ME 499/699 Materials Selection. Homework -1 Solutions. (a) Using the E-ρ chart identify metals with both E > 100 GPa and E/ρ > 23 GPa/(Mg/m 3 ).

Size: px
Start display at page:

Download "ME 499/699 Materials Selection. Homework -1 Solutions. (a) Using the E-ρ chart identify metals with both E > 100 GPa and E/ρ > 23 GPa/(Mg/m 3 )."

Transcription

1 1. Using Materials Selection Charts M 99/699 Materials Selection Homework -1 s (a) Using the - chart identify metals with both > 100 GPa and / > GPa/(Mg/m ). Stage-1: Tree stage to select metals Stage-: Graph stage - chart to isolate metals with >100GPa Stage-: Graph stage - chart Draw line with slope 1 dit Stage-, and modify Selection. nter X1 Mg/m and Y GPa. If the plot has X axis in kg/m then enter X1000 kg/m. Resultant selection is: Name Identity Cast iron, ductile (nodular) Commercially pure titanium High carbon steel ow alloy steel ow carbon steel Medium carbon steel Nickel Nickel-based superalloys Nickel-chromium alloys Stainless steel Titanium alloys Three classes steels, titanium alloys and nickel alloys (b) Using the - chart establish whether woods have a higher specific stiffness / than epoxies. Certain wood products have / greater than epoxies Name Identity Bamboo BA Hardwood: oak, across grain Hardwood: oak, along grain Plywood Softwood: pine, across grain Softwood: pine, along grain (c) Do titanium alloys have a higher or lower specific strength (strength/density, σ f / ) than tungsten alloys? This is important when you want strength at low weight (landing gear of aircraft, mountain bikes). Titanium alloys have a higher specific strength

2 . Translating design requirements: For the problems below, the best material for minimizing cost is to be selected. Translate the design requirements into the four steps function, constraints, objectives and free variables. Assign numerical values for the requirements where possible. (a) A material is required to manufacture office scissors. Paper is an abrasive material, and scissors sometimes encounter hard obstacles like staples. To resist abrasive wear the scissors must have blades of high hardness. In cutting, they will sooner or later encounter a staple or other hard obstruction that would chip a brittle blade some toughness is required. These two parameters help reduce wear, but there are other factors that influence it, so it is sensible to specify good wear resistance. Finally, the scissors must be formed if the handles are integral with the blades, they must be forged or stamped from sheet, requiring the ability to be processed in this way. The design requirements can be classified into the four steps of material selection Scissors High hardness Adequate toughness: K1c > 15MPa.m 0.5 Good wear resistance Able to be forged Minimize material cost (b) A material is required for the windings of an electric air-furnace capable of temperatures up to 1000ºC. Think out what attributes a material must have if it is to be made into windings and function properly in a furnace. If the material is to be used as windings it must be able to be drawn to wire and wound to a coil, requiring ductility. It must conduct electricity and be able to operate at 1000 o C in air. High temperature furnace winding Maximum service temperature, Tmax > 1000º C Able to be rolled or drawn to wire Good electrical conductor Some ductility so that it can be wound, ε f > % Good resistance to oxidation at elevated temperature Minimize material cost

3 . Derivation of material indices: The problems below deal with cantilever beams with a square cross-section and fixed length. Derive the material index M for case. (a) A cantilever beam of given length and fixed square cross-section (of side t) is loaded at its end by a load F. In order to minimize deflection, show that the material index to be maximized is M, where is Young's modulus (neglect self-weight). nd loaded cantilever beam ength is specified Cross-section t x t is specified nd load F is specified Minimize deflection δ The deflection of the end of an end-loaded cantilever beam is (See Appendix A.) F δ I bh t I δ ( F ) t The last equation expresses the deflection as the product of the loading, geometry and material indices. To minimize deflection, the material index to be minimized is (1/) or the material index to be maximized is M (b) A cantilever beam of given length and fixed square cross-section (of side t) deflects under its own weight (w per unit length). In order to minimize deflection, show that the material index to be maximized is M /, where is Young's modulus and is the density.

4 Self loaded cantilever beam ength is specified Cross-section t x t is specified Minimize deflection δ The beam is subject to a self load per unit length of w gt The deflection of the end of a cantilever beam subject to a distributed load of f is w gt δ ( g) ( ) 8I 8 t /1 t In order to minimize deflection δ, the material index to be maximized is M (c) A cantilever beam of given length and square cross-section (i.e. size is not given) deflects under its own weight (w per unit length). Show that for the lightest beam that does not deflect more than a given value δ, the material index to be maximized is M /, where is Young's modulus and is the density. nd loaded cantilever beam ength is specified maximum deflection δ is specified Minimize mass Choice of cross section At The mass of the beam, which is to be minimized, is m t The deflection of a beam under self loading from part (b) above is: δ t ( g) t δ ( g)

5 Substituting for t into the mass equation gives ( ) ( ) g g m 5 δ δ In order to minimize mass m, the material index to be maximized is M

Materials Selection: Case Studies

Materials Selection: Case Studies MME445: Lecture 21 & 22 Materials Selection: Case Studies A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Learning Objectives Knowledge & Understanding Knowledge of how to use materials property

More information

Lecture notes version 13 Sep 2011 Chapter 2 Family trees: organizing materials and processes

Lecture notes version 13 Sep 2011 Chapter 2 Family trees: organizing materials and processes Lecture notes version 13 Sep 2011 Chapter 2 Family trees: organizing materials and processes LEGO elements are thermoplastics. They are melted at 235 C, molded (gevormd) under pressure, and harden as they

More information

Chapter One. Introduction (ABET)

Chapter One. Introduction (ABET) Chapter One Introduction Introduction Materials selection is an important part of a larger process of creating new solutions to problems. This larger process is called Engineering Design Design of engineering

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

Outline. Examples on: Fracture Mechanics Fatigue Wear rate Electrochemical cell Materials selection

Outline. Examples on: Fracture Mechanics Fatigue Wear rate Electrochemical cell Materials selection Outline Examples on: Fracture Mechanics Fatigue Wear rate Electrochemical cell Materials selection Dr. M. Medraj Mech. Eng. Dept. - Concordia University MECH 321 lecture 25/1 Example 1: Fracture Mechanics

More information

Conflicting objectives in design

Conflicting objectives in design Conflicting objectives in design Common design objectives: Minimizing mass (sprint bike; satellite components) Objectives Minimizing volume (mobile phone; minidisk player) Minimizing environmental impact

More information

Design of a Horizontal Creep Testing Machine

Design of a Horizontal Creep Testing Machine The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Spring 2015 Design of a Horizontal Creep Testing Machine Michael Presby mjp80@zips.uakron.edu

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Engineering Part IA Paper 2: Structures and Materials MATERIALS FIRST YEAR Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Straightforward questions are marked with a Tripos

More information

Manufacturing Processes 1 (MDP 114)

Manufacturing Processes 1 (MDP 114) Manufacturing Processes 1 (MDP 114) First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Cutting-Tool Materials and Cutting Fluids 2 Fracture

More information

Materialvalg i Produktutforming STE 6235, Material Selecion in Product Design. Annette Meidell, Narvik University College Exercise d3w1, v.

Materialvalg i Produktutforming STE 6235, Material Selecion in Product Design. Annette Meidell, Narvik University College Exercise d3w1, v. Materialvalg i Produktutforming STE 6235, Material Selecion in Product Design Annette Meidell, Narvik University College Exercise d3w1, v3 Exercises The materials properties for the exercises are as follows:

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

Analysis and design of composite structures

Analysis and design of composite structures Analysis and design of composite structures Class notes 1 1. Introduction 2 Definition: composite means that different materials are combined to form a third material whose properties are superior to those

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

TAP 229-2: Introduction to materials selection charts

TAP 229-2: Introduction to materials selection charts TAP 229-2: Introduction to materials selection charts Mechanical properties in physics, and design Materials selection charts are a novel graphical way of presenting material property data. Most mechanical

More information

In-tutorial Exercise # 6 MECH 321 Winter 2018 Question 1:

In-tutorial Exercise # 6 MECH 321 Winter 2018 Question 1: In-tutorial Exercise # 6 MECH 321 Winter 2018 Question 1: (a) Why is the abrasive wear resistance of a material a function of its hardness? (b) Why is it difficult to use friction sawing on nonferrous

More information

Bromalloy 152. The ultimate. high-temperature, wear-resistant. and corrosive-resistant. material. specifically engineered. for the. glass industry.

Bromalloy 152. The ultimate. high-temperature, wear-resistant. and corrosive-resistant. material. specifically engineered. for the. glass industry. Bromalloy 152 The ultimate high-temperature, wear-resistant and corrosive-resistant material specifically engineered for the glass industry. Bromalloy 152 High surface finish. Excellent edge retention.

More information

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood Alloy Steels Introduction : Steels are, essentially, alloys of iron and carbon, containing up to 1.5 % of carbon. Steel is made by oxidizing away the impurities that are present in the iron produced in

More information

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS 1. INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective is

More information

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION

INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS INDEX METALS FERRIC METALS NON-FERRIC METALS WORKING WITH METALS METAL FORMING TECHNIQUES ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS CHEMICAL ELEMENTS FOUND IN NATURE IN SOLID STATE AT ROOM

More information

Composite Materials. Metal matrix composites

Composite Materials. Metal matrix composites Composite Materials Metal matrix composites Introduction The properties that make MMCs attractive are high strength and stiffness, good wear resistance, high service temperature, tailorable coefficient

More information

Chapter Four. Process Selection

Chapter Four. Process Selection Chapter Four Process Selection Reading : Reference book M.F. Ashby- Chapter 7 There is an interaction between material, shape and process Function Materials properties and shape limit the choice of process.

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Machinability is the ease with which a given material may be worked with a cutting tool

Machinability is the ease with which a given material may be worked with a cutting tool Machinability Machinability is the ease with which a given material may be worked with a cutting tool Machinability ratings (MR) provide and understanding of the severity of a metalworking operation in

More information

What is Steel? Prepared By: John Cawley

What is Steel? Prepared By: John Cawley What is Steel? Prepared By: John Cawley Presentation Objectives Describe the composition of steel. Identify the differences between steel and iron. Use the steel numbering system to identify various types

More information

download from

download from Chapter -1 From Tables A-0, A-1, A-, and A-4c, (a) UNS G1000 HR: S ut = 80 (55) MPa (kpsi), S yt = 10 (0) Mpa (kpsi) Ans. (b) SAE 1050 CD: S ut = 90 (100) MPa (kpsi), S yt = 580 (84) Mpa (kpsi) Ans. (c)

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

Material for a pressure vessel Short term thermal insulation Energy efficient kilns

Material for a pressure vessel Short term thermal insulation Energy efficient kilns More Case Studies in Materials Selection Material for a pressure vessel Short term thermal insulation Energy efficient kilns More info: Materials Selection in Mechanical Design, Chapters 5 and 6 ME 474-674

More information

Cast steel: Group of ASTM standards for steel castings and forgings

Cast steel: Group of ASTM standards for steel castings and forgings Cast steel: Group of ASTM standards for steel castings and forgings Abstract: This group of ASTM specifications covers standard properties of steel and iron castings and forgings for valves, flanges, fittings,

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

Visualizing Material Properties in the Classroom

Visualizing Material Properties in the Classroom Visualizing Material Properties in the Classroom Compiled by Elisabeth Kahlmeyer and Claes Fredriksson from slides created by Mike Ashby M. F. Ashby, 2015 For reproduction guidance see back page This lecture

More information

Ultimate Tensile Range (ksi min) Maximum Working Temp. 250 F 449/ /125 (class I) 250 F 425 F 325/ F 300/ F 242/ F 242/211

Ultimate Tensile Range (ksi min) Maximum Working Temp. 250 F 449/ /125 (class I) 250 F 425 F 325/ F 300/ F 242/ F 242/211 Properties Alloy Steel Music Wire ASTM A228 UNS K08500 & G10860 Cold drawn. Constant tensile strength. Highquality and good for high cycle spring 250 F 449/230 (E) 30 (G).012 to.250 High Carbon Steel Wire/Bar

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

Selection of Engineering Materials

Selection of Engineering Materials Selection of Engineering IM 515E Dr Yehia M. Youssef 1 Textbook: Budinski, K.G. and Budinski, M.K., Engineering : Properties and selection, 8 th ed., Prentice Hall, 2005. Other References: 1) Ashby, M.,

More information

Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p.

Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p. Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p. 5 Ecological Considerations p. 9 Societal Considerations p. 11 Overall

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module 2 Selection of Materials and Shapes Lecture 1 Physical and Mechanical Properties of Engineering Materials Instructional objectives At the of this lecture, the student should be able to appreciate

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

Ferrous Alloys. Steels

Ferrous Alloys. Steels Ferrous Alloys Ferrous alloys those of which iron is the prime constituent are produced in larger quantities than any other metal type. They are especially important as engineering construction materials.

More information

FACTFILE: GCE TECHNOLOGY & DESIGN

FACTFILE: GCE TECHNOLOGY & DESIGN FACTFILE: GCE TECHNOLOGY & DESIGN 1.3 METAL PART 1 Metal Part 1 Learning outcomes Students should be able to: Demonstrate knowledge of the available form of supply of metals; Understand the difference

More information

MEMS 487. Class 04, Feb. 13, K.J. Hemker

MEMS 487. Class 04, Feb. 13, K.J. Hemker MEMS 487 Class 04, Feb. 13, 2003 Materials Come As:!Amorphous Glasses, polymers, some metal alloys Processing can result in amorphous structures! Crystalline Single crystals Textured crystals Polycrystalline

More information

9 Materials. Vocabulary Properties and processes. Kick off

9 Materials. Vocabulary Properties and processes. Kick off 9 Materials Kick off 1 Look at the pictures. Use two words from the list to say why each material has been used. cheap flexible light stiff strong Vocabulary Properties and processes 1 Look at the definitions.

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Fundamentals of Machine Component Design

Fundamentals of Machine Component Design FOURTH E D I T I O N Fundamentals of Machine Component Design ROBERT C. JUVINALL Professor of Mechanical Engineering University of Michigan KURT M. MARSHEK Professor of Mechanical Engineering University

More information

Micromechanics and Microstructure of WC Hard Metals

Micromechanics and Microstructure of WC Hard Metals Micromechanics and Microstructure of WC Hard Metals Karyn Muir Honeoye Falls Lima High School Advisor: Professor John Lambropoulos University of Rochester-Laboratory for Laser Energetics, 50 E. River Rd.,

More information

NONFERROUS METALS AND ALLOYS

NONFERROUS METALS AND ALLOYS NONFERROUS METALS AND ALLOYS Chapter 7 7.1 Introduction Usage of nonferrous metals and alloys has increased due to technology Possess certain properties that ferrous materials do not have Resistance to

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini.

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini. 7 Alloy Steels At the end of this lesson students should be able to: Classify alloy steels Explain: effects of alloying elements to steel properties Discuss: composition, microstructure, mechanical properties

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

PESIT Bangalore South Campus Hosur road, 1km before ElectronicCity, Bengaluru -100 Department of Basic Science and Humanities

PESIT Bangalore South Campus Hosur road, 1km before ElectronicCity, Bengaluru -100 Department of Basic Science and Humanities USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before ElectronicCity, Bengaluru -100 Department of Basic Science and Humanities CONTINUOUS INTERNAL EVALUATION TEST-3 Date : 15/05/2018 Marks: 60

More information

Cork Institute of Technology. Autumn 2007 Manufacturing Engineering. Time: 3 Hours

Cork Institute of Technology. Autumn 2007 Manufacturing Engineering. Time: 3 Hours Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering - Stage 3 (NFQ - Level 8) Autumn 2007 Manufacturing Engineering Time: 3 Hours Instructions: Answer FIVE questions

More information

Metals Ferrous and Non - Ferrous Icons key:

Metals Ferrous and Non - Ferrous Icons key: 1 of 9 Metals Ferrous and Non - Ferrous Icons key: Flash activity. These activities are not editable. Accompanying worksheet. Teacher s notes included in the Notes Page. Useful websites for further information.

More information

ลวดเช อมพ เศษ. Weld Mold / USA. Tool and Die Alloy Welding Materials

ลวดเช อมพ เศษ. Weld Mold / USA. Tool and Die Alloy Welding Materials ลวดเช อมพ เศษ Weld Mold / USA Tool and Die Alloy Welding Materials High-strength alloys for bearing surfaces and tools that must work-harden, for the joining of cracked die sections and for applications

More information

Carbide Tip Coolant Fed Drills

Carbide Tip Coolant Fed Drills KOOLTWIST, KOOLCARB, KOOLDEX Carbide Tip Coolant Fed Drills KOOLTWIST HIGH PERFORMANCE High performance, helical point, stub length. For alloy steels, tool steels, free machining stainless steels, Style

More information

ME-371/571 ENGINEERING MATERIALS

ME-371/571 ENGINEERING MATERIALS ME-371/571 ENGINEERING MATERIALS Problem Set 2 1. An SAE-AISI 1035 steel alloy is slowly cooled from 950 C to room What is the pro-eutectoid phase, and at what temperature would it first appear? What are

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

Chapter kn m/kg Ans kn m/kg Ans kn m/kg Ans

Chapter kn m/kg Ans kn m/kg Ans kn m/kg Ans Shigley's Mechanical Engineering Design 10th Edition Budynas Solutions Manual Completed download: https://testbankreal.com/download/shigleys-mechanical-engineering-design- 10th-edition-solutions-manual-budynas-nisbett/

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

Chapter (a) Maximize yield strength: Q&T at 425 C (800 F) Ans. (b) Maximize elongation: Q&T at 650 C (1200 F) Ans.

Chapter (a) Maximize yield strength: Q&T at 425 C (800 F) Ans. (b) Maximize elongation: Q&T at 650 C (1200 F) Ans. Chapter 2 Instant Download Full solutions at:https://testbankservice.com/download/solutionmanual-shigleys-mechanical-engineering-design-10th-edition-by-budynas 2-1 From Tables A-20, A-21, A-22, and A-24c,

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414 FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (CELT) Tutorial Tue 12-1pm (E207) 10/1/2013 1 CHAPTER OBJECTIVES Show relationship of stress

More information

Cemented carbide composite roll solutions for intermediate and finishing stands. ENGINEERED SOLUTIONS Smart Rolling Solutions

Cemented carbide composite roll solutions for intermediate and finishing stands. ENGINEERED SOLUTIONS Smart Rolling Solutions Cemented carbide composite roll solutions for intermediate and finishing stands ENGINEERED SOLUTIONS Smart Rolling Solutions TABLE OF CONTENTS DESIGNED TO CUSTOMER SPECIFICATION CEMENTED CARBIDE CEMENTED

More information

Metals. General information

Metals. General information Metals. General information Read and copy the following text: Metals are divided into two groups: Metals that contain iron are called Ferrous Metals (Alloys). Metals that do not contain iron are called

More information

Properties of Metals

Properties of Metals Properties of Metals Alessandro Anzalone, Ph.D. Hillsborough Community College Brandon Campus 1. Mechanical Properties 2. Physical Properties 3. Metallurgical Microscopy 4. Nondestructive Testing 5. References

More information

The University of New Mexico. Lecture 4. Chapter 5. zcl ME260L 06. The University of New Mexico. Austenite, Ferrite and Cementite.

The University of New Mexico. Lecture 4. Chapter 5. zcl ME260L 06. The University of New Mexico. Austenite, Ferrite and Cementite. Lecture 4 Chapter 5 Austenite, Ferrite and Cementite 1 Austenite, Ferrite, Martensite and Cementite Austenite FCC Structure of Fe/steel at elevated temperatures (~ >727 o C) Ferrite BCC Relatively soft

More information

Engineering Materials

Engineering Materials Engineering Materials Learning Outcome When you complete this module you will be able to: Describe the mechanical properties of ferrous and non-ferrous engineering materials, plus the effects and purposes

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

Introduction to Materials and Processes

Introduction to Materials and Processes Introduction to Materials and Processes A successful product one that performs well, is good value for money and gives pleasure to the user uses the best materials for the job, and fully exploits its potential

More information

Deformation, plastic instability

Deformation, plastic instability Deformation, plastic instability and yield-limited design Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Material

More information

Light stiff beam Support structure for concave parabolic mirrors Flywheel Energy Storage systems

Light stiff beam Support structure for concave parabolic mirrors Flywheel Energy Storage systems ase Studies in aterials Selection Light sti beam Support structure or concave parabolic mirrors Flywheel Energy Storage systems For this problem : Beam : inimize mass Example: Light-sti Beam Select the

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

CLASSIFICATION OF STEELS

CLASSIFICATION OF STEELS 7 Alloy Steels CLASSIFICATION OF STEELS low carbon

More information

Hardmetals progressive die materials

Hardmetals progressive die materials Tel:+86-731-8812288 88122855 Fax:+86-731-88122998 8812286 P.C:4125 Hardmetals progressive die materials Materials properties and their scope of applications Co % Hardness HRA Density g/cm 3 Transverse

More information

Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt

Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt The most significant feature of our poster is the slider bar graph at the top of each material category. This quick reference

More information

Appendix 3 JIS Steel and Related Standards 471

Appendix 3 JIS Steel and Related Standards 471 Appendix 3 JIS Steel and Related Standards 471 G 3314:1995 G 3315:2002 G 3316:1987 G 3317:1994 G 3318:1994 G 3320:1999 G 3321:1998 G 3322:1998 G 3350:1987 G 3351:1987 G 3352:2003 G 3353:1990 G 3429:1988

More information

AQA GCSE Design and Technology 8552

AQA GCSE Design and Technology 8552 AQA GCSE Design and Technology 8552 Metals and alloys Unit 3 Materials and their working properties 3 Objectives Know the primary sources of materials for producing metals and alloys Be able to recognise

More information

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University 12. Mold Materials Bong-Kee Lee Chonnam National University Mold Materials easy toolmaking good performance during production good machining properties ease of hear treatment where hardening is required

More information

Die Design Software and Simulation Technology Experience

Die Design Software and Simulation Technology Experience Die Design Software and Simulation Technology Experience The Influence of Material Properties on Die Design Peter Ulintz Technical Director Precision Metalforming Association The Influence of Sheet Metal

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Design for Forging. Forging processes. Typical characteristics and applications

Design for Forging. Forging processes. Typical characteristics and applications Design for Forging Forging processes Forging is a controlled plastic deformation process in which the work material is compressed between two dies using either impact or gradual pressure to form the part.

More information

ALLOY DESCRIPTIONS. In the sections that follow, each of the common Ney alloys is described and the general characteristics of each are summarized.

ALLOY DESCRIPTIONS. In the sections that follow, each of the common Ney alloys is described and the general characteristics of each are summarized. ALLOY DESCRIPTIONS. In the sections that follow, each of the common Ney alloys is described and the general characteristics of each are summarized. Paliney 6 is a palladium-silver-copper alloy with small

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

Mathematics and Science in Schools in Sub-Saharan Africa

Mathematics and Science in Schools in Sub-Saharan Africa Mathematics and Science in Schools in Sub-Saharan Africa MATERIAL SCIENCE METAL ALLOYS Metals have many advantages Strong Malleable Conductors Shiny Metal Customizing Cold-working and heat treating metals

More information

Measurement Methods and Calculations to Determine Internal Deposit Stress. Frank H. Leaman Specialty Testing & Development, Inc.

Measurement Methods and Calculations to Determine Internal Deposit Stress. Frank H. Leaman Specialty Testing & Development, Inc. Measurement Methods and Calculations to Determine Internal Deposit Stress Frank H. Leaman Specialty Testing & Development, Inc. York, PA Methods for Deposit Stress Determination Bent Strip (simple beam

More information

CHAPTER 5 WORKPIECE MATERIALS AND PARAMETERS FOR EXPERIMENT

CHAPTER 5 WORKPIECE MATERIALS AND PARAMETERS FOR EXPERIMENT 71 CHAPTER 5 WORKPIECE MATERIALS AND PARAMETERS FOR EXPERIMENT 5.1 INTRODUCTION The workpiece materials for the experimental study are selected on the basis such that mathematical equations arrived at

More information

SE104 Structural Materials Sample Final Exam. For each multiple choice problem (1.5 points), choose 1 and only 1 most relevant answer.

SE104 Structural Materials Sample Final Exam. For each multiple choice problem (1.5 points), choose 1 and only 1 most relevant answer. 1 lb = 4.45 N; 1 inch = 25.4 mm = 1/12 ft 1 nm = 10 Å = 10-3 µm = 10-9 m SE104 Structural Materials Sample Final Exam For each multiple choice problem (1.5 points), choose 1 and only 1 most relevant answer.

More information

Engineering Materials

Engineering Materials Engineering Materials Mechanical Properties of Engineering Materials Mechanical testing of engineering materials may be carried out for a number of reasons: The tests may simulate the service conditions

More information

The Technological World. Chapter 12

The Technological World. Chapter 12 The Technological World Chapter 12 Chapter 12 Manufacturing Technical Objects There have been many inventions that have improved the quality of our lives. We will refer to these inventions as technical

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

Materials Selection and Design Introduction

Materials Selection and Design Introduction Materials Selection and Design Introduction Design is a common word with elaborate meanings close to fashion, aesthetics, culture, so on Fashion design, hair design, interior design, city planning, industrial

More information

ATI Nb. ATI Nb. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES SPECIFICATION COVERAGE CHEMICAL COMPOSITION

ATI Nb. ATI Nb. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES SPECIFICATION COVERAGE CHEMICAL COMPOSITION ATI 20-25+Nb Stainless Steel: Austenitic (UNS S35140) GENERAL PROPERTIES ATI 20-25+Nb alloy is an austenitic stainless steel intended primarily for elevated temperature service. This alloy fills a performance

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

Product list PRODUCT CATEGORIES ACCEPTED AT THE EVENT

Product list PRODUCT CATEGORIES ACCEPTED AT THE EVENT PRODUCT CATEGORIES ACCEPTED AT THE EVENT A) Producers, distributors, traders, service centres, agents, purchase groups and users of the following products: 1. Iron ores and derivatives 1.1. Magnetite 1.2.

More information

1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION

1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION METALS: 1. METALS 2. FERRIC METALS 3. NON-FERRIC METALS 4. WORKING WITH METALS 5. METAL FORMING TECHNIQUES 6. ENVIRONMENTAL IMPACT OF METAL EXTRACTION 1. METALS: Metals are chemical elements found in nature

More information

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks Non-ISO carbide insert blanks for threading, parting, grooving, drilling, reaming and milling applications TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks HYPERION CUSTOM-MADE INSERT BLANKS Hyperion manufacturers

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

Elastic versus Plastic Analysis of Structures

Elastic versus Plastic Analysis of Structures Elastic versus Plastic Analysis of Structures 1.1 Stress-Strain Relationships 1.2 Plastic Design Versus Elastic Design Chapter 1 Basic Concepts of Plastic Analysis 1.3 Elastic-Plastic Bending of Beams

More information