On the sequence specificity of apoptotic nucleases. Haifa-NP 2012

Size: px
Start display at page:

Download "On the sequence specificity of apoptotic nucleases. Haifa-NP 2012"

Transcription

1 Max Planck Institute of Psychiatry Munich Germany On the sequence specificity of apoptotic nucleases Haifa-NP 2012 Thomas ettecken

2 Nucleosomes and Chromatin DNA in the nucleus is packaged into nucleosomes

3 Human Karyotype 46 XY Giemsa (etc) banding pattern is characteristic for each chromosome. anding pattern is depending on chromatin density, associated proteins,... and probably also on nucleosome positioning/density.

4 Our today s knowledge on nucleosome positioning: Nucleosome positioning is more not random than random There is at least some evident DNA sequence dependence (strong/weak nucleosomes, nucleosome free regions) Methylated cytosines modulate/attenuate nucleosomal strength There are positioning factors (proteins), probably preferably located at specific DNA sequences

5 efore going to apoptotic nucleases: Small bioinformatic excursion to the 10.4 bp dinucleotide periodicity

6 from Trifonov and Sussman PNAS 1980

7 Autocorrelation calculations, here for AA dinucleotides, in a window of 50 bases: GACGAAGTGCTAATCGTAGATAGTAAGCTAGCTAAGCGATGTCGATCAAGCTAGC Smoothing over 3 bases = Averaging over 3 consecutive entries (sliding window)

8 Data calculated from ~ bases of sequence from ~25 different eukaryotic organisms

9 Positional Autocorrelation of Dinucleotides in Several Genomes S. cerevisiae C. elegans A. thaliana D. rerio C. albicans D. melanogaster A. mellifera A. gambiae C. reinhardthii G. gallus D. discoideum H. sapiens M. musculus AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT Calculation of the positional autocorrelation of all 16 dinucleotides on the generic genomic sequence (as deposited in the database) For H. sapiens only: Repeats masked (hg18, masked ) In a window of 150 bases Smoothing over 3 bases

10 Autocorrelation of dinucleotides in selected eukaryotic organisms

11 Autocorrelation of dinucleotides in several eukaryotic organisms

12 Each one of the 16 dinucleotides has been found at least once to be positioned with a periodicity of 10.4 bases

13 ApiMel N all CG distances in interval, smoothened (3 bases)

14 CG dinucleotide periodicities in the human genome hg18 hg18 masked (repeats masked)

15 Summary 10.4 bp Dinucleotide Periodicities Each one of the 16 dinucleotides shows a 10.4 base periodicity in at least one of the 13 genomes. CG in A. mellifera shows the most prominent signal of all. CG is the only dinucleotide showing a 10.4 base periodicity in H. sapiens (only on the sequence with repeats masked). New aspect of SNPs: Every SNP is part of 2 dinucleotides (.T[C/A]G...), modulating the dinucleotides' periodicities.

16 Apoptosis Short definition: Programmed cell death and debris clearance, essential for development and maintenance of an organism. thb A definition a little longer: Apoptosis is an evolutionarily conserved type of programmed cell death that is essential for development, homeostasis and self-defence against virus infection. Apoptosis is characterized by biochemical and morphological changes that include cellular and nuclear shrinkage, chromatin condensation, formation of apoptotic bodies, loss of microvilli and DNA fragmentation. Long from: Samejima Nature Rev Mol Cell iol (2005)

17 Apoptosis from: Samejima Nature Rev Mol Cell iol (2005)

18 _ DNA ladder, from DNA fragments produced by spontaneous apoptosis in human peripheral blood leukocytes Marker: Lambda/HindIII+EcoRI (21226, 5148/4973/4268, 3530, 2027, 1904, 1584, 1375, 947, 831 bp) + ~ 200 bp

19 Steps in Sample Preparation for Next Generation Sequencing 1. DNA Fragmentation to bp (or even more) 2. Adaptor Ligation 3. Size Selection of Ligated Products ( bp) 4. PCR Amplification ( cycles) 5. Sequencing

20 Analyzing on an Illumina GA II Flow Cell 1 Lane of a Flow Cell (smallest unit)

21 Entire dataset ~ 2 x 43.9 Million reads (forward + reverse) After quality filtering q20p98 ~ 2 x 30.3 Million reads ~ 30.3 Mio x 170 bases = ~ 5.1 Gbases (nominally 1.6 x coverage of the human genome) Ideal (2 x coverage) 120 bases more realistic

22 Determining the Fragment Lengths There are 2 ways to calculate the fragment lengths: 1. from the mapping positions ( TLEN ) 2. from the overlap of forward and reverse reads, 120 bases each, SHERA ) ~145 - ~210 basepairs centered at about 170 basepairs

23 ase counts in the positions of reads

24 ase bias extending 5' to the reads

25 ase bias extending 5' to the reads

26 Consensus Consensus sequence at the cleavage site: TAAAgT ' AcTTTA

27 Nucleosome positioning patterns, species: C C C C C C GRAAA GGGGG TTTYC CCccc G G G G G G Y RRRRR YYYYY R species authors method C. elegans Gabdank, 2009 A C. elegans Rapoport, 2011 A. gambiae C. albicans D. melanogaster S. cerevisiae A. mellifera A. thaliana D. discoideum D. rerio G. gallus H. sapiens M. musculus C. reinhardtii consensus A signal regeneration, nucleosome database Shannon N-gram extension, whole genome Slide is courtesy of Ed Trifonov 2012

28 Nucleosome positioning patterns, species: C C C C C C GRAAA GGGGG TTTYC CCccc G G G G G G Y RRRRR YYYYY R species authors method C. elegans Gabdank, 2009 A C. elegans Rapoport, 2011 A. gambiae C. albicans D. melanogaster S. cerevisiae A. mellifera A. thaliana D. discoideum D. rerio G. gallus H. sapiens M. musculus C. reinhardtii consensus T AAAgT AcTTT A Consensus of cut sites Y RRRRY RYYYY R above, in RY

29 10 Most Frequent Hexanucleotides at the Cut Sites Hexanucleotide Count in Pos 1 to 6 Count in Pos 51 to 56 Ratio ACTTTA ,4 ACTTTT CATTTA ,4 ATTTTA ,6 ACTTTG ,6 CATTCA ,4 CATTTT CCTTTA ,1 ACTTTA ,2 ACTGCA ,8...

30 Confirmed Nucleosome Positioning Signals 1. Ins ide the nucleos ome 1.1 In eukaryotes...aannnnnnnaannnnnnnnnaa......acnnnnnnnnacnnnnnnnnac......agnnnnnnnnagnnnnnnnag......tgnnnnnnntgnnnnnnnnntg......ttnnnnnnnnttnnnnnnnntt In humans...cgnnnnnnnncgnnnnnnnncg Outs ide the nucleos ome 1.1 In humans...taaagtacttta bp...taaagtacttta... This list does not claim to be comprehensive

31 Summary Apoptotic Nucleases - Apoptotic DNAses seem to have a high sequence specificity, contrary to what has been reported before. - The base bias at the cut site is extending as the almost exact reverse complementary sequence into the 5' direction. - A consensus of TAAAgT'AcTTTA can be derived, reminding of a restriction endonuclease recognition site. - ut not a single hexanucleotide motif exceeds ~1% of frequency at the cut site. - Probably, the pattern we observe, is a superposition of several/many DNA motifs. The cleavage sites at different motifs, when packed in chromatin, maybe look highly similar to the nuclease(s). - Our findings may have impact on research in autoimmune diseases (e.g. Lupus/SLE, Rheumatoid Arthritis, ).

32 Thank you! I would like to acknowledge collaboration and help with sample preparation and DNA sequencing: Zakharia Frenkel Edward Trifonov MPIP Munich Stefan Darchinger Saleem Halteh Institute of Evolution Haifa Sagi Snir CCG-Cologne Center for Genomics, Köln Christian ecker Janine Altmüller Susanne Motameny Peter Frommolt Peter Nürnberg This work is in press in the Journal of iomolecular Structure and Dynamics

DNA sequence and chromatin structure. Mapping nucleosome positioning using high-throughput sequencing

DNA sequence and chromatin structure. Mapping nucleosome positioning using high-throughput sequencing DNA sequence and chromatin structure Mapping nucleosome positioning using high-throughput sequencing DNA sequence and chromatin structure Higher-order 30 nm fibre Mapping nucleosome positioning using high-throughput

More information

Gene splice sites correlate with nucleosome positions

Gene splice sites correlate with nucleosome positions Gene splice sites correlate with nucleosome positions Simon Kogan and Edward N. Trifonov* Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel Abstract

More information

Computational gene finding

Computational gene finding Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) Lec 1 Lec 2 Lec 3 The biological context Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Computational gene finding

Computational gene finding Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) Lec 1 Lec 2 Lec 3 The biological context Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Chapter 10: Gene Expression and Regulation

Chapter 10: Gene Expression and Regulation Chapter 10: Gene Expression and Regulation Fact 1: DNA contains information but is unable to carry out actions Fact 2: Proteins are the workhorses but contain no information THUS Information in DNA must

More information

Applied Bioinformatics - Lecture 16: Transcriptomics

Applied Bioinformatics - Lecture 16: Transcriptomics Applied Bioinformatics - Lecture 16: Transcriptomics David Hendrix Oregon State University Feb 15th 2016 Transcriptomics High-throughput Sequencing (deep sequencing) High-throughput sequencing (also

More information

Supplementary Figures

Supplementary Figures Supplementary Figures A B Supplementary Figure 1. Examples of discrepancies in predicted and validated breakpoint coordinates. A) Most frequently, predicted breakpoints were shifted relative to those derived

More information

Figure S4 A-H : Initiation site properties and evolutionary changes

Figure S4 A-H : Initiation site properties and evolutionary changes A 0.3 Figure S4 A-H : Initiation site properties and evolutionary changes G-correction not used 0.25 Fraction of total counts 0.2 0.5 0. tag 2 tags 3 tags 4 tags 5 tags 6 tags 7tags 8tags 9 tags >9 tags

More information

Genome Sequence Assembly

Genome Sequence Assembly Genome Sequence Assembly Learning Goals: Introduce the field of bioinformatics Familiarize the student with performing sequence alignments Understand the assembly process in genome sequencing Introduction:

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. Part 1. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq Part 1 An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk http://bit.ly/bio2links

More information

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes

Chapter 17 Lecture. Concepts of Genetics. Tenth Edition. Regulation of Gene Expression in Eukaryotes Chapter 17 Lecture Concepts of Genetics Tenth Edition Regulation of Gene Expression in Eukaryotes Chapter Contents 17.1 Eukaryotic Gene Regulation Can Occur at Any of the Steps Leading from DNA to Protein

More information

Chapter 5 DNA and Chromosomes

Chapter 5 DNA and Chromosomes Chapter 5 DNA and Chromosomes DNA as the genetic material Heat-killed bacteria can transform living cells S Smooth R Rough Fred Griffith, 1920 DNA is the genetic material Oswald Avery Colin MacLeod Maclyn

More information

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies

Discovering gene regulatory control using ChIP-chip and ChIP-seq. An introduction to gene regulatory control, concepts and methodologies Discovering gene regulatory control using ChIP-chip and ChIP-seq An introduction to gene regulatory control, concepts and methodologies Ian Simpson ian.simpson@.ed.ac.uk bit.ly/bio2_2012 The Central Dogma

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: The proportion of somatic SNVs in each tumor is shown in a trinucleotide context. The data represent 31 exome-sequenced osteosarcomas. Note that the mutation

More information

Genetic characterization and polymorphism detection of casein genes in Egyptian sheep breeds

Genetic characterization and polymorphism detection of casein genes in Egyptian sheep breeds Genetic characterization and polymorphism detection of casein genes in Egyptian sheep breeds Othman E. Othman and Samia A. El-Fiky Cell Biology Department - National Research Center - Dokki - Egypt Corresponding

More information

Computational gene finding. Devika Subramanian Comp 470

Computational gene finding. Devika Subramanian Comp 470 Computational gene finding Devika Subramanian Comp 470 Outline (3 lectures) The biological context Lec 1 Lec 2 Lec 3 Markov models and Hidden Markov models Ab-initio methods for gene finding Comparative

More information

Targeted Sequencing Using Droplet-Based Microfluidics. Keith Brown Director, Sales

Targeted Sequencing Using Droplet-Based Microfluidics. Keith Brown Director, Sales Targeted Sequencing Using Droplet-Based Microfluidics Keith Brown Director, Sales brownk@raindancetech.com Who we are: is a Provider of Microdroplet-based Solutions The Company s RainStorm TM Technology

More information

High-throughput Transcriptome analysis

High-throughput Transcriptome analysis High-throughput Transcriptome analysis CAGE and beyond Dr. Rimantas Kodzius, Singapore, A*STAR, IMCB rkodzius@imcb.a-star.edu.sg for KAUST 2008 Agenda 1. Current research - PhD work on discovery of new

More information

High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit

High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit be INSPIRED drive DISCOVERY stay GENUINE TECHNICAL NOTE High-yield, Scalable Library Preparation with the NEBNext Ultra II FS DNA Library Prep Kit Improving performance, ease of use and reliability of

More information

The Biotechnology Toolbox

The Biotechnology Toolbox Chapter 15 The Biotechnology Toolbox Cutting and Pasting DNA Cutting DNA Restriction endonuclease or restriction enzymes Cellular protection mechanism for infected foreign DNA Recognition and cutting specific

More information

Branches of Genetics

Branches of Genetics Branches of Genetics 1. Transmission genetics Classical genetics or Mendelian genetics 2. Molecular genetics chromosomes, DNA, regulation of gene expression recombinant DNA, biotechnology, bioinformatics,

More information

Sequence Structure of Hidden 10.4-base Repeat in the Nucleosomes of C. elegans

Sequence Structure of Hidden 10.4-base Repeat in the Nucleosomes of C. elegans Open Access Article The authors, the publisher, and the right holders grant the right to use, reproduce, and disseminate the work in digital form to all users. Journal of Biomolecular Structure & Dynamics,

More information

Computational Genomics. Irit Gat-Viks & Ron Shamir & Haim Wolfson Fall

Computational Genomics. Irit Gat-Viks & Ron Shamir & Haim Wolfson Fall Computational Genomics Irit Gat-Viks & Ron Shamir & Haim Wolfson Fall 2015-16 1 What s in class this week Motivation Administrata Some very basic biology Some very basic biotechnology Examples of our type

More information

Supporting Information

Supporting Information Supporting Information Geggier and Vologodskii 10.1073/pnas.1004809107 SI Text Sequences of DNA Fragments Used in the Current Study. The sequence names correspond to those mentioned in the text. For each

More information

Introductory Next Gen Workshop

Introductory Next Gen Workshop Introductory Next Gen Workshop http://www.illumina.ucr.edu/ http://www.genomics.ucr.edu/ Workshop Objectives Workshop aimed at those who are new to Illumina sequencing and will provide: - a basic overview

More information

Kerkel et al., Supplementary Tables and Figures

Kerkel et al., Supplementary Tables and Figures Kerkel et al., Supplementary Tables and Figures Table S1. Summary of 16 SNP tagged loci from the combined 50K and 250K MSNP screens with independently validated ASM. PBL, total peripheral blood leukocytes;

More information

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction Lecture 8 Reading Lecture 8: 96-110 Lecture 9: 111-120 DNA Libraries Definition Types Construction 142 DNA Libraries A DNA library is a collection of clones of genomic fragments or cdnas from a certain

More information

Computational Systems Biology Deep Learning in the Life Sciences

Computational Systems Biology Deep Learning in the Life Sciences Computational Systems Biology Deep Learning in the Life Sciences 6.802 6.874 20.390 20.490 HST.506 Christina Ji April 6, 2017 DanQ: a hybrid convolutional and recurrent deep neural network for quantifying

More information

DNA Methylation Sequencing (Bisulfite-seq) Kunde Ramamoorthy Govindarajan (Govind)

DNA Methylation Sequencing (Bisulfite-seq) Kunde Ramamoorthy Govindarajan (Govind) DNA Methylation Sequencing (Bisulfite-seq) Kunde Ramamoorthy Govindarajan (Govind) Overview Importance of DNA methylation Bisulfite-seq Technology Mapping challenges QC & analysis workflow Case study:

More information

Authors: Vivek Sharma and Ram Kunwar

Authors: Vivek Sharma and Ram Kunwar Molecular markers types and applications A genetic marker is a gene or known DNA sequence on a chromosome that can be used to identify individuals or species. Why we need Molecular Markers There will be

More information

ORTHOMINE - A dataset of Drosophila core promoters and its analysis. Sumit Middha Advisor: Dr. Peter Cherbas

ORTHOMINE - A dataset of Drosophila core promoters and its analysis. Sumit Middha Advisor: Dr. Peter Cherbas ORTHOMINE - A dataset of Drosophila core promoters and its analysis Sumit Middha Advisor: Dr. Peter Cherbas Introduction Challenges and Motivation D melanogaster Promoter Dataset Expanding promoter sequences

More information

Accelerating Genomic Computations 1000X with Hardware

Accelerating Genomic Computations 1000X with Hardware Accelerating Genomic Computations 1000X with Hardware Yatish Turakhia EE PhD candidate Stanford University Prof. Bill Dally (Electrical Engineering and Computer Science) Prof. Gill Bejerano (Computer Science,

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

ChIP-seq data analysis with Chipster. Eija Korpelainen CSC IT Center for Science, Finland

ChIP-seq data analysis with Chipster. Eija Korpelainen CSC IT Center for Science, Finland ChIP-seq data analysis with Chipster Eija Korpelainen CSC IT Center for Science, Finland chipster@csc.fi What will I learn? Short introduction to ChIP-seq Analyzing ChIP-seq data Central concepts Analysis

More information

O C. 5 th C. 3 rd C. the national health museum

O C. 5 th C. 3 rd C. the national health museum Elements of Molecular Biology Cells Cells is a basic unit of all living organisms. It stores all information to replicate itself Nucleus, chromosomes, genes, All living things are made of cells Prokaryote,

More information

Control of Eukaryotic Genes

Control of Eukaryotic Genes Control of Eukaryotic Genes 2007-2008 The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

Additional levels of regulation

Additional levels of regulation Transcription Regulation And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) P. Matthias, May 26th, 2010 Additional levels of regulation Gene organization/localization Allelic exclusion AIRE: a

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Supplementary table 1: List of sequences of primers used in sequenom assay

Supplementary table 1: List of sequences of primers used in sequenom assay Supplementary table 1: List of sequences of primers used in sequenom assay SNP_ID 2nd-PCRP Sequence 1st-PCRP Sequence Allele specific (iplex) iplex primer primer Direction ROCK2 1 rs978906 ACGTTGGATGATAAAGCTCTCTCGGCAGTC

More information

Gene Regulation Biology

Gene Regulation Biology Gene Regulation Biology Potential and Limitations of Cell Re-programming in Cancer Research Eric Blanc KCL April 13, 2010 Eric Blanc (KCL) Gene Regulation Biology April 13, 2010 1 / 21 Outline 1 The Central

More information

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome

3. human genomics clone genes associated with genetic disorders. 4. many projects generate ordered clones that cover genome Lectures 30 and 31 Genome analysis I. Genome analysis A. two general areas 1. structural 2. functional B. genome projects a status report 1. 1 st sequenced: several viral genomes 2. mitochondria and chloroplasts

More information

Genomes: What we know and what we don t know

Genomes: What we know and what we don t know Genomes: What we know and what we don t know Complete draft sequence 2001 October 15, 2007 Dr. Stefan Maas, BioS Lehigh U. What we know Raw genome data The range of genome sizes in the animal & plant kingdoms!

More information

Transcription factor binding site prediction in vivo using DNA sequence and shape features

Transcription factor binding site prediction in vivo using DNA sequence and shape features Transcription factor binding site prediction in vivo using DNA sequence and shape features Anthony Mathelier, Lin Yang, Tsu-Pei Chiu, Remo Rohs, and Wyeth Wasserman anthony.mathelier@gmail.com @AMathelier

More information

Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes

Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes Supplementary Figure 1 Strategy for parallel detection of DHSs and adjacent nucleosomes DNase I cleavage DNase I DNase I digestion Sucrose gradient enrichment Small Large F1 F2...... F9 F1 F1 F2 F3 F4

More information

MassArray Analytical Tools

MassArray Analytical Tools MassArray Analytical Tools Reid F. Thompson and John M. Greally April 30, 08 Contents Introduction Changes for MassArray in current BioC release 3 3 Optimal Amplicon Design 4 4 Conversion Controls 0 5

More information

Functional Genomics II

Functional Genomics II Functional Genomics II Jay Hesselberth PhD University of Colorado SOM Biochemistry & Molecular Genetics jay.hesselberth@gmail.com Outline Tues, May. Definition. Yeast genome 3. Gene-centric resources and

More information

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun

The Journey of DNA Sequencing. Chromosomes. What is a genome? Genome size. H. Sunny Sun The Journey of DNA Sequencing H. Sunny Sun What is a genome? Genome is the total genetic complement of a living organism. The nuclear genome comprises approximately 3.2 * 10 9 nucleotides of DNA, divided

More information

Overview of Human Genetics

Overview of Human Genetics Overview of Human Genetics 1 Structure and function of nucleic acids. 2 Structure and composition of the human genome. 3 Mendelian genetics. Lander et al. (Nature, 2001) MAT 394 (ASU) Human Genetics Spring

More information

Nucleosome Positioning and Organization Advanced Topics in Computa8onal Genomics

Nucleosome Positioning and Organization Advanced Topics in Computa8onal Genomics Nucleosome Positioning and Organization 02-715 Advanced Topics in Computa8onal Genomics Nucleosome Core Nucleosome Core and Linker 147 bp DNA wrapping around nucleosome core Varying lengths of linkers

More information

Control of Eukaryotic Genes. AP Biology

Control of Eukaryotic Genes. AP Biology Control of Eukaryotic Genes The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? Evolution

More information

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits

Incorporating Molecular ID Technology. Accel-NGS 2S MID Indexing Kits Incorporating Molecular ID Technology Accel-NGS 2S MID Indexing Kits Molecular Identifiers (MIDs) MIDs are indices used to label unique library molecules MIDs can assess duplicate molecules in sequencing

More information

Biol 478/595 Intro to Bioinformatics

Biol 478/595 Intro to Bioinformatics Biol 478/595 Intro to Bioinformatics September M 1 Labor Day 4 W 3 MG Database Searching Ch. 6 5 F 5 MG Database Searching Hw1 6 M 8 MG Scoring Matrices Ch 3 and Ch 4 7 W 10 MG Pairwise Alignment 8 F 12

More information

earray 5.0 Create your own Custom Microarray Design

earray 5.0 Create your own Custom Microarray Design earray 5.0 Create your own Custom Microarray Design http://earray.chem.agilent.com earray 5.x Overview Session Summary Session Summary Agilent Genomics Microarray Solution earray Functional Overview Gene

More information

Vector Evolutionary Genomics

Vector Evolutionary Genomics Fine-scale Evolutionary Genetic Insights into Anopheles gambiae X-chromosome Understanding the genetic architecture of individual taxa of medical importance is the first step for designing disease preventive

More information

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA Molecular Cell Biology - Problem Drill 11: Recombinant DNA Question No. 1 of 10 1. Which of the following statements about the sources of DNA used for molecular cloning is correct? Question #1 (A) cdna

More information

Supplementary Material

Supplementary Material Reverse Transcriptase-Mediated Tropism Switching in Bordetella Bacteriophage Minghsun Liu, Rajendar Deora, Sergei R. Doulatov, Mari Gingery, Frederick A. Eiserling, Andrew Preston, Duncan J. Maskell, Robert

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Eukaryotic Genes 2007-2008 The BIG Questions n How are genes turned on & off in eukaryotes? n How do cells with the same genes differentiate to perform completely different, specialized functions?

More information

2/10/17. Contents. Applications of HMMs in Epigenomics

2/10/17. Contents. Applications of HMMs in Epigenomics 2/10/17 I529: Machine Learning in Bioinformatics (Spring 2017) Contents Applications of HMMs in Epigenomics Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2017 Background:

More information

FUNCTIONAL BIOINFORMATICS

FUNCTIONAL BIOINFORMATICS Molecular Biology-2018 1 FUNCTIONAL BIOINFORMATICS PREDICTING THE FUNCTION OF AN UNKNOWN PROTEIN Suppose you have found the amino acid sequence of an unknown protein and wish to find its potential function.

More information

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology

Unit 7. Genetic Regulation, Development, and Biotechnology. AP Biology Unit 7 Genetic Regulation, Development, and Biotechnology The BIG Questions How are genes turned on & off in eukaryotes and prokaryotes? How do cells with the same genes differentiate to perform completely

More information

Genomics and Gene Recognition Genes and Blue Genes

Genomics and Gene Recognition Genes and Blue Genes Genomics and Gene Recognition Genes and Blue Genes November 3, 2004 Eukaryotic Gene Structure eukaryotic genomes are considerably more complex than those of prokaryotes eukaryotic cells have organelles

More information

Regulation of enzyme synthesis

Regulation of enzyme synthesis Regulation of enzyme synthesis The lac operon is an example of an inducible operon - it is normally off, but when a molecule called an inducer is present, the operon turns on. The trp operon is an example

More information

Bioinformatics Support of Genome Sequencing Projects. Seminar in biology

Bioinformatics Support of Genome Sequencing Projects. Seminar in biology Bioinformatics Support of Genome Sequencing Projects Seminar in biology Introduction The Big Picture Biology reminder Enzyme for DNA manipulation DNA cloning DNA mapping Sequencing genomes Alignment of

More information

NB536: Bioinformatics

NB536: Bioinformatics NB536: Bioinformatics Instructor Prof. Jong Kyoung Kim Department of New Biology Office: E4-613 E-mail: jkkim@dgist.ac.kr Homepage: https://scg.dgist.ac.kr Course website https://scg.dgist.ac.kr/index.php/courses

More information

Bio 101 Sample questions: Chapter 10

Bio 101 Sample questions: Chapter 10 Bio 101 Sample questions: Chapter 10 1. Which of the following is NOT needed for DNA replication? A. nucleotides B. ribosomes C. Enzymes (like polymerases) D. DNA E. all of the above are needed 2 The information

More information

Requirements for the Genetic Material

Requirements for the Genetic Material Requirements for the Genetic Material 1. Replication Reproduced and transmitted faithfully from cell to cell-generation to generation. 2. Information Storage Biologically useful information in a stable

More information

CURRICULUM VITAE Dr. Zakharia Frenkel

CURRICULUM VITAE Dr. Zakharia Frenkel CURRICULUM VITAE Dr. Zakharia Frenkel December, 2012 ORT Braude College, Department of Software Engineering, P.O. Box 78, Karmiel 2161002, Israel Telephone: +972-547-959-406 Email: zfrenkel1@gmail.com

More information

Deep Sequencing technologies

Deep Sequencing technologies Deep Sequencing technologies Gabriela Salinas 30 October 2017 Transcriptome and Genome Analysis Laboratory http://www.uni-bc.gwdg.de/index.php?id=709 Microarray and Deep-Sequencing Core Facility University

More information

Computational Biology I LSM5191 (2003/4)

Computational Biology I LSM5191 (2003/4) Computational Biology I LSM5191 (2003/4) Aylwin Ng, D.Phil. Lecture Notes: Features of the Human Genome Reading List International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis

More information

Computational Genomics. Ron Shamir & Roded Sharan Fall

Computational Genomics. Ron Shamir & Roded Sharan Fall Computational Genomics Ron Shamir & Roded Sharan Fall 2012-13 Bioinformatics The information science of biology: organize, store, analyze and visualize biological data Responds to the explosion of biological

More information

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014

Single Nucleotide Variant Analysis. H3ABioNet May 14, 2014 Single Nucleotide Variant Analysis H3ABioNet May 14, 2014 Outline What are SNPs and SNVs? How do we identify them? How do we call them? SAMTools GATK VCF File Format Let s call variants! Single Nucleotide

More information

How is genome sequencing done?

How is genome sequencing done? Click here to view Roche 454 Sequencing Genome Sequence FLX available at www.ssllc.com>> How is genome sequencing done? Using 454 Sequencing on the Genome Sequencer FLX System, DNA from a genome is converted

More information

Le proteine regolative variano nei vari tipi cellulari e in funzione degli stimoli ambientali

Le proteine regolative variano nei vari tipi cellulari e in funzione degli stimoli ambientali Le proteine regolative variano nei vari tipi cellulari e in funzione degli stimoli ambientali Tipo cellulare 1 Tipo cellulare 2 Tipo cellulare 3 DNA-protein Crosslink Lisi Frammentazione Immunopurificazione

More information

Genome 373: High- Throughput DNA Sequencing. Doug Fowler

Genome 373: High- Throughput DNA Sequencing. Doug Fowler Genome 373: High- Throughput DNA Sequencing Doug Fowler Tasks give ML unity We learned about three tasks that are commonly encountered in ML Models/Algorithms Give ML Diversity Classification Regression

More information

Obtaining DNA from degraded samples for NGS sequencing

Obtaining DNA from degraded samples for NGS sequencing Obtaining DNA from degraded samples for NGS sequencing A brief overview of Alexander (Sasha) Mikheyev s lecture at USC 03/13/14 Presented by Jacqueline Robinson 04/23/2014 NGS is great, but Standard protocols

More information

IPA : Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA

IPA : Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA IPA : Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA Marisa Chen Account Manager Qiagen Advanced Genomics Marisa.Chen@qiagen.com (203) 500-1237 Dev Mistry,

More information

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science

EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science EECS 730 Introduction to Bioinformatics Sequence Alignment Luke Huan Electrical Engineering and Computer Science http://people.eecs.ku.edu/~jhuan/ Database What is database An organized set of data Can

More information

Use of a neural network to predict normalized signal strengths from a DNA-sequencing microarray

Use of a neural network to predict normalized signal strengths from a DNA-sequencing microarray www.bioinformation.net Volume 13(9) Hypothesis Use of a neural network to predict normalized signal strengths from a DNA-sequencing microarray Charles Chilaka 1, 5, Steven Carr 2, 3, *, Nabil Shalaby 3,

More information

Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line

Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line Supplement to: The Genomic Sequence of the Chinese Hamster Ovary (CHO)-K1 cell line Table of Contents SUPPLEMENTARY TEXT:... 2 FILTERING OF RAW READS PRIOR TO ASSEMBLY:... 2 COMPARATIVE ANALYSIS... 2 IMMUNOGENIC

More information

In situ detection kit for programmed Cell Death MEBSTAIN Apoptosis Kit Direct

In situ detection kit for programmed Cell Death MEBSTAIN Apoptosis Kit Direct For research use only In situ detection kit for programmed Cell Death MEBSTAIN Apoptosis Kit Direct CODE No. 8445 In situ detection kit for Programmed Cell Death MEBSTAIN Apoptosis Kit Direct Cat. No.

More information

B. Incorrect! Ligation is also a necessary step for cloning.

B. Incorrect! Ligation is also a necessary step for cloning. Genetics - Problem Drill 15: The Techniques in Molecular Genetics No. 1 of 10 1. Which of the following is not part of the normal process of cloning recombinant DNA in bacteria? (A) Restriction endonuclease

More information

Motivation From Protein to Gene

Motivation From Protein to Gene MOLECULAR BIOLOGY 2003-4 Topic B Recombinant DNA -principles and tools Construct a library - what for, how Major techniques +principles Bioinformatics - in brief Chapter 7 (MCB) 1 Motivation From Protein

More information

DNA concentration and purity were initially measured by NanoDrop 2000 and verified on Qubit 2.0 Fluorometer.

DNA concentration and purity were initially measured by NanoDrop 2000 and verified on Qubit 2.0 Fluorometer. DNA Preparation and QC Extraction DNA was extracted from whole blood or flash frozen post-mortem tissue using a DNA mini kit (QIAmp #51104 and QIAmp#51404, respectively) following the manufacturer s recommendations.

More information

Next- genera*on Sequencing. Lecture 13

Next- genera*on Sequencing. Lecture 13 Next- genera*on Sequencing Lecture 13 ChIP- seq Applica*ons iden%fy sequence varia%ons DNA- seq Iden%fy Pathogens RNA- seq Kahvejian et al, 2008 Protein-DNA interaction DNA is the informa*on carrier of

More information

Supplementary Figure 1

Supplementary Figure 1 Nucleotide Content E. coli End. Neb. Tr. End. Neb. Tr. Supplementary Figure 1 Fragmentation Site Profiles CRW1 End. Son. Tr. End. Son. Tr. Human PA1 Position Fragmentation site profiles. Nucleotide content

More information

Differential Gene Expression

Differential Gene Expression Biology 4361 Developmental Biology Differential Gene Expression September 28, 2006 Chromatin Structure ~140 bp ~60 bp Transcriptional Regulation: 1. Packing prevents access CH 3 2. Acetylation ( C O )

More information

CELLULAR PROCESSES; REPRODUCTION. Unit 5

CELLULAR PROCESSES; REPRODUCTION. Unit 5 CELLULAR PROCESSES; REPRODUCTION Unit 5 Cell Cycle Chromosomes and their make up Crossover Cytokines Diploid (haploid diploid and karyotypes) Mitosis Meiosis What is Cancer? Somatic Cells THE CELL CYCLE

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Chapter 7. DNA Microarrays

Chapter 7. DNA Microarrays Bioinformatics III Structural Bioinformatics and Genome Analysis Chapter 7. DNA Microarrays 7.9 Next Generation Sequencing 454 Sequencing Solexa Illumina Solid TM System Sequencing Process of determining

More information

Advanced Technology in Phytoplasma Research

Advanced Technology in Phytoplasma Research Advanced Technology in Phytoplasma Research Sequencing and Phylogenetics Wednesday July 8 Pauline Wang pauline.wang@utoronto.ca Lethal Yellowing Disease Phytoplasma Healthy palm Lethal yellowing of palm

More information

Mapping strategies for sequence reads

Mapping strategies for sequence reads Mapping strategies for sequence reads Ernest Turro University of Cambridge 21 Oct 2013 Quantification A basic aim in genomics is working out the contents of a biological sample. 1. What distinct elements

More information

MODULE TSS1: TRANSCRIPTION START SITES INTRODUCTION (BASIC)

MODULE TSS1: TRANSCRIPTION START SITES INTRODUCTION (BASIC) MODULE TSS1: TRANSCRIPTION START SITES INTRODUCTION (BASIC) Lesson Plan: Title JAMIE SIDERS, MEG LAAKSO & WILSON LEUNG Identifying transcription start sites for Peaked promoters using chromatin landscape,

More information

Pattern overlapping decomposition by Cumulative Local Cross-Correlation

Pattern overlapping decomposition by Cumulative Local Cross-Correlation Pattern overlapping decomposition by Cumulative Local Cross-Correlation Simon Kogan Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 395, Israel, Email: skogan@research.haifa.ac.il

More information

NGS Approaches to Epigenomics

NGS Approaches to Epigenomics I519 Introduction to Bioinformatics, 2013 NGS Approaches to Epigenomics Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Contents Background: chromatin structure & DNA methylation Epigenomic

More information

Bi 8 Lecture 18. Ellen Rothenberg 3 March Read: Alberts et al.: Chapter 6, pp , ,

Bi 8 Lecture 18. Ellen Rothenberg 3 March Read: Alberts et al.: Chapter 6, pp , , Bi 8 Lecture 18 Other RNAs as regulators and RNAs as enzymes Ellen Rothenberg 3 March 2016 Read: Alberts et al.: Chapter 6, pp. 317-324, 346-347, 362-366 RNA is more than a protein coding molecule RNA

More information

vs. Nucleosomal Pattern Informal presentation of the problem A. Bolshoy 1

vs. Nucleosomal Pattern Informal presentation of the problem A. Bolshoy 1 vs. Nucleosomal Pattern Informal presentation of the problem A. Bolshoy 1 What is this about? The following few slides should help me to explain my reflections on extraction of nucleosome positioning pattern;

More information

Nutrigenomics and nutrigenetics are they the keys for healthy nutrition?

Nutrigenomics and nutrigenetics are they the keys for healthy nutrition? Nutrigenomics and nutrigenetics are they the keys for healthy nutrition? Maria Koziołkiewicz Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland Basic definitions Nutrigenomics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENRY INFORMION doi:.38/nature In vivo nucleosome mapping D4+ Lymphocytes radient-based and I-bead cell sorting D8+ Lymphocytes ranulocytes Lyse the cells Isolate and sequence mononucleosome cores

More information

Annotation Practice Activity [Based on materials from the GEP Summer 2010 Workshop] Special thanks to Chris Shaffer for document review Parts A-G

Annotation Practice Activity [Based on materials from the GEP Summer 2010 Workshop] Special thanks to Chris Shaffer for document review Parts A-G Annotation Practice Activity [Based on materials from the GEP Summer 2010 Workshop] Special thanks to Chris Shaffer for document review Parts A-G Introduction: A genome is the total genetic content of

More information

ChIP DNA Clean & Concentrator Catalog Nos. D5201 & D5205

ChIP DNA Clean & Concentrator Catalog Nos. D5201 & D5205 Page 0 INSTRUCTION MANUAL ChIP DNA Clean & Concentrator Catalog Nos. D5201 & D5205 Highlights Quick (2 minute) recovery of ultra-pure DNA from chromatin immunoprecipitation (ChIP) assays, cell lysates,

More information