A Mineral must be crystalline Crystalline means that it has an orderly and repetitive atomic structure

3 The external Shape of minerals reflects their internal structure Crystal lshapes are best tdescribed din terms of Symmetry Symmetry is the repetitive i arrangement of features (faces, corners and edges) of a crystal around imaginary lines, points or planes Reflects internal ordering of atoms in the mineral structure t All shapes and properties must conform to the mineral s symmetry

4 Crystal Shape growth forms of individual id grains Special named shapes cube Pyrite dodecahedron Garnet octahedron Magnetite

5 General Shapes prismatic Crystal Shape platy blocky tabular bladed

6 Cleavage forms- Must conform to mineral symmetry Shiny, smooth, planar breakages Between weakly bonded planes in mineral structure Sometimes hard to tell from growth faces (which commonly have imperfections, not as smooth) By quality perfect good fair By shape or number cubic rhombohedral octahedral prismatic

7 Cleavage Examples Fluorite: perfect octahedral cleavage (4 directions, 8 sides) Note difference from Fluorite growth faces (cubes)

8 Rotational Symmetry in Minerals Name Short-hand Angle Symbol 1-fold fld o 2-fold o 3-fold o 4-fold 4 90 o 6-fold 6 60 o Only these five are possible!

9 Types of symmetry possible in Minerals 1, 2, 3, 4, 6 proper rotations m mirror planes 1 center of symmetry 4 rotoinversion i 3 rotoinversion Demonstration of 4 and 3 These can be combined in 32 ways to make crystal shapes

10 Minerals are Grouped into Six Crystal Systems based on Symmetry System Characteristic Symmetry Isometric (Cubic) System four 3 or 3 Hexagonal System one 6, 6, 3 or 3 Tetragonal lsystem one 4 or 4 Orthorhombic System three 2 and/or m Monoclinic System one 2 and/or m Triclinic System 1or1 1

11 Strategies for identifying symmetry y Grasp crystal or block with thumb and finger on opposite corners, edges or face centers, turn block 60, 90, 120 or 180, check to see if it looks the same Check for other symmetry y axes and mirror planes perpendicular to the axis you find All symmetry elements intersect at center Use flat hand or card to check for mirror planes Use knowledge of systems (I ll explain)

12 A Form is: A set of similarly shaped faces That are related to eachother by the symmetry of the crystal Forms can be open or closed

13 Isometric System Four 3 or 3 (corner-corner of reference cube) All isometric shapes also have three perpendicular 4, 4 or 2 axes These are the crystallographic axes a 1, a 2, a 3 ; all equal length All isometric forms are equidimensional Highest symmetry y system

14 The Cube and Octahedron are simple, common Isometric Forms cube octahedron

15 More Isometric Forms dodecahedron hexoctahedron tetrahedron tristetrahedron

16 Isometric Minerals: Fluorite (CaF 2 ) Name Growth Form? Twin Name Cleavage Form? To what mineral group does fluorite belong?

17 Isometric Minerals: Garnet (Ca,Fe,Mg,Mn) M 3 Al 2 Si 3 O 12 All isometric i minerals are isotropic which means? Name of fgarnet Growth hf Form?

18 Isometric Minerals: Pyrite Forms? Formula? Mineral Group?

19 Names of Common Nonisometric Forms: Open Forms Pedion Pinacoid Prisms Pyramids single face 2 parallel faces 3, 4, 6, 8 or 12 faces, all parallel to a common line 3, 4, 6, 8 or 12 faces that intersect at a point Use prefix to indicate System or symmetry

20 Some Open Forms tetragonal hexagonal ditrigonal prism (3- pyramid prism fold symmetry) What mineral?

21 Names of Common Non- isometric i Forms: Closed Forms dipyramid two 3-, 4-, 6-, 8- or 12- sided pyramids (top and bottom) related by a horizontal mirror plane disphenoid id 4 non-equilateral l triangular faces rhombohedron 6 rhomb-shaped faces scalenohedron 8 or 12 scalene triangle- shaped faces

22 Non-isometric Closed Forms Hexagonal dipyramid Tetragonal disphenoid Hexagonal scalenohedron

23 Rhombohedra 6 faces related by a 3-bar axis - common form for carbonates

24 Point Groups There are 32 possible combinations of the allowed symmetry y elements in minerals They re called Point Groups or Crystal Classes (more later) Can be grouped into 6 Crystal Systems

25 Grouped in Six Crystal Systems System Characteristic Symmetry Isometric (Cubic) System four 3 or 3 Hexagonal System one 6, 6, 3 or 3 Tetragonal System one 4 or 4 Orthorhombic h System three 2 and/or m Monoclinic System one 2 and/or m Triclinic System 1 or 1

26 Crystallographic Axes Reference axes Conventional ways to hold and refer to faces on crystals Different convention for each system

27 Crystallographic Axes: Isometric System Three perpendicular axes Coincide with three 4-fold or 2-fold axes +a 3 +a 2 All equal length +a 1 Called a 1, a 2, a 3

28 Crystallographic Axes: Tetragonal System Three perpendicular axes Vertical axis, c, coincides with 4 or 4-bar axis One axis, c, is longer or shorter than other two, a 1 and a 2, which are equal +a 1 +c +a 2

29 Tetragonal Examples Wulfenite PbMoO 4

30 Crystallographic Axes: Orthorhombic System Three perpendicular axes - coincide with 2-fold axes or are perpendicular to mirror planes All different lengths called a, b, c +a +c +b

31 Crystallographic Axes: Monoclinic System +c All axes different lengths Called a, b, c b axis coincides with 2- β > 90 fold axis or mirror plane o +b c is parallel to long edges a slants down to the front +a a b, b c, angle between a and c>90 o

32 Crystallographic Axes: Triclinic System No perpendicular axes +c All different lengths Called a, b, c +a +b

33 Crystallographic Axes: Hexagonal System Four axes Vertical axis, c, is longer or shorter and coincides with ih6-fold fldor 3-fold fldaxis Three horizontal axes coincide with 2-fold axes, are to c, and 120 o to each-other Three horizontal axes are +a 3 +a 1 +c 120 o +a 2 equal lengths a 1, a 2, a 3

34 Hexagonal Examples

35 Six Crystal Systems System Axial Relationships? Isometric (Cubic) System Hexagonal System Tetragonal System Orthorhombic h System Monoclinic System Triclinic System

GEOLOGY 284: MINERALOGY

GEOLOGY 284: MINERALOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University FALL 2005 GEOLOGY 284: MINERALOGY The Six Crystal Systems Minerals are Grouped into Six Crystal Systems based on Symmetry System Characteristic

More information

Prof. Stephen A. Nelson Geology 211. Crystal Form, Zones, Crystal Habit. Crystal Forms

Prof. Stephen A. Nelson Geology 211. Crystal Form, Zones, Crystal Habit. Crystal Forms Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy Crystal Form, Zones, Crystal Habit This page last updated on 27-Aug-2002 Crystal Forms As stated at the end of the last lecture, the next

More information

GEOL. 40 ELEMENTARY MINERALOGY

GEOL. 40 ELEMENTARY MINERALOGY CRYSTAL SYMMETRY AND CLASSIFICATION A. INTRODUCTION Solid matter, which possesses ordered internal structure, wherever it may be, is called a crystal. Such order in the internal structure is also manifested

More information

External Symmetry of Crystals, 32 Crystal Classes

External Symmetry of Crystals, 32 Crystal Classes Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy External Symmetry of Crystals, 32 Crystal Classes This page last updated on 03-Sep-2002 As stated in the last lecture, there are 32 possible

More information

GEOLOGY 284: MINERALOGY

GEOLOGY 284: MINERALOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University FALL 2015 GEOLOGY 284: MINERALOGY Mineral Properties in Hand Specimen Luster Metallic Sub-metallic Non-metallic Vitreous Adamantine

More information

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions:

More information

Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 3 Symmetry in Perfect Solids (Continued) (Refer Slide Time: 00:26) So, the last lecture,

More information

Chapter One: The Structure of Metals

Chapter One: The Structure of Metals Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification

More information

A Classification of Crystalline Models. Harold M. Summers, III

A Classification of Crystalline Models. Harold M. Summers, III A Classification of Crystalline Models By Harold M. Summers, III A senior thesis submitted to fulfill the requirements for the degree of B.S. in Geology, 1995 The Ohio State University ~~T- Rodney T..

More information

Mineralogy Problem Set Crystal Systems, Crystal Classes

Mineralogy Problem Set Crystal Systems, Crystal Classes Mineralogy Problem Set Crystal Systems, Crystal Classes (1) For each of the five numbered wooden blocks: (a) Identify the crystal system; (b) Identify the crystal class; (c) List the forms present. (2)

More information

Chapter1: Crystal Structure 1

Chapter1: Crystal Structure 1 Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

ENGINEERING GEOLOGY PROF: DEBASIS ROY DEPARTMENT OF CIVIL ENGINEERING. INDIAN INSTITUTE OF TECHNOLOGY, Kharagpur LECTURE - 6

ENGINEERING GEOLOGY PROF: DEBASIS ROY DEPARTMENT OF CIVIL ENGINEERING. INDIAN INSTITUTE OF TECHNOLOGY, Kharagpur LECTURE - 6 ENGINEERING GEOLOGY PROF: DEBASIS ROY DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, Kharagpur LECTURE - 6 Crystallography and Optical Properties of Minerals Hello every one and welcome

More information

Name October 3, K FIRST HOUR EXAM

Name October 3, K FIRST HOUR EXAM 1 Name October 3, 1994 347K FIRST HOUR EXAM Answer the following questions as directed. For multiple choice questions choose the single best answer. Multiple choice are worth 3 pts, T/F are worth 1 pt.

More information

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1 CHAPTER 3 Crystal Structures and Crystal Geometry 3-1 The Space Lattice and Unit Cells 3-2 Atoms, arranged in repetitive 3-Dimensional pattern, in long range order (LRO) give rise to crystal structure.

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 13 Crystallography and Crystal Structures continued Chapter 6 in Waseda Excerpt from ASM Metals Handbook. Suggested Reading 337 Notation for crystal structures 1.

More information

COPY. Topic 6 MINERALS. Mr. Rocco

COPY. Topic 6 MINERALS. Mr. Rocco COPY Topic 6 MINERALS Mr. Rocco Mineral? COPY Naturally occurring in the earth Solid Definite chemical composition Atoms arranged in a specific pattern Inorganic not from once living organisms (See ESRT

More information

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior Physics

More information

SRI VIDYA COLLEGE OF ENGG & TECHNOLOGY QUESTION BANK (16 MARKS) UNIT II MINERALOGY 1) Explain briefly about physical properties of minerals? (Nov 2005

SRI VIDYA COLLEGE OF ENGG & TECHNOLOGY QUESTION BANK (16 MARKS) UNIT II MINERALOGY 1) Explain briefly about physical properties of minerals? (Nov 2005 SRI VIDYA COLLEGE OF ENGG & TECHNOLOGY QUESTION BANK (16 MARKS) UNIT II MINERALOGY 1) Explain briefly about physical properties of minerals? (Nov 2005) The following are the important physical properties:

More information

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal

More information

Florida Atlantic University MINERALOGY -- MIDTERM 2 EXAMINATION KEY

Florida Atlantic University MINERALOGY -- MIDTERM 2 EXAMINATION KEY GLY4200C Name 90 points October 24, 2012 17 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University

More information

Figure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1

Figure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1 [crystallographic symmetry] The crystallographic space groups. Supplementary to { 9.6:324} In the 3-D space there are 7 crystal systems that satisfy the point (e.g., rotation, reflection and inversion)

More information

What is a crystal? Historic definition before the advent of crystallography. - A material with a regularly repeating structural motif

What is a crystal? Historic definition before the advent of crystallography. - A material with a regularly repeating structural motif What is a crystal? Historic definition before the advent of crystallography - A solid with well-defined faces Crystallographic definition - A material with a regularly repeating structural motif The strict

More information

Symmetry in crystalline solids.

Symmetry in crystalline solids. Symmetry in crystalline solids. Translation symmetry n 1,n 2,n 3 are integer numbers 1 Unitary or primitive cells 2D 3D Red, green and cyano depict all primitive (unitary) cells, whereas blue cell is not

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 5: Space Groups, Crystal Growth and Twinning Instructor: Dr. Douglas Haywick Last Time 1. Stereo Projections and the Wulff Net 2.

More information

MME 2001 MATERIALS SCIENCE

MME 2001 MATERIALS SCIENCE MME 2001 MATERIALS SCIENCE 1 20.10.2015 crystal structures X tal structure Coord. # Atoms/ unit cell a=f(r) APF % SC 6 1 2R 52 BCC 8 2 4R/ 3 68 FCC 12 4 2R 2 74 HCP 12 6 2R 74 Theoretical Density, knowing

More information

Two dimensional Bravais lattices

Two dimensional Bravais lattices Two dimensional Bravais lattices Two dimensional Bravais lattices Square lattice Symmetries: reflection about both x and y rotations by 90 o,180 o Two dimensional Bravais lattices Rectangular lattice Square

More information

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved. Chapter 3: Atomic and Ionic Arrangements 3-1 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Short-range order versus long-range order Amorphous materials Lattice, basis, unit cells, and crystal structures

More information

Why Study Minerals? blocks of Earth materials. to understanding rock formation

Why Study Minerals? blocks of Earth materials. to understanding rock formation Minerals I Elements of the Earth s crust Properties of minerals Crystal form; Cleavage/Fracture; Color, streak, luster; Hardness, tenacity; Specific gravity; Acid test, magnetism, etc. Why Study Minerals?

More information

3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM

3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM االنظمة البلورية CRYSTAL SYSTEMS 3D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL SYSTEM There are only seven different shapes of unit cell which can be stacked together to completely fill all space (in 3

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering Chapter 3 The Structure t of Crystalline Solids The difference between crystalline and non-crystalline materials is in the extent of ordering Both materials have the same composition but one is ordered

More information

Solid State-1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised

More information

Basics of XRD part I. 1 KIT 10/31/17. Name of Institute, Faculty, Department. The Research University in the Helmholtz Association

Basics of XRD part I.   1 KIT 10/31/17. Name of Institute, Faculty, Department. The Research University in the Helmholtz Association Basics of XRD part I Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 KIT 10/31/17 The Research University in the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu Overview

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

Topic 2-1: Lattice and Basis Kittel Pages: 2-9

Topic 2-1: Lattice and Basis Kittel Pages: 2-9 Topic 2-1: Lattice and Basis Kittel Pages: 2-9 Summary: We begin our introduction of crystal structure by defining a few terms. The first is translational symmetry which explains the periodicity of a crystal.

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Overview of minerals 2.2 PHYSICAL PROPERTIES

Overview of minerals 2.2 PHYSICAL PROPERTIES Chapter 2: Minerals Adapted by Lyndsay R. Hauber, Michael B. Cuggy, & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R & Tefend K. (2015) "Laboratory Manual for Introductory Geology".

More information

9/13/2009. Minerals Chapter 5 (pg. 120) Democritus BCE. electron shells Shells have 2, 8, or 18 electrons. The periodic table

9/13/2009. Minerals Chapter 5 (pg. 120) Democritus BCE. electron shells Shells have 2, 8, or 18 electrons. The periodic table Minerals Chapter 5 (pg. 120) Atoms: smallest indivisible particles of matter Democritus 460-370 BCE Atomic Number Protons (+) Neutrons (0) Electrons (-) electron shells Shells have 2, 8, or 18 electrons

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS

LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS 3.1 LECTURE OUTLINE Welcome to lecture 3. In this lecture you will learn some optical properties of minerals and mineralogical determinations

More information

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

1.10 Close packed structures cubic and hexagonal close packing

1.10 Close packed structures cubic and hexagonal close packing 1.9 Description of crystal structures The most common way for describing crystal structure is to refer the structure to the unit cell. The structure is given by the size and shape of the cell and the position

More information

2Matter and Minerals

2Matter and Minerals 2Matter and Minerals Adapted by Lyndsay R. Hauber, Michael B. Cuggy, & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R & Tefend K. (2015) "Laboratory Manual for Introductory Geology".

More information

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Objectives Symmetry Operators & Matrix representation. Effect of crystal and sample symmetry

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Combining symmetry operations

Combining symmetry operations Combining symmetry operations An object can possess several symmetry elements Not all symmetry elements can be combined arbitrarily - for example, two perpendicular two-fold axes imply the existence of

More information

Materials Science and Engineering

Materials Science and Engineering Introduction to Materials Science and Engineering Chap. 3. The Structures of Crystalline Solids How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 3 Atomic and Ionic Arrangements 1 Objectives of Chapter 3 To learn classification of materials based on atomic/ionic

More information

Crystal Structure. Andrew R. Barron Carissa Smith. 1 Introduction. 2 Crystallography

Crystal Structure. Andrew R. Barron Carissa Smith. 1 Introduction. 2 Crystallography OpenStax-CNX module: m16927 1 Crystal Structure Andrew R. Barron Carissa Smith This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Introduction In any

More information

page - Labs 09 & 10 - Mineral Identification

page - Labs 09 & 10 - Mineral Identification Labs 09 & 10 - Mineral Identification page - All rocks are composed of one or more minerals. In order to be able to identify rocks you have to know how to recognize those key minerals that make of the

More information

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,

More information

page - 1 Lab 9 - Mineral Identification

page - 1 Lab 9 - Mineral Identification Lab 9 - Mineral Identification page - 1 All rocks are composed of one or more minerals. In order to be able to identify rocks you have to know how to recognize those key minerals that make of the bulk

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids classified according to atomic

More information

Physical Properties of Minerals

Physical Properties of Minerals 1 of 8 9/20/2002 9:30 AM Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy Physical Properties of Minerals This document last updated on 20-Sep-2002 Although we have discussed x-ray identification

More information

Module 5: Minerals Topic 3 Content: Identification of a Mineral Presentation Notes. Identification of Minerals

Module 5: Minerals Topic 3 Content: Identification of a Mineral Presentation Notes. Identification of Minerals Identification of Minerals 1 Minerals occur in different colors, sizes, and shapes. Minerals also differ in the way that they reflect light and in the way that they break. Some minerals are softer than

More information

Solids SECTION Critical Thinking

Solids SECTION Critical Thinking SECTION 10.3 Solids A gas has neither a definite volume nor a definite shape. A liquid has a definite volume, but not a definite shape. A solid, the third state, has a definite volume and a definite shape.

More information

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli Chapter-3 MSE-201-R Prof. Dr. Altan Türkeli The Structure of Crystalline Solids FUNDAMENTAL CONCEPTS Solid materials may be classified according to the regularity with which atoms or ions are arranged

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

Powder X-ray Diffraction

Powder X-ray Diffraction Powder X-ray Diffraction The construction of a simple powder diffractometer was first described by Hull in 1917 1 which was shortly after the discovery of X-rays by Wilhelm Conrad Röntgen in1895 2. Diffractometer

More information

GEOLOGY 284: MINERALOGY

GEOLOGY 284: MINERALOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University FALL 2014 GEOLOGY 284: MINERALOGY Ore Deposits and Economic Minerals An ore is anything that can be mined from the Earth at a profit,

More information

Chapter 1. Crystal Structure

Chapter 1. Crystal Structure Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined

More information

Bio5325 Fall Crystal Vocabulary

Bio5325 Fall Crystal Vocabulary Crystals and Crystallization Bio5325 Fall 2007 Crystal Vocabulary Mosaicity (mosaic spread) Protein crystals are imperfect, consisting of a mosaic of domains that are slightly misaligned. As a result,

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Solids can be distinguished from liquids and gases due to their characteristic properties. Some of these are as follows:

Solids can be distinguished from liquids and gases due to their characteristic properties. Some of these are as follows: We know solids are the substances which have definite volume and definite shape. A solid is nearly incompressible state of matter. This is because the particles or units (atoms, molecules or ions) making

More information

Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, Introduction to Rietveld refinement S.

Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, Introduction to Rietveld refinement S. Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, 2009 9.00 13.00 Introduction to Rietveld refinement S.Enzo Università di Sassari X-ray diffraction for bulk samples and thin

More information

These metal centres interact through metallic bonding

These metal centres interact through metallic bonding The structures of simple solids The majority of inorganic compounds exist as solids and comprise ordered arrays of atoms, ions, or molecules. Some of the simplest solids are the metals, the structures

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Interatomic bonding Bonding Forces and Energies Equilibrium

More information

A mineral is a naturally occurring, inorganic solid that has a crystal structure and a definite chemical composition.

A mineral is a naturally occurring, inorganic solid that has a crystal structure and a definite chemical composition. Minerals Objectives List the 5 traits of minerals Identify minerals Describe characteristics of minerals Know how minerals form Describe ways that we use minerals A mineral is a naturally occurring, inorganic

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

PHEN 612 SPRING 2008 WEEK 13 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 13 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 13 LAURENT SIMON Crystallization Crystallization is a common separation process in Commodity inorganic industry (e.g., salts) Food industry (e.g., sugars) Pharmaceutical manufacturing

More information

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

More information

Unit-I. Engineering Physics-I.

Unit-I. Engineering Physics-I. Unit-I Engineering Physics-I INTRODUCTION TO CRYSTAL PHYSICS CRYSTALLINE AND NONCRYSTALLINE SOLIDS SPACE LATTICE CRYSTAL STRUCTURE LATTICE PARAMETERS CRYSTAL SYSTEMS BRAVAIS LATTICES INTRODUCTION TO CRYSTAL

More information

Homework 6: Calculation of Misorientation; A.D. Rollett, , Texture, Microstructure and Anisotropy

Homework 6: Calculation of Misorientation; A.D. Rollett, , Texture, Microstructure and Anisotropy Homework 6: Calculation of Misorientation; A.D. Rollett, 27-75, Texture, Microstructure and Anisotropy Due date: 8 th November, 211 Corrected 8 th Nov. 211 Q1. [6 points] (a) You are given a list of orientations

More information

(a) Would you expect the element P to be a donor or an acceptor defect in Si?

(a) Would you expect the element P to be a donor or an acceptor defect in Si? MSE 200A Survey of Materials Science Fall, 2008 Problem Set No. 2 Problem 1: At high temperature Fe has the fcc structure (called austenite or γ-iron). Would you expect to find C atoms in the octahedral

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

AN INTRODUCTION TO MINERALS

AN INTRODUCTION TO MINERALS AN INTRODUCTION TO MINERALS Vivien Gornitz New York City August 1998 Copyright 1998 The New York Mineralogical Club The image below is from the Bulletin of the New York Mineralogical Club Volume 3, No.

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

Determination of near coincident site lattice orientations in MgO/Cu composite

Determination of near coincident site lattice orientations in MgO/Cu composite JOURNAL OF MATERIALS SCIENCE 37 (2002)2511 2518 Determination of near coincident site lattice orientations in MgO/Cu composite Y. G. WANG, Z. ZHANG Beijing Laboratory of Electron Microscopy, Institute

More information

Crystal Structures of Interest

Crystal Structures of Interest rystal Structures of Interest Elemental solids: Face-centered cubic (fcc) Hexagonal close-packed (hcp) ody-centered cubic (bcc) Diamond cubic (dc) inary compounds Fcc-based (u 3 u,nal, ß-ZnS) Hcp-based

More information

DEPARTMENT OF ARCHITECTURE ABUBAKAR TAFAWA BALEWA UNIVERSITY, BAUCHI ARC 615: ADVANCED BUILDING STRUCTURES LESSON 4: VECTOR ACTIVE STRUCTURAL SYSTEMS

DEPARTMENT OF ARCHITECTURE ABUBAKAR TAFAWA BALEWA UNIVERSITY, BAUCHI ARC 615: ADVANCED BUILDING STRUCTURES LESSON 4: VECTOR ACTIVE STRUCTURAL SYSTEMS DEPARTMENT OF ARCHITECTURE ABUBAKAR TAFAWA BALEWA UNIVERSITY, BAUCHI ARC 615: ADVANCED BUILDING STRUCTURES LESSON 4: VECTOR ACTIVE STRUCTURAL SYSTEMS 4.1 Introduction 4.2 Structural concept of planar trusses

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 An Introduction to X-Ray Powder Diffraction credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 LATTICE ARRAYS AND BRAVAIS LATTICES Crystalline materials differ from amorphous materials

More information

CRYSTALLOGRAPHY IRREGULARITIES OF CRYSTALS

CRYSTALLOGRAPHY IRREGULARITIES OF CRYSTALS CRYSTALLOGRAPHY IRREGULARITIES OF CRYSTALS 264. The laws of crystallization, when unmodified by extrinsic causes, should produce forms of exact geometrical symmetry, the angles being not only equal, but

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

WELCOME TO THE GLENDALE COMMUNITY COLLEGE MINERAL IDENTIFICATION PROGRAM

WELCOME TO THE GLENDALE COMMUNITY COLLEGE MINERAL IDENTIFICATION PROGRAM presented by: WELCOME TO THE GLENDALE COMMUNITY COLLEGE MINERAL IDENTIFICATION PROGRAM Susan Celestian - Curator of the Arizona Mining and Mineral Museum Stan Celestian - Photographer copyright 2002 Where

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 6: Polymorphism and Crystal Habit Instructor: Dr. Douglas Haywick Online Lecture Review 1. Polymorphs and Polymorphism 2. Pseudomorphs

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

Minerals page 1. Minerals

Minerals page 1. Minerals Minerals page 1 Minerals Introduction Most people are familiar with the commonly applied classification of all physical entities into the three categories of animal, vegetable and mineral. We now know

More information

from Wyckoff to Quantum ESPRESSO

from Wyckoff to Quantum ESPRESSO from Wyckoff to Quantum ESPRESSO How to translate a crystallografic structure as given in standard texts (ex. Ralph W.G. Wyckoff, Crystal Structures ) into the Quantum ESPRESSO input format. How is a crystal

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

2 The Crystalline State

2 The Crystalline State 2 The Crystalline State The outward appearance of a crystal is exceptionally variable, but all the variations which occur can be explained in terms of a single fundamental principle. To grasp this, we

More information

Minerals to know. Mineral Families. Calcite Fluorite Galena Kaolinite Halite Copper Talc Graphite Bornite Pyrite. Quartz. Mica. Gypsum.

Minerals to know. Mineral Families. Calcite Fluorite Galena Kaolinite Halite Copper Talc Graphite Bornite Pyrite. Quartz. Mica. Gypsum. Minerals Minerals to know Calcite Fluorite Galena Kaolinite Halite Copper Talc Graphite Bornite Pyrite Mineral Families Mica Biotite Muscovite Lepidolite Gypsum Satin Spar Selenite Feldspar Pink Others

More information

결정학개론. (Crystallography) 2006 년 2 학기 홍성현교수

결정학개론. (Crystallography) 2006 년 2 학기 홍성현교수 결정학개론 (Crystallography) 2006 년 2 학기 홍성현교수 2006 학년도 2 학기 (445.206.003) 교과목명 : 결정학개론 (Crystallography) 담당교수 : 홍성현교수 (33 동 120 호 ) Tel, 880-6273, Email : shhong@plaza.snu.ac.kr 조교 : 김원식, 김대홍 (30 동 322 호 )

More information

Growth II Twinning, defects, and polymorphism. Jon Price

Growth II Twinning, defects, and polymorphism. Jon Price Growth II Twinning, defects, and polymorphism Jon Price !ongratula"on# i$%& twins! Rational, symmetrical intergrowth of structures This raises the internal energy Growth twins - free growth accidents,

More information

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10. Code No: 09A1BS02 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. I Mid Examinations, November 2009 ENGINEERING PHYSICS Objective Exam Name: Hall Ticket No. A Answer All Questions.

More information

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s]. Example: Calculate the energy required to excite the hydrogen electron from level n = 1 to level n = 2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state

More information