Développement de microenvironnements 3D mimétiques de la crypte intestinale par Bioimpression

Size: px
Start display at page:

Download "Développement de microenvironnements 3D mimétiques de la crypte intestinale par Bioimpression"

Transcription

1 Développement de microenvironnements 3D mimétiques de la crypte intestinale par Bioimpression J. Creff, A. Besson, R. Courson, S. Souleille, E. Trévisiol, J. Foncy, L.Malaquin Equipe ELiA - LAAS CNRS Equipe Cycle Cellulaire et Cancer - CRCT Matching Day «Techno & Cancer» - 14 septembre 2017 LAAS, Toulouse LAAS-CNRS / Laboratoire d analyse et d architecture des systèmes du CNRS Laboratoire conventionné avec l Université Fédérale de Toulouse Midi-Pyrénées

2 Microenvironment models for cell culture What is needed : 3D topography Porosity Stiffness Cell heterogeneity Environment control Vascular network

3 Microenvironment models for cell culture Pati, F.; Gantelius, J.; Svahn, H. A. 3D Bioprinting of Tissue/Organ Models. Angew. Chemie Int. Ed. 2016, 55, Drawbacks of recent tissue/organ models Multistep fabrication methods Limited cell viability and functionality Missing complex and hierarchical tissue structure Missing 3D structure in the case of biochips Large variation in results obtained from animal studies Incapability of animal models to reproduce features of human tissues and organs Tightening controls on use of animals for scientific experimentation D. Ingber, Lab On chip 2012

4 Bioprinting Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology Wang, J., et al. (2014). Phage Nanofibers Induce Vascularized Osteogenesis in 3D Printed Bone Scaffolds. Advanced Materials. d e Kolesky, D. B. et al. (2014). 3D Bioprinting of Vascularized, Heterogeneous Cell Laden Tissue Constructs. Advanced Materials, 26(19), Mannoor, M. S. et al. (2013). 3D printed bionic ears. Nano letters, 13(6),

5 What a 3D printer can do Macro Micro Nano Cell and Tissue Engineering MEMs Microfluidics

6 Architectures for Cell Colonization Multi photons Lithography 3D printing of artificial scaffolds Accardo, A.et al. Multiphoton Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization. Small 2017, (IP- Dip resist Nanoscribe) Seeding of N2A (Neuroblastoma Cells) A. Accardo Collaboration with Inserm TONIC U1214 Two scaf

7 3D Printing projects at LAAS MultiFAB Platform LAMP Light Assisted Microfluidic Printing High resolution 3D printing DILASE 3D Patnership with Kloé (Montpellier) Patent filed (LAAS CNRS TTT) Technical specifications : Technical specifications : - Targeted Resolution X,Y : 5um Targeted Resolution Z : 5-100um Laser Wavelength : 405 nm (50 mw) Samples size (10 x 10 x 5 cm - X,Y,Z) - Multimaterial (Microfluidic injection) Matrix or Cell printing Targeted Resolution X,Y : 20um Targeted Resolution Z : 5-500um Laser Wavelength : 405 nm (50 mw) Samples size (10 x 10 x 5 cm - X,Y,Z)

8 Tumor progression: influence of microenvironment In Vitro models for intestinal epithelium : CRCT ( A.Besson) Institut Curie (J.L. Viovy) / IRSD (A. Ferrand, N. Vergnolle) Van der Flier L.G. and Clevers H., Annue. Rev. Physiol, 2009 Tian H. et al, Nature, 2011 Van Landeghem L. et al, Am. J Physiol. Gastrointest. Liver Physiol, 2012 Clevers H., Cell, 2013 Barker N., Nature, 2014 p57 as an inhibitor of CDK (cyclin dependant kinase) Stem cell fate and proliferation

9 In Vitro models for intestinal epithelium 3D printing DS3000 (PU/PA Biocompatible photoresist)

10 In Vitro models for intestinal epithelium 3D printing DS3000 (PU/PA Biocompatible photoresist) PEG-DA (700) +Irgacure Acrylic acid

11 In Vitro models for intestinal epithelium 3D printing Improve adhesion : hydrogel mix PEG-DA acrylic acid + collagen 1 coating Ø With acrylic acid: cellular layer uniform and confluent Ø Without acrylic acid: weak adhesion, round cells and no confluence Ø Best adhesion: 40% PEG % acrylic acid mix

12 Selecting the right material to mimic ECM - PEGDA Hydrogels Β-catenin Phalloidin Hoescht/β-cat Hoescht/β-cat/ Phalloidin 40%PEG-DA % acrylic acid + Laminin 50µg/mL 40%PEG-DA % acrylic acid + fibronectin 250 µg/ml 40%PEG-DA % acrylic acid 40%PEG-DA700 + fibronectine 250µg/mL 40%PEG-DA700 Hoechst 33342

13 In Vitro models for intestinal epithelium 3D printing Improve adhesion : hydrogel mix PEG-DA acrylic acid + collagen I coating Two-photon confocal imaging A) B) Light sheet fluorescence microscopy (S. Allart, CPTP - Inserm) (LSFM) (J. Rouquette ITAV) 500µm

14 In Vitro models for intestinal epithelium Light sheet fluorescence microscopy Vili 500µm 200µm Crypt Structures (40 % PEGDA 700, 30% acrylic acid, 30% water/medium, 0,01% Irgacure et 1% fluorescent nanoparticles (300nm ).

15 Towards intestine epithelium Caco 2 cell culture ( J+4 ) Two-photon confocal imaging

16 Perspectives Intestinal model : Mimicking cell heterogenity (J. Creff, A. Besson CRCT, A. Ferrand, D. Hamel IRSD) Red particules contamination à Multimaterial printing à Cell viability à Cell lines / Human samples à Integration in microfluidic devices Hauteur des structures 100 µm In vitro models of bon marrow microenvironments. (F. Deschaseaux, L. Casteilla StromaLab, W. han, J. Camonis, Inst. Curie)

17 Acknowledgements LAAS CNRS E. Trévisiol, C. Vieu, J. Foncy, E. Dague (EliA Group) R. Courson (TEAM) S. Souleille, C. Blatché, X. Dollat, J. roux (I2C) CRCT A. Besson, J. creff IRSD U1220 A. Ferrand, N. Vergnolle Equipex LEAF A.M. Gué Cancéropôle GSO Oncodevice Project MultiFAB Project (Région Occitanie, Feder) HoliFAB Project (H2020) Stromalab L. Casteilla, F. Deschaseaux CPTP Platform (S. Allart) ITAV Platform (J. Rouquette)

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Prof. Steven S. Saliterman

Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Prof. Angela Panoskaltsis-Mortari s BMEn 5361, 3D Bioprinting Tissue engineering Bioprinting Design considerations

More information

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications

NanoFabrication Systems DPN. Nanofabrication Systems. A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning applications DPN Nanofabrication Systems A complete line of instruments and tools for micro and nanopatterning

More information

Workflow Spheroids: 3D tissue model in cancer research

Workflow Spheroids: 3D tissue model in cancer research Workflow Spheroids: 3D tissue model in cancer research Irmtraud Steinmetz Updated by: Marco Meijering Application Support Specialist EMEA 2D cell culture and animal models for Cancer research 2D- cell

More information

Corning Microplates for Microscopy and High Content Imaging. Improve results with microplates for high resolution cell imaging

Corning Microplates for Microscopy and High Content Imaging. Improve results with microplates for high resolution cell imaging Corning Microplates for Microscopy and High Content Imaging Improve results with microplates for high resolution cell imaging High Performance for Cell-based Assays Within the drug discovery process, high

More information

Supplementary Figure Legend

Supplementary Figure Legend Supplementary Figure Legend Supplementary Figure S1. Effects of MMP-1 silencing on HEp3-hi/diss cell proliferation in 2D and 3D culture conditions. (A) Downregulation of MMP-1 expression in HEp3-hi/diss

More information

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 Lecture 6: Biodegradable Polymers for Tissue Engineering Last time: Today: enzymatic degradation of solid polymers Engineering biological recognition of polymers Designing polymers for tissue engineering

More information

Printing of biochemically-patterned slides with the InnoStamp40 for deterministic cell immobilization.

Printing of biochemically-patterned slides with the InnoStamp40 for deterministic cell immobilization. Printing of biochemically-patterned slides with the InnoStamp40 for deterministic cell immobilization. Jean christophe CAU 1 1 Innopsys, Parc activestre, Carbonne France contact@innopsys.fr www.innopsys.com

More information

3D In Vitro Living Systems for Biological Application

3D In Vitro Living Systems for Biological Application 3D In Vitro Living Systems for Biological Application Hossein Hosseinkhani Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (TAIWAN TECH), Taipei, Taiwan

More information

Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota

Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Mimicking the fibrillar structure of the extracellular matrix is important for scaffolds. Clinical trails to date

More information

Methods in Bioengineering: 3D Tissue Engineering

Methods in Bioengineering: 3D Tissue Engineering Methods in Bioengineering: 3D Tissue Engineering Berthiaume, Francois ISBN-13: 9781596934580 Table of Contents Preface Chapter 1. Chemical Modification of Porous Scaffolds Using Plasma Polymers 1.1. Introduction

More information

Introduction to Nanotechnology

Introduction to Nanotechnology Introduction to Nanotechnology Textbook: Nanophysics and Nanotechnology by: Edward L. Wolf Instructor: H. Hosseinkhani E-mail: hosseinkhani@yahoo.com Classroom: A209 Time: Thursday; 13:40-16:30 PM Office

More information

UK +44 (0) CH +41 (0) DE +49 (0) US

UK +44 (0) CH +41 (0) DE +49 (0) US UK +44 (0) 1235 232100- CH +41 (0) 91 604 5522 - DE +49 (0) 69 779099 - US +1 855 267 2464 Featured Product Areas Stem Cell Fate Regulators and Synthetic Retinoid ec23 Recombinant Growth Factor Mimetics

More information

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

Applications of self-assembling peptides in controlled drug delivery

Applications of self-assembling peptides in controlled drug delivery Applications of self-assembling peptides in controlled drug delivery Sotirios Koutsopoulos, Ph.D. Problems associated with drug administration Drug concentration in blood C toxic C effective Time 1 The

More information

CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE

CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE CENTRE DE THÉRAPIE TISSULAIRE & CELLULAIRE CHALLENGES OF 3D BIOPRINTING IN CLINICAL PRACTICE Pr. D. Dufrane MD, PhD 3D-BIOPRINTING: MYTH OR REALITY? 2 REGENERATIVE MEDICINE FOR ORGAN AND TISSUE A LARGE

More information

Radius 24-Well Cell Migration Assay (Laminin Coated)

Radius 24-Well Cell Migration Assay (Laminin Coated) Product Manual Radius 24-Well Cell Migration Assay (Laminin Coated) Catalog Number CBA-125-LN 24 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Cell migration is a highly

More information

Radius 24-Well Cell Migration Assay (Fibronectin Coated)

Radius 24-Well Cell Migration Assay (Fibronectin Coated) Product Manual Radius 24-Well Cell Migration Assay (Fibronectin Coated) Catalog Number CBA-125-FN 24 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Cell migration is a highly

More information

9/15/2017. Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota

9/15/2017. Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Prof. Angela Panoskaltsis-Mortari s BMEn 5920, Special Topics in 3D Bioprinting Tissue engineering Pathway for bioprinting

More information

3D-Zellkulturgerüste für die biomedizinische Grundlagenforschung

3D-Zellkulturgerüste für die biomedizinische Grundlagenforschung 3D-Zellkulturgerüste für die biomedizinische Grundlagenforschung Zoologisches Institut, Fakultät für Chemie- und Biowissenschaften, Zell- und Neurobiologie KIT University of the State of Baden-Württemberg

More information

3D Laser Lithography in Biotechnology and Medical Technology

3D Laser Lithography in Biotechnology and Medical Technology 3D Laser Lithography in Biotechnology and Medical Technology High-Precision, Piezo-Based Nanopositioning Systems Advance Technology Page 1 of 6 Laser technology makes it possible to create even very complex

More information

??? Bioparc Bordeaux Métropole F Pessac CNRS. Poietis

??? Bioparc Bordeaux Métropole F Pessac  CNRS. Poietis ??? Bioparc Bordeaux Métropole F-33600 Pessac www.poietis.com 1 / 23 Company Profile Business: Provide patients and clinicians with Regenerative Medicine Therapies based on Laser-Assisted Bioprinting Overview

More information

3D Hyaluronan Hydrogels as Matrices for Spheroid Formation

3D Hyaluronan Hydrogels as Matrices for Spheroid Formation 3D Hyaluronan Hydrogels as Matrices for Spheroid Formation Baker, Alexander E.G. (University of Toronto) Tam, Roger Y. (University of Toronto) Muthuswamy, Senthil (University of Toronto) Shoichet, Molly

More information

Chitosan Thermogels for Local T Lymphocyte Delivery in Cancer Immunotherapy

Chitosan Thermogels for Local T Lymphocyte Delivery in Cancer Immunotherapy Chitosan Thermogels for Local T Lymphocyte Delivery in Cancer Immunotherapy Ceccaldi Caroline (Laboratory of Endovascular Biomaterials (LBeV), Montréal, QC, Canada.) Monette Anne (Laboratoire d'immuno-oncologie,

More information

ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS

ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS ISTINYE UNIVERSITY INSTITUTE OF HEALTH SCIENCES DEPARTMENT OF STEM CELL AND TISSUE ENGINEERING (THESIS) COURSE DESCRIPTIONS 1 st SEMESTER Adult Stem Cell Biology 5 ECTS In this course, the characteristics

More information

10:10-10:22. YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32

10:10-10:22. YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32 10:10-10:22 YIA-1 A study of newly established human peripheral blood monocyte-derived ips cell line used in allergy research 10:22-10:32 EPA-1 Integration of conventional cell viability assays- recruiting

More information

Micro-fabrication strategies to design stemcell instructive biomaterials for bone tissue engineering applications

Micro-fabrication strategies to design stemcell instructive biomaterials for bone tissue engineering applications Micro-fabrication strategies to design stemcell instructive biomaterials for bone tissue engineering applications Daniela Fernandes Coutinho Rui Reis, Nuno Neves and Manuela Gomes (UMinho) Ali Khademhosseini

More information

Lecture Outline. History. Purpose? Func:on of Bioscaffolds. Extracellular Matrix (ECM) 12/08/15

Lecture Outline. History. Purpose? Func:on of Bioscaffolds. Extracellular Matrix (ECM) 12/08/15 Associate Professor Rod Dilley Dr Rob Marano Ear Sciences Centre School of Surgery Harry Perkins Research Building 4 th Floor Lecture Outline History Purpose Functions Properties Approaches to bioscaffold

More information

Stem cells and tissue engineering

Stem cells and tissue engineering Stem cells and tissue engineering S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative

More information

Break the 3D barrier CORNING 3D CELL CULTURE

Break the 3D barrier CORNING 3D CELL CULTURE Break the 3D barrier VESSELS SURFACES MEDIA CORNING 3D CELL CULTURE Get there fast with 3D cell culture. Whether you re just getting started in 3D cell culture, looking for proven ways to scale up, or

More information

Cell-Environment Interactions. Chieh-Chun Chen

Cell-Environment Interactions. Chieh-Chun Chen Cell-Environment Interactions Chieh-Chun Chen Part 1: Soft Lithography in Biology and Biochemistry Chieh-Chun Chen Outlines Introduction Key features of soft lithography Applications In microscopic biochemical

More information

Your Power for Health. Magnetic cell culturing. The n3d approach

Your Power for Health. Magnetic cell culturing. The n3d approach Magnetic cell culturing The n3d approach Greiner Bio-One GmbH November 2015 Agenda CELLSTAR cell-repellent surface for 3D cell culture Magnetic cell culturing The n3d approach Applications Products / Info

More information

Cellular repair of damaged organs. Repopulating scaffoldings in kidney and liver

Cellular repair of damaged organs. Repopulating scaffoldings in kidney and liver Cellular repair of damaged organs Repopulating scaffoldings in kidney and liver Mireia Caralt, MD PhD Servei Cirurgia HBP i Trasplantaments March 29, 2017 Introduction Strategies to increase the number

More information

NanoCulture Plate. Innovative Scaffold-based 3-Dimensional Cell Culture System for Oncology Drug Discovery

NanoCulture Plate. Innovative Scaffold-based 3-Dimensional Cell Culture System for Oncology Drug Discovery NanoCulture Plate Innovative Scaffold-based 3-Dimensional Cell Culture System for Oncology Drug Discovery What is 3D Cell Culture? Three-dimensional (3D) culture is an established method to form multi-cellular

More information

3D Transfection System

3D Transfection System 3D Transfection System Why 3D Technology? Introduction to Three Dimensional (3D) Cell Culture The goal of three-dimensional (3D) cell culture is to eliminate the stress and artificial responses cells experience

More information

Tissue Engineering: The art of growing body parts. Robby Bowles, Ph.D Cornell University

Tissue Engineering: The art of growing body parts. Robby Bowles, Ph.D Cornell University Tissue Engineering: The art of growing body parts Robby Bowles, Ph.D Cornell University What is Tissue Engineering? What is Tissue Engineering? TE is an interdisciplinary field that applies the principles

More information

PRODUCT DESCRIPTION. Ordyl SY 300 could be used for sealing application, due to the capability to be pressed together with a top plate.

PRODUCT DESCRIPTION. Ordyl SY 300 could be used for sealing application, due to the capability to be pressed together with a top plate. ORDYL SY 300 PRODUCT DATA SHEET Edition 06 12 March 2018 PRODUCT DESCRIPTION Ordyl SY 300 is a solvent type permanent dry film for special MEMS applications. The Ordyl SY 300 in connection with his auxiliary

More information

Cancer Cell Scaffold. Josh Kolz, Sarah Sandock, Vivian Chen, Sarah Czaplewski, Vanessa Grosskopf

Cancer Cell Scaffold. Josh Kolz, Sarah Sandock, Vivian Chen, Sarah Czaplewski, Vanessa Grosskopf Cancer Cell Scaffold Josh Kolz, Sarah Sandock, Vivian Chen, Sarah Czaplewski, Vanessa Grosskopf Outline Background Bioreactor Cell Scaffold MRI Cancer cells Motivation Design Criteria Alternatives Matrix

More information

High-throughput three-dimensional (3D) lithographic microfabrication in biomedical applications

High-throughput three-dimensional (3D) lithographic microfabrication in biomedical applications High-throughput three-dimensional (3D) lithographic microfabrication in biomedical applications The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Using Three-dimensional Polystyrene (PS) Insert to Produce Tumor Spheroids

Using Three-dimensional Polystyrene (PS) Insert to Produce Tumor Spheroids Using Three-dimensional Polystyrene (PS) Insert to Produce Tumor Spheroids Caicedo-Carvajal, CE., Zhang, A., Sridharan, A, and Q., Liu. 3D Biotek 675 US Highway One, North Brunswick, NJ, 08902 Abstract

More information

Cross-Linker Modulation to Maintain Phenotype of RGD-Alginate-Embedded Mesenchymal Stem Cells

Cross-Linker Modulation to Maintain Phenotype of RGD-Alginate-Embedded Mesenchymal Stem Cells Cross-Linker Modulation to Maintain Phenotype of RGD-Alginate-Embedded Mesenchymal Stem Cells Ashley B. Allen, Hazel Y. Stevens, Robert E. Guldberg. Georgia Institute of Technology, Atlanta, GA, USA. Disclosures:

More information

Additive Manufacturing in Horizon 2020

Additive Manufacturing in Horizon 2020 Additive Manufacturing in Horizon 2020 AMEF Event Brussels, 9 November 2016 José-Lorenzo Vallés Industrial technologies DG Research and Overview: Potential of Additive Manufacturing (AM) AM in EU Research

More information

IK4 BIOTECHNOLOGY & BIOMATERIALS. Research Alliance.

IK4 BIOTECHNOLOGY & BIOMATERIALS. Research Alliance. IK4 Research Alliance BIOTECHNOLOGY & BIOMATERIALS www.ik4.es BIOTECHNOLOGY AND BIOMATERIALS, CROSS-CUTTING TECHNOLOGIES The biotechnology and biomaterials fields are characterised by the fact that they

More information

A Comparative Study of Upconverting Nanoparticles Versus Lentiviral GFP Transduction for Labeling Mesenchymal Stem Cells

A Comparative Study of Upconverting Nanoparticles Versus Lentiviral GFP Transduction for Labeling Mesenchymal Stem Cells A Comparative Study of Upconverting Nanoparticles Versus Lentiviral GFP Transduction for Labeling Mesenchymal Stem Cells Artem Kutikov, B.S., Liang Zhao, Gang Han, Ph.D., Jie Song, Ph.D.. University of

More information

Pittsburgh Tissue Engineering Initiative Annual Progress Report: 2011 Formula Grant

Pittsburgh Tissue Engineering Initiative Annual Progress Report: 2011 Formula Grant Pittsburgh Tissue Engineering Initiative Annual Progress Report: 2011 Formula Grant Reporting Period July 1, 2012 December 31, 2012 Formula Grant Overview The Pittsburgh Tissue Engineering Initiative received

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

Factors to Consider When Choosing Cell- Based Assays for Use with 3D Cultures

Factors to Consider When Choosing Cell- Based Assays for Use with 3D Cultures Factors to Consider When Choosing Cell- Based Assays for Use with 3D Cultures Corning Webinar December 16, 2014 Terry.riss@Promega.com 2012, Promega Corporation. Outline Justification for using 3D cell

More information

Multi-photon Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell. Colonization

Multi-photon Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell. Colonization Multi-photon Direct Laser Writing and D Imaging of Polymeric Freestanding Architectures for Cell Colonization Angelo Accardo, Charline Blatché, Rémi Courson, Isabelle Loubinoux, Christophe Thibault, Laurent

More information

A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING

A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING A NANOFIBROUS HYDROGEL FOR BONE TISSUE ENGINEERING Umadevi Kandalam, PhD Assistant Professor Department of Pediatric Dentistry College of Dental Medicine Nova Southeastern University Fort Lauderdale, Florida

More information

Printing Functional Materials

Printing Functional Materials Printing Functional Materials Jennifer A. Lewis and Scott C. Slimmer Harvard School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering jalewis@seas.harvard.edu New

More information

In Vitro Angiogenesis Assay Kit

In Vitro Angiogenesis Assay Kit In Vitro Angiogenesis Assay Kit Catalog Number KA1323 100 assays Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 Principle of the Assay...

More information

Active nanomaterials for biomedical applications

Active nanomaterials for biomedical applications Engineering Conferences International ECI Digital Archives Nanotechnology in Medicine: From Molecules to Humans Proceedings 7-6-2016 Active nanomaterials for biomedical applications Gianni Ciofani Italian

More information

APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications. Physical and Fluorescence Properties

APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications. Physical and Fluorescence Properties APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications Fluorescent nanodiamonds (FNDs) offer a unique alternative to currently existing fluorescent biomarkers. With exceptional photo

More information

Growth factor delivery

Growth factor delivery Growth factor delivery S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative of IITs

More information

Regenovo 3D Bioprinter. Beyond imagination Print future

Regenovo 3D Bioprinter. Beyond imagination Print future Regenovo 3D Bioprinter Beyond imagination Print future Features: The introduction of : Regenovo Biotechnology Co.,Ltd. is a high-tech enterprises that provide professional integrated solutions in 3D printing

More information

3D printed Nanocellulosic materials and their composite

3D printed Nanocellulosic materials and their composite 3D printed Nanocellulosic materials and their composite By Vincent Li 1, 2 Advised by Professor H.Qi 1,3, and Professor Y. Deng 1, 2 1 Renewable Bioproducts Institute 2 School of Chemical and Biomolecular

More information

The Effects of Scaffold Rigidity on Retinal Pigment Epithelial Cells. Corina White Symposium on Biomaterials Science 24 October 2016

The Effects of Scaffold Rigidity on Retinal Pigment Epithelial Cells. Corina White Symposium on Biomaterials Science 24 October 2016 The Effects of Scaffold Rigidity on Retinal Pigment Epithelial Cells Corina White Symposium on Biomaterials Science 24 October 2016 Background Physiology The retina is the light-responsive tissue layer

More information

Microfabricated Platforms for Microbiome Culture: From Artificial Mouths to Guts

Microfabricated Platforms for Microbiome Culture: From Artificial Mouths to Guts Microfabricated Platforms for Microbiome Culture: From Artificial Mouths to Guts Dr. Todd Thorsen MIT Lincoln Laboratory 13 September, 2018 This material is based upon work supported by the Assistant Secretary

More information

Three-Dimensional Laser Writing on the Nanometer Scale

Three-Dimensional Laser Writing on the Nanometer Scale Three-Dimensional Laser Writing on the Nanometer Scale Piezo Drives are Driving Technology Forward Page 1 of 5 The best possible positioning accuracy is now mandatory in many fields of application. The

More information

Tissue engineering. Langer R, Vacanti JP. Tissue engineering. Science 1993, 260(5110),

Tissue engineering. Langer R, Vacanti JP. Tissue engineering. Science 1993, 260(5110), Biofabrication Tissue engineering an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve

More information

Patterning of PEG-based Hydrogels - Engineering Spatial Complexity

Patterning of PEG-based Hydrogels - Engineering Spatial Complexity Page 1 of 5 Page 1 of 5 Return to Web Version Patterning of PEG-based Hydrogels - Engineering Spatial Complexity By: Mariah S. Hahn, Material Matters 2010, 5.3, 62. Department of Chemical Engineering,

More information

Fabrication of micro/nano structures in glass by lasers

Fabrication of micro/nano structures in glass by lasers Lehigh University Lehigh Preserve International Workshop on Scientific Challenges for Glass Research Glass Conferences and Workshops Spring 4-1-2007 Fabrication of micro/nano structures in glass by lasers

More information

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V Cellular imaging using Nano- Materials A Case-Study based approach Arun Murali, Srivats V Agenda Discuss a few papers Explain a couple of new imaging techniques and their benefits over conventional imaging

More information

The Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating

The Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Supporting Information The Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment Ana Espinosa, Riccardo

More information

3D Cell Culture Product Intro. Bio-Byblos Biomedical

3D Cell Culture Product Intro. Bio-Byblos Biomedical 3D Cell Culture Product Intro Bio-Byblos Biomedical Rundown Product Intro Cellusponge Series Go Matrix Applications Upcoming Products Degradable series Cellusponge CB series Cell Alignment plate Vivoalign

More information

Fabrication of Hydrogels with Controllable Heterogeneity in Stiffness

Fabrication of Hydrogels with Controllable Heterogeneity in Stiffness Fabrication of Hydrogels with Controllable Heterogeneity in Stiffness Project Number: QW1-1302 A Major Qualifying Project Report: Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial

More information

Artificial blood vessels

Artificial blood vessels Artificial blood vessels S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative of

More information

Active biomaterials/scaffolds for stem cell-based soft tissue engineering (in a nutshell )

Active biomaterials/scaffolds for stem cell-based soft tissue engineering (in a nutshell ) Active biomaterials/scaffolds for stem cell-based soft tissue engineering (in a nutshell ) Emanuele Giordano Responsabile Lab ICM BioEngLab DEI CIRI SdV-TS Università di Bologna emanuele.giordano@unibo.it

More information

Guiding Stem Cell Fate through Microfabricated Environments

Guiding Stem Cell Fate through Microfabricated Environments 4 Guiding Stem Cell Fate through Microfabricated Environments Lisa R. Trump, Gregory Timp, and Lawrence B. Schook CONTENTS 4.1 Introduction... 107 4.2 Three-Dimensional Environments and the Stem Cell Niche...

More information

Bioreactors in tissue engineering

Bioreactors in tissue engineering Bioreactors in tissue engineering S. Swaminathan Director Centre for Nanotechnology & Advanced Biomaterials School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Tamil Nadu Joint Initiative

More information

The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial

The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial Introduction to the BioFlux System Enables live-cell assays with precisely-controlled shear flow

More information

Rolling, Adhesion and Migration Assay Using SynRAM Idealized Network Kits and Chips Technical Manual Catalog #s , , SR

Rolling, Adhesion and Migration Assay Using SynRAM Idealized Network Kits and Chips Technical Manual Catalog #s , , SR Rolling, Adhesion and Migration Assay Using SynRAM Idealized Network Kits and Chips Technical Manual Catalog #s 401002, 401001, 102008-SR Schematic of the SynRAM model Chip. Vascular channels are for culture

More information

N-Lab. Extend your research. New generation label-free surface analysis system

N-Lab. Extend your research. New generation label-free surface analysis system N-Lab Extend your research New generation label-free surface analysis system SEEC technique Application areas A NEW WAY TO ANALYSE YOUR SAMPLE! SEEC* technique is a label free quantitative imaging technique

More information

Providing Technical Solutions for Biological Processes and Medical Devices

Providing Technical Solutions for Biological Processes and Medical Devices Cooperations, clients and partners Our R&D services range from strategic background research and bilateral industrial projects to the coordination of industrial project consortia in, for instance, joint

More information

What is a scaffold? A 3D structure which supports 3D tissue growth

What is a scaffold? A 3D structure which supports 3D tissue growth LO SCAFFOLD Outline Scaffold definition Scaffold requirements History of scaffold fabrication New approaches in scaffold design: Bioprinting, Nano-in-Micro Scaffold characterisation What is a scaffold?

More information

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures Supplementary Material (ESI) for Lab on a Chip This journal is The Royal Society of Chemistry 2008 A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound

More information

Tissue Engineering and Regenerative Medicine

Tissue Engineering and Regenerative Medicine Tissue Engineering and Regenerative Medicine NIH Center for Engineering Complex Tissues (CECT) June 8, 2018 Bhushan Mahadik, Ph.D. Assistant Director, CECT University of Maryland Regenerative Medicine

More information

Organic Thin Films Laboratory (OTFL), Hanyang University

Organic Thin Films Laboratory (OTFL), Hanyang University Organic Thin Films Laboratory (OTFL), Hanyang University Prof. Haiwon Lee (haiwon@hanyang.ac.kr) Department of Chemistry Hanyang University Distinguished Professor Director of Asian Research Network Program

More information

High-Throughput Method for Microfluidic Placement of Cells in Micropatterned Tissues

High-Throughput Method for Microfluidic Placement of Cells in Micropatterned Tissues High-Throughput Method for Microfluidic Placement of Cells in Micropatterned Tissues Emily N. Sevcik Faculty Mentor: Patrick W. Alford Undergraduate Research Opportunities Program Project Final Report

More information

NV High Brightness Series

NV High Brightness Series PRODUCT SHEET Rev. 8/17, v9 NV High Brightness Series The NV-High Brightness Series features fluorescent nanodiamonds ranging in size from 20 nm up to 150µm containing nitrogen vacancy (NV) centers with

More information

Biomaterials in bone tissue regeneration and biofabrication: advances and challenges. Aldo R. Boccaccini

Biomaterials in bone tissue regeneration and biofabrication: advances and challenges. Aldo R. Boccaccini Biomaterials in bone tissue regeneration and biofabrication: advances and challenges Aldo R. Boccaccini Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen-Nuremberg

More information

Soft Fabrication and Polymers

Soft Fabrication and Polymers Introduction to BioMEMS & Medical Microdevices Soft Fabrication and Polymers Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ R012408

More information

Development of new polymeric biomaterials for in vitro and in vivo liver reconstruction

Development of new polymeric biomaterials for in vitro and in vivo liver reconstruction SIXTH FRAMEWORK PROGRAMME PRIORITY 3 NMP- Nanotechnology and nano sciences, knowledge-based multifunctional materials and new production processes and devices Development of new polymeric biomaterials

More information

xcelligence system Real time, label free, cells analysis Riccardo Pasculli Field Application Specialist

xcelligence system Real time, label free, cells analysis Riccardo Pasculli Field Application Specialist xcelligence system Real time, label free, cells analysis Riccardo Pasculli Field Application Specialist GSM: +420 731 127 717 E-mail: pasculli@accela.eu Agenda Technology concept and advantages Applications

More information

magnetic micro- and nanoparticles

magnetic micro- and nanoparticles micromod Partikeltechnologie GmbH modular designed Technological Applications Publications and Reviews magnetic micro- and nano Implementation in Life Sciences Product overview 10 nm 100 nm 1 µm 10 µm

More information

Rolling, Adhesion and Migration Assay Using SynRAM Microvascular Network Kits and Chips Technical Manual Catalog #s , , SR

Rolling, Adhesion and Migration Assay Using SynRAM Microvascular Network Kits and Chips Technical Manual Catalog #s , , SR Rolling, Adhesion and Migration Assay Using SynRAM Microvascular Network Kits and Chips Technical Manual Catalog #s 401004, 401003, 105001-SR Tissue Compartment Vascular Channel Overview of Assay Immune

More information

Contents. The Right Surface for Every Cell Extracellular Matrices and Biologically Coated Surfaces ECM Mimetic and Advanced Surfaces...

Contents. The Right Surface for Every Cell Extracellular Matrices and Biologically Coated Surfaces ECM Mimetic and Advanced Surfaces... Contents The Right Surface for Every Cell... 1 Extracellular Matrices and Biologically Coated Surfaces... 2 Corning Matrigel Matrix... 2 Corning BioCoat Cultureware... 3 ECM Mimetic and Advanced Surfaces...

More information

CytoSelect 48-Well Cell Adhesion Assay (ECM Array, Fluorometric Format)

CytoSelect 48-Well Cell Adhesion Assay (ECM Array, Fluorometric Format) Product Manual CytoSelect 48-Well Cell Adhesion Assay (ECM Array, Fluorometric Format) Catalog Number CBA-071 CBA-071-5 48 assays 5 x 48 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures

More information

Supporting informations

Supporting informations Supporting informations Microfluidic with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells Yadong Tang 1+, Jian Shi 2+, Sisi Li 1, Li

More information

Kieran McGourty, PhD. Short BIO. Long BIO

Kieran McGourty, PhD. Short BIO. Long BIO Kieran McGourty, PhD Lecturer in Biochemistry and Cell Biology, Department of Chemical Sciences University of Limerick, Ireland Short BIO Kieran did his PhD and his Post-Doctoral scientific training in

More information

Chapter 8. Comparison of static vs dynamic culture

Chapter 8. Comparison of static vs dynamic culture Chapter 8 Comparison of static vs dynamic culture 8.1. Literature Review Articular cartilage is a load-bearing connective tissue in which its functions not only transmitting the compressive joint loads

More information

Immunofluorescence of organoids embedded in Basement Membrane Matrix

Immunofluorescence of organoids embedded in Basement Membrane Matrix Immunofluorescence of organoids embedded in Basement Membrane Matrix Sol Degese 1, Gabe Benton 1 1 Organoid Resource Lab (ORL), Trevigen, Inc., 8405 Helgerman Court, Gaithersburg, MD 20877 Introduction

More information

GENERATION OF AN ACCESSIBLE AND VERSATILE MICRO-HYPOXIA CHAMBER

GENERATION OF AN ACCESSIBLE AND VERSATILE MICRO-HYPOXIA CHAMBER GENERATION OF AN ACCESSIBLE AND VERSATILE MICRO-HYPOXIA CHAMBER Client: Professor Brenda Ogle Advisor: Dr. John Puccinelli Roland Pomfret [Team Leader] Sarvesh Periyasamy [BWIG] Jiaquan (Jason) Yu [Communicator]

More information

Real-Time Multiplex Kinase Phosphorylation Sensors in Living Cells

Real-Time Multiplex Kinase Phosphorylation Sensors in Living Cells Real-Time Multiplex Kinase Phosphorylation Sensors in Living Cells Nur P. Damayanti 1,2,5, Kevin Buno 3, Yi Cui 1,2,6, Sherry L. Voytik-Harbin 2-4, Roberto Pili 5, Jennifer Freeman 7 Joseph M. K. Irudayaraj

More information

applications J.C. Huang 1, J.S.C. Jang 2, C.H. Lin 1, C.H. Chen 3, C.H. Huang 1, R.F. Chuang 1 National Sun Yat-Sen University

applications J.C. Huang 1, J.S.C. Jang 2, C.H. Lin 1, C.H. Chen 3, C.H. Huang 1, R.F. Chuang 1 National Sun Yat-Sen University Ti and Ta based metallic glasses for biomedical applications J.C. Huang 1, J.S.C. Jang 2, C.H. Lin 1, C.H. Chen 3, C.H. Huang 1, R.F. Chuang 1 1 National Sun Yat-Sen University 2 National Central University

More information

Building the Europe of Knowledge

Building the Europe of Knowledge Building the Europe of Knowledge 7 th Framework Programme 2007-2013 Nanotechnology! All information preliminary! FP7 1. Capacities: Infrastructures 2. People: Erasmus, Marie-Curie 3. Ideas: ERC 4. Cooperation:

More information

Looking Ahead: The Bio-Artificial Kidney

Looking Ahead: The Bio-Artificial Kidney Looking Ahead: The Bio-Artificial Kidney Teja Guda, PhD Assistant Professor, Department of Biomedical Engineering Assistant Director, Center for Innovation Technology and Entrepreneurship University of

More information

A MICROFLUIDICS TOOL FOR HIGH-THROUGHPUT, REAL-TIME MULTIMODAL IMAGING OF NANOPARTICLE-CELL INTERACTIONS C. A.

A MICROFLUIDICS TOOL FOR HIGH-THROUGHPUT, REAL-TIME MULTIMODAL IMAGING OF NANOPARTICLE-CELL INTERACTIONS C. A. Cunha-Matos, C. A. and Millington, O. M. and Wark, A. W. and Zagnoni, M. (2014) A microfluidics tool for high-throughput, real-time multimodal imaging of nanoparticle-cell interactions. In: 4th European

More information

Radius 384-Well Cell Migration Assay

Radius 384-Well Cell Migration Assay Product Manual Radius 384-Well Cell Migration Assay Catalog Number CBA-127 CBA-127-5 384 assays 5 x 384 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Cell migration is

More information

R03 NIH Grant Proposal 3-Dimensional Scaffold-Tissue Construct Bioprinting

R03 NIH Grant Proposal 3-Dimensional Scaffold-Tissue Construct Bioprinting R03 NIH Grant Proposal 3-Dimensional Scaffold-Tissue Construct Bioprinting Chemical Engineering 590B April 23, 2013 Specific Aims A paramount issue addressed by the tissue engineering field is the limited

More information