CHAPTER 21 The Earth System and the Cycling of Carbon and Nutrients

Size: px
Start display at page:

Download "CHAPTER 21 The Earth System and the Cycling of Carbon and Nutrients"

Transcription

1 CHAPTER 21 The Earth System and the Cycling of Carbon and Nutrients Introduction The realization that ecosystems function like other natural systems, with throughputs of energy and the cycling of nutrients, was one of the major intellectual revolutions to affect the study of ecology and biogeography in the 2oth century. No longer is it possible to understand how ecosystems work and where ecosystems are distributed solely in a descriptive manner. Whilst the behaviour of plant and animal species is a vital area of study, processes involving energy transformations and the movement of necessary nutrients occur at global, regional and local scales. These processes link organisms and therefore emphasize interconnections both within and between ecosystems. Studies of energy flow and nutrient cycling were stimulated by the International Biological Programme which started in the 1960s. There are now many data for particular ecosystems, whether local or on the biome scale. This enables detailed balance sheets to be drawn up and relationships between organisms depicted as diagrams or equations. Much of the stimulus to studying ecosystems in this trophic dynamic way came from the work of Hutchinson, Lindeman and E.P. Odum in the mid-twentieth century. This chapter covers the theory and principles of energy flow and nutrient cycling, together with detailed case studies of temperate deciduous woodland, temperate prairie and the - tropical rain forest. A major concern in the 21 st century has become the carbon cycle. Terms such as carbon footprint have now entered everyday usage. Biogeographers have a key role to play here. Topics emerging in biogeography are: the carbon cycle; carbon in soils and its sequestration there; dissolved organic carbon in freshwaters; and, carbon, vegetation and the importance of climate change. Biogeographers are also contributing to the ongoing debates within society at large on: carbon and energy production; carbon and food production; carbon and waste management; and, last but not least, the planning and management of carbon neutrality for institutions and governments. Chapter summary General principles of energy flow The structure and function of ecosystems are governed by energy flow and nutrient cycling. Gross primary productivity is the sum total of the sun s radiant energy which is fixed by photosynthesis. Net primary productivity is the energy converted into potential energy after the respiration of the autotrophs.

2 Energy and nutrients are passed through the various trophic levels of ecosystems, from producers, to herbivores, to various levels of carnivores, with dead material and waste products passing through the decomposer chain of detrivores. Pyramids of numbers and biomass were introduced by Sir Charles Elton to explain ecosystem structure, though it was left to Lindeman to propose the - fundamental pyramid of energy. Biomass and productivity Biomass or standing crop is the weight of live organic material per unit area. The energy equivalent of organic material can be determined in the laboratory, using a calorimeter. The energy content of organic materials, both in ecosystems and also in food, is measured as calories per unit weight or Joules per unit weight. Net ecosystem production is the increase in biomass per unit area per unit time, and thus is the increase after losses by grazing and decomposition have taken place. In contrast, net primary productivity includes changes in biomass plus both grazing and decomposition losses. Energy flows in a deciduous woodland The study of the energy budget of a real-world ecosystem is a detailed, long-term investigation over many years, using careful sampling techniques. The oak woodland of Wytham Wood, England, has been studied by field, laboratory and computer techniques for many years by scientists from Oxford University. By means of an energy flow diagram, it is possible to represent the stores of energy in the different compartments (biomass) and the rates of energy flow in primary and secondary production, and in consumption. The ecological efficiency of an ecosystem is an important property and reflects the energy produced as a ratio of the energy received. The trophic level of an organism is the level or levels at which an organism transfers energy (i.e. feeds). Ecosystem production The global biomass of the tropical rain forest exceeds the combined biomasses of all other biomes, whether terrestrial or aquatic. The highest net primary productivity figures per annum are reached by coral reefs in tropical oceans. Forests account for 90 per cent of the world s biomass, grasslands and deserts 7 per cent, with the remaining 3 per cent being in aquatic ecosystems.

3 The proportion of NPP consumed by herbivores declines as one moves from the tropics to the poles in forests and also in grasslands. The leaf area index, LAI, is an important plant characteristic which appears to correlate closely with ecosystem production. Global carbon budgets Carbon is a crucial nutrient and chemical on a world scale, being fixed in photosynthesis and released in respiration in very large amounts. Much research effort is currently being devoted to measuring the carbon budgets of the world s biomes; using eddy covariance techniques; this involves measurements of: microclimatic elements, the CO 2 flux, the energy flux, respiration by plants and soil, and methane production. Eddy covariance techniques enable biogeographers to determine whether biomes are net carbon sources or net carbon sinks. Global carbon budgets are also much influenced by human activities; for example, land-use activities such as land clearance and firing release carbon to the atmosphere. The release of carbon dioxide by these means, and in many industrial processes, leads to global warming, which in turn will increase the production and fixation of carbon. From studies of the boreal coniferous forest biome it appears that vegetation can act as both a source and a sink of carbon. The boreal forest acted as a source of carbon before about 1890, as a sink between 1890 and 1970, and as a source again in recent decades. Plant nutrients Plant growth requires eighteen essential nutrient elements, which are supplied by the atmosphere, the soil and water. The major nutrients are carbon, hydrogen, oxygen, nitrogen, phosphorus and potassium, with the first four coming from the atmosphere and hydrosphere, the latter two from the soil. Trace elements or micro-nutrients are required but in very small quantities, e.g. iron, manganese, copper, zinc, boron, chlorine, cobalt, molybdenum and selenium. Intermediate or minor nutrients are calcium, magnesium and sulphur. Nutrients are absorbed by plants in the ionic form, with the nature of the ion (whether cation or anion) determining many aspects of nutrient cycles. The nitrogen cycle Unlike energy, nutrients can cycle and individual atoms can be reused continuously.

4 The nitrogen cycle is a major, complex cycle which must work efficiently so that plants can receive large amounts of this major nutrient. Key pathways in the nitrogen cycle are formed by micro-organisms, viz. ammonification, nitrification, denitrification, nitrate reduction and nitrogen - fixation. Micro-organisms which promote nitrogen use generally require fertile soils which are well aerated, moist, warm and of neutral reaction. Soils where nitrogen is in short supply are cold, waterlogged or arid, poorly aerated, and either acid or alkaline. The phosphorus cycle Phosphorus is absorbed as the anion, like sulphur, but has several problems associated with it. Phosphorus does not have a gaseous store in the atmosphere, but is found only in rock minerals and natural waters. Being cycled in the anionic form, phosphorus is easily leached from soils, owing to the lack of colloidal adsorption. Phosphorus easily combines with iron and manganese at low ph levels and with calcium and magnesium at high ph levels to form compounds unavailable to plants. Because of leaching and fixation problems, the store of phosphorus in soil organic matter is a vital reservoir of the nutrient. Biogeochemical cycling of base cations Base cations include potassium, calcium, magnesium, sodium and the metallic trace elements. The entire group cycles largely in the cationic chemical form, and this is the form in which it is absorbed by plants. Soil humic and clay colloids act as an important store of these nutrients, with the cationic exchange sites protecting the majority of ions against leaching losses. The Hubbard Brook catchment in the United States has been studied intensively over time, and quantities can now be provided for the stores and flows of these nutrients. Human clearance of trees has a disastrous effect on these cycles, removing the biomass store and leading to the erosion of the soil colloid store. Nutrient cycling in tropical rain forests The bulk of nutrients in tropical rain forests are stored in the living vegetation, though fertile soils in special areas such as volcanic regions and alluvial plains can have large soil stores.

5 The humic material in tropical soils is low in content, and is thus not able to provide much of a nutrient store. Mineral colloids consist of kaolinite and oxides of iron and aluminium, all of which have low cation exchange capacities. An important pathway of nutrient absorption by tropical rain forest trees is via the root fungi, mycorrhizae, which can absorb nutrients from the soil and pass them to the plants. Traditional peasant farming systems of shifting agriculture are sustainable if the fallow period is long enough, but plantation systems lead to many losses of nutrients. Figure 1 Eddy covariance tower measuring carbon fluxes in the Siberian tundra. An eddy covariance experiment in the tundra of Siberian Russia. The 4-metre high tower has an anemometer on top, and the horizontal tube carries a net radiometer. Readings are made of temperature, humidity, CO 2 fluxes and methane (CH 4 ). Changes in the carbon and hydrological cycles are inevitable with global warming, and scientists are working to determine the direction of such changes. Source: Jon Lloyd (NB: Slide 2 has been used as plate 21.3 in the book.)

6 Essay questions 1. Explain how photosynthesis and respiration are controlled by environment and plant physiology. 2. Discuss the magnitudes and differences between Gross Primary Productivity (GPP), Net Primary Productivity (NPP), Net Ecosystem Productivity (NEP) and Net Biome Productivity (NBP). 3. Describe the different types of biogeochemical cycles of nutrients that operate on land. Explain how feedbacks link the cycles together and with the climate system. Discussion topics 1. 1.Choose a particular biome (e.g. tundra, boreal forest, savanna, tropical rainforest) and discuss how the carbon cycle operates within it, and how this cycle might respond to future climate change. 2. Examine the ways in which changes in land-use influence the global carbon cycle. 3. Discuss how carbon in the oceans interacts with carbon in the atmosphere. 4. How do nutrient cycles interact with each other (e.g. C with N; N with P; C with P)? Give examples at the global scale, the biome scale, and the local ecosystem scale Discuss the extent to which variations in climate should be ascribed to the functioning of the terrestrial biosphere. Further reading Borman, F.H. and Likens, G.E. (1979) Pattern and Process in a Forested Ecosystem, New York: Springer-Verlag. The detailed account of the Hubbard Brook experimental catchment. Combines useful illustrative data with a clear enunciation of principles. Colinvaux, P. (1973) Introduction to Ecology, New York: Wiley. A readable, yet detailed, advanced text, covering all aspects of ecosystems. Chapters 9 to 15 cover energy and nutrient aspects. Dickinson, G., and Murphy, K. (1998) Ecosystems, London: Routledge. An extremely useful summary of the properties of ecosystems. Odum, E.P. (1959) Fundamentals of Ecology, Philadelphia: W.B. Saunders. The classic and innovative text which was a landmark on the functioning of ecosystems. A book written by an ecologist for ecologists, but plenty of good illustration for the biogeographer. Royal Society (2001) The role of carbon sinks in mitigating global change, London: The Royal Society, Policy Documents 10/01. Saugier, B., Roy, J. and Mooney, H.A. (2001) Global Terrestrial Productivity, San

7 Diego, Academic Press. As the title suggests, this is a good source of information on the productivities, and hence carbon budgets, of the world s biomes. Schlesinger, W.H. (1997) Biogeochemistry: an analysis of global change, 2 nd edition, London: Academic Press. This is an advanced textbook with chapters on all the majoe chemical elements of climatic and biological interest. The chapter on the carbon cycle is particularly relevant. Tivy, J. (1993) Biogeography, 3rd edition, London: Longman. This book has for many years been a standard text on biogeography. Many examples from around the world. Trudgill, S.T. (1988) Soil and Vegetation Systems, second edition, Oxford: Clarendon Press. A detailed treatment of productivity and nutrients in ecosystems, using a systems approach in the text and diagrams. Web resources The famous Broadbalk Winter Wheat Experiment at Rothamsted Experimental Station (see below) has been in operation since It allows nutrient cycles to be assessed in cereal farming, and also monitors leaching losses from the experimental plots. The Natural Environment Research Council s (NERC) CLASSIC (Climate and Land- Surface Systems Interaction Centre) Earth Observation Centre at the University of Exeter uses satellite data to detect changes in land-cover, and to model how these changes feedback on climate and the carbon cycle. QUEST-QUERCC (Quantifying and Understanding the Earth System-Quantifying Ecosystem Roles in the Carbon Cycle) This is the National Oceanographic and Atmospheric Administration (NOAA) website on the global carbon cycle, and the distribution of carbon dioxide and greenhouse gases. Research into nutrient cycles, fertiliser use and farming has been carried out at the world famous Rothamsted Experimental Station, Harpenden, for the past 160 years. The activities of the Agriculture and Environment Division, Rothamsted Research UK, allow you to see both the traditional and the new experimental programmes being carried out.

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy 1 Ecocsystems: Energy Flow and Materials Cycling 2 EVPP 111 Lecture Dr. Largen Spring 2004 Energy Flow and Matter Cycling Energy flow s through ecosystems ecosystems global energy budget physical laws

More information

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece Chapter 54 Ecosystems PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Overview: Ecosystems, Energy, and Matter An ecosystem consists of all the organisms living in a community,

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Ecosystems and the Biosphere Outline

Ecosystems and the Biosphere Outline Ecosystems and the Biosphere Outline Ecosystems Processes in an ecosystem Production, respiration, decomposition How energy and nutrients move through an ecosystem Biosphere Biogeochemical Cycles Gaia

More information

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work? MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17 TH CHAPTER 3 Ecosystems: What Are They and How Do They Work? Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Ecosystems: What Are They and How Do They Work?

Ecosystems: What Are They and How Do They Work? Ecosystems: What Are They and How Do They Work? Chapter 3 Section 3-1 WHAT KEEPS US AND OTHER ORGANISMS ALIVE? Earth s life-support system has four major components The atmosphere is the thin membrane

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Chapter 22: Energy in the Ecosystem

Chapter 22: Energy in the Ecosystem Chapter 22: Energy in the Ecosystem What is ecology? Global human issues Physical limits Ecosystems Organisms Populations Species Interactions Communities Energy flows and nutrients cycle C, H 2 0, P,

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away Review Items Ecosystem Structure The Law of Conservation of Matter Matter cannot be created nor destroyed Matter only changes form There is no away Laws Governing Energy Changes First Law of Thermodynamics

More information

What Keeps Us and Other Organisms Alive?

What Keeps Us and Other Organisms Alive? Energy and Life What Keeps Us and Other Organisms Alive? Four major components of the earth s life-support system: atmosphere (air) hydrosphere (water) geosphere (rock, soil, sediment) biosphere (living

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology?

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? Name Hour Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? 2. What does the biosphere contain? _ Levels of Organization (page 64) 3. Why do ecologists

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida Chapter 29 How Do Ecosystems Work? Lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. 29.1 How Do Ecosystems Obtain Energy And Nutrients?

More information

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts Study Outline: Chapters 5, 6, & 9 Environmental Science AP Instructor: Ben Smith Biogeochemical Cycles: Global Recycling Program Ch. 5 Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31,

More information

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont.

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems ECOLOGICAL PYRAMIDS The trophic levels of an ecosystem can be arranged into in a pyramid and these are called the ecological pyramids

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht Human Biology Sylvia S. Mader Michael Windelspecht Chapter 23 Global Ecology and Human Interferences Lecture Outline See separate FlexArt PowerPoint slides for all figures and tables pre-inserted into

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Ecosystems- Matter and Energy. Ecosystems. Food Chains and Food Webs Food Chain linear flow chart of who eats whom. Ecosystems 9/30/2013

Ecosystems- Matter and Energy. Ecosystems. Food Chains and Food Webs Food Chain linear flow chart of who eats whom. Ecosystems 9/30/2013 Ecosystems- Matter and Energy Ecosystems 1 Food Chains and Food Webs Food Chain linear flow chart of who eats whom grass --> zebra --> lion --> vulture Food Webs expanded, more complete Trophic Levels

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Human perturbations to the global Nitrogen cycle

Human perturbations to the global Nitrogen cycle Human perturbations to the global Nitrogen cycle Lecture for Biogeochemistry and Global Change Edzo Veldkamp The pace of human caused global change has increased in modern history, but none so rapidly

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

THE INTRODUCTION THE GREENHOUSE EFFECT

THE INTRODUCTION THE GREENHOUSE EFFECT THE INTRODUCTION The earth is surrounded by atmosphere composed of many gases. The sun s rays penetrate through the atmosphere to the earth s surface. Gases in the atmosphere trap heat that would otherwise

More information

Biol 210 Environmental Biology Exam 1C Spring 2016

Biol 210 Environmental Biology Exam 1C Spring 2016 Biol 210 Environmental Biology Exam 1C Spring 2016 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Abundant light and constant nutrient input make

More information

Principles of Terrestrial Ecosystem Ecology

Principles of Terrestrial Ecosystem Ecology E Stuart Chapin III Pamela A. Matson Harold A. Mooney Principles of Terrestrial Ecosystem Ecology Illustrated by Melissa C. Chapin With 199 Illustrations Teehnische Un.fversitSt Darmstadt FACHBEREIGH 10

More information

Energy and Matter in COMMUNITIES AND ECOSYSTEMS

Energy and Matter in COMMUNITIES AND ECOSYSTEMS Energy and Matter in COMMUNITIES AND ECOSYSTEMS abiotic factors physical aspects i.e. soil, water, weather (non-living) biotic factors the organisms (living) The community AND all physical aspects of

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter Chapter 2 Chapter 2 Cycles of Matter 2.1 The Role of Water in Cycles of Matter 2.2 Biogeochemical Cycles 2.3 the Balance of the Matter and Energy Exchange 2.1 The Role of Water in Cycles of Matter In this

More information

2.1 Ecology & Ecosystem Structure

2.1 Ecology & Ecosystem Structure 2.1 Ecology & Ecosystem Structure Learning Goals: 1. Explain how biotic and abiotic factors influence 2. Explain how the flow of energy through ecosystems obeys the 2nd law of thermodynamics. 3. Calculate

More information

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions.

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Ecology What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Biotic Factors Living things in the environment. Animals Plants Fungi Protists Bacteria Abiotic

More information

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere Slide 1 / 40 1 ll of Earth's water, land, and atmosphere within which life exists is known as a Population ommunity iome iosphere Slide 2 / 40 2 ll the plants, animals, fungi living in a pond make up a

More information

Ecology: Chapters Worksheet

Ecology: Chapters Worksheet Ecology: Chapters 34 36 Worksheet Name: Chapter 34: The Biosphere Concept 34.1 The biosphere is the global ecosystem. (pp. 744 749) The scientific study of the interactions among organisms and between

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Unit III Nutrients & Biomes

Unit III Nutrients & Biomes Unit III Nutrients & Biomes Nutrient Cycles Carbon Cycle Based on CO 2 cycling from animals to plants during respiration and photosynthesis. Heavy deposits are stored in wetland soils, oceans, sedimentary

More information

Dynamics of Ecosystems. Chapter 57

Dynamics of Ecosystems. Chapter 57 Dynamics of Ecosystems Chapter 57 1 The Water Cycle Nutrient Cycles Trophic Levels Primary Productivity Outline The Energy in Food Chains Ecological Pyramids Interactions Among Trophic Levels Species Richness

More information

Forest Production Ecology

Forest Production Ecology Objectives Forest Production Ecology Overview of forest production ecology C cycling Primary productivity of trees and forest ecosystems ecologists and ecosystem managers are unlikely to achieve desired

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Chapter 3 Ecosystem Ecology

Chapter 3 Ecosystem Ecology Chapter 3 Ecosystem Ecology Ecosystem Ecology Examines Interactions Between the Living and Non-Living World Ecosystem- A particular location on Earth distinguished by its particular mix of interacting

More information

Science 1206 Mid-term Review Assignment

Science 1206 Mid-term Review Assignment 1 Science 1206 Mid-term Review Assignment Jens-Haven Memorial January 2011 Name: Multiple Choice: /40 Diagrams: /10 Extended Response: /44 Total: /94 This exam contains 10 pages including this one. Make

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

Chapter 4, sec. 1 Prentice Hall Biology Book p (This material is similar to Ch.17, sec.3 in our book)

Chapter 4, sec. 1 Prentice Hall Biology Book p (This material is similar to Ch.17, sec.3 in our book) Chapter 4, sec. 1 Prentice Hall Biology Book p.87-89 (This material is similar to Ch.17, sec.3 in our book) Term Definition Weather Day-to-day condition of earth s atmosphere at a particular time and place

More information

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez Ecosystem Ecology: Part 1 September 22, 2014 Mr. Alvarez Ecosystems Ecosystem- a particular location on Earth distinguished by its particular mix of interacting biotic and abiotic components. Forest Ecosystem

More information

Ecosystem element cycling

Ecosystem element cycling Ecosystem element cycling Introduction An ecosystem consists of all the biological organisms and the physical environments they occupy together within a defined area [1]. The actual boundaries of an ecosystem

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

IB Environmental Systems & Societies

IB Environmental Systems & Societies IB Environmental Systems & Societies YEAR 1 Syllabus Content: Topics and Assessment Statements Mr. Rees Topic 7: Environmental Value Systems 7.1.1 State what it is meant by an environmental value system.

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

Multiple Choice. Name Class Date

Multiple Choice. Name Class Date Chapter 3 The Biosphere Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Chapter 3 Ecosystem Ecology

Chapter 3 Ecosystem Ecology Chapter 3 Ecosystem Ecology Ecosystem Ecology Examines Interactions Between the Living and Non-Living World Ecosystem- A particular location on Earth distinguished by its particular mix of interacting

More information

BIOMES. Living World

BIOMES. Living World BIOMES Living World Biomes Biomes are large regions of the world with distinctive climate, wildlife and vegetation. They are divided by terrestrial (land) or aquatic biomes. Terrestrial Biomes Terrestrial

More information

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE Water Vapor: A GHG Lesson 3 page 1 of 2 Water Vapor: A GHG Water vapor in our atmosphere is an important greenhouse gas (GHG). On a cloudy day we can see evidence of the amount of water vapor in our atmosphere.

More information

Ecology: Part 2. Biology Mrs. Bradbury

Ecology: Part 2. Biology Mrs. Bradbury Ecology: Part 2 Biology Mrs. Bradbury Model 1: Food Chains Food Chain simple model showing the movement of matter and energy through ecosystems. Autotrophs Heterotrophs Decomposers Arrows show energy transfer

More information

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle Environmental Science Semester Exam Study Guide Chapter 4: Ecology 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Ecology is the study of how a. organisms interact with each other and their nonliving environment b.

More information

Chapter 19. Nutrient Cycling and Retention. Chapter Focus. The hydrological cycle. Global biogeochemical cycles. Nutrient cycling

Chapter 19. Nutrient Cycling and Retention. Chapter Focus. The hydrological cycle. Global biogeochemical cycles. Nutrient cycling Chapter Focus Chapter 19 Nutrient Cycling and Retention Nutrient cycling Phosphorus Nitrogen Carbon Water, Sulfur Decomposition Biotic effect on nutrient distribution and cycling Disturbance Global biogeochemical

More information

CHAPTER. Evolution and Community Ecology

CHAPTER. Evolution and Community Ecology CHAPTER 5 Evolution and Community Ecology Lesson 5.3 Ecological Communities https://www.youtube.com/watch?v=gu2ezaisvqu The sun provides the energy for almost all of the ecological communities and species

More information

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi. ITROGE CYCLE Big Question Why Are Biogeochemical Cycles Essential to Long-Term Life on Earth? Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.a

More information

Chapter 13 Principles of Ecology Lecture Guide, Day 1

Chapter 13 Principles of Ecology Lecture Guide, Day 1 Chapter 13 Principles of Ecology Lecture Guide, Day 1 What is Ecology? It is the scientific study of interactions among organisms and between organisms or surroundings. The Nonliving Environment - Abiotic

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

Climates and Ecosystems

Climates and Ecosystems Chapter 2, Section World Geography Chapter 2 Climates and Ecosystems Copyright 2003 by Pearson Education, Inc., publishing as Prentice Hall, Upper Saddle River, NJ. All rights reserved. Chapter 2, Section

More information

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area Ch. 6 - Biomes Section 6.1: Defining Biomes Biome: a group of ecosystems that share similar biotic and abiotic conditions, large region characterized by a specific type of climate, plants, and animals

More information

Energy flow and nutrient cycles support life in Ecosystems. Chapter 2

Energy flow and nutrient cycles support life in Ecosystems. Chapter 2 Energy flow and nutrient cycles support life in Ecosystems Chapter 2 Energy flow in ecosystems Biomass is the total mass of all living things in a given area. Biomass can also refer to the mass of a particular

More information

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16 NOTEBOOK Table of Contents: 9. Properties of Water 9/20/16 10. Water & Carbon Cycles 9/20/16 NOTEBOOK Assignment Page(s): Agenda: Tuesday, September 20, 2016 Properties of Water Water & Carbon Cycles 1.

More information

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam NREM 301 Forest Ecology & Soils C Nutrient Cycling Begin Climate Discussion Day 29 December 2, 2008 Take-Home Test Due Dec 11 5 pm No Final Exam Our discussions for the semester have centered on Clipsrot

More information

Climate and Biodiversity

Climate and Biodiversity LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 7 Climate and Biodiversity Core Case Study: A Temperate Deciduous Forest Why do forests grow in some areas and not others? Climate Tropical

More information

The Cycling of Matter

The Cycling of Matter Section 2 Objectives Describe the short-term and long-term process of the carbon cycle. Identify one way that humans are affecting the carbon cycle. List the three stages of the nitrogen cycle. Describe

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 20 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2016 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

Unsaved Test, Version: 1 1

Unsaved Test, Version: 1 1 Name: Key Concepts Select the term that best completes the statement. A. abiotic B. light C. biotic D. organisms E. ecology F. soil G. ecosystem H. temperature I. factors J. water Date: 1. A(n) is made

More information

What does each part of the equation mean? q=cm T

What does each part of the equation mean? q=cm T Assignment #10 Energy Pyramids LO: I can define trophic levels and explain the energy flow. I can apply those ideas to food webs EQ: Where does all the energy from the sun go? (4-5 sentences) LEVEL ZERO

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information