Free standing Multilayer Thin Film of Cellulose Nanocrystals

Size: px
Start display at page:

Download "Free standing Multilayer Thin Film of Cellulose Nanocrystals"

Transcription

1 Free standing Multilayer Thin Film of Cellulose Nanocrystals Chaoyang Jiang Department of Chemistry The University of South Dakota Edmonton, June 25, 2009

2 Cellulose Nanocrystals Nanotechnology R&D Priority for the forest product Nanocomposite thin films by Layer-by-layer assembly. Assembly, Characterizations, & Applications 2

3 Layer by Layer Assembly Spin assisted LbL K. Char, et al. Adv. Mater. 2001, 13, H.-L. Wang, et al. Adv. Mater. 2001, 13, G. Decher, et al. Science 1997, 277, Precise control components and film thickness Simple, cheap, versatile, can be fabricated in wet chemistry lab Suitable for various nanoscale building block Great potentials for multifunctional materials 3

4 Layer by Layer Assembly Rubner and Cohen MIT CEN, 2005, 83(38), 34. Saraf U Nebraska Science, 2006, 312, Kotov, U Michigan Nature Mater. 2003, 2(6),

5 Free standing LbL Films V. Kozlovskaya, et.al., Macromolecules 2005, 38, C.Jiang, et.al. Adv. Mater. 2006, 18, 829. Y. G. Guo, et. al., Adv. Funct. Mater. 2005, 15,

6 Free Standing Films What is free-standing film? A thin film can be self-supported without solid support Why free-standing is important? valves, barriers, and filters in microfluid channels membranes for mechanical sensors. What kind of materials can be freely stood? Enough mechanical stability Enough chemical stability How to make free-standing films? C.Jiang, et.al. Adv. Mater. 2006, 18, 829. V. V. Tsukruk, et al. Biomacromolecules, 2001, 2,

7 Free standing LbL Thin Films Sacrificial Layer Acetone Spin-assisted LbL Sacrificial Layer method Freely Suspended LbL nanomembranes 7

8 Composite LbL Nanomembrane C. Jiang et al., Nature Mater , 3(10),

9 Free standing LbL Thin Films ngn n = 3, 5, 7, 9, 11, (PAH-PSS) n PAH/Au/(PAH-PSS) n PAH 2 nm Thickness (nm) C. Jiang, et al. Nature Mater. 2004, 3, Number of PAH-PSS bilayers 9

10 Bulging Test Bulging results and elastic modulus Without Gold With Gold 400 μm Mechanical parameters for different freely suspended nanomembranes Membrane type and Gold content Fabricatio n method Membrane diameter (μm) Elastic modulus (GPa) 9G9, 3.9% SA-LbL ±3.3 9G9, 0.5% SA-LbL ±2.0 9_9, 0% SA-LbL ±1.0 9G9, 4% LbL N/A * N/A* * Film was broken into small piece, which can not be transfer to holey substrate. P = C 0 E 1 ν 2 h a C 1 σ h a d h + C 2 E h 1 ν a 4 4 d h 3 C. Jiang, et al. Nature Mater. 2004, 3,

11 Sensitive LbL Composites Films 11

12 Micropattern in Nanomembrane Au NP C. Jiang, et al. Adv. Mater. 2005, 17,

13 Localized Mechanical Testing 10 μm 30 μm Location λ (μm) E (GPa) With Gold Without Gold Elastic modulus C. M. Stafford, et al. Nature Mater. 2004, 3, 545. A. Nolte, et al. Macromolecules 2005, 38, C. Jiang, Nano Letters. 2006, 6,

14 Polymer Chain Behavior 4000 Relative intensity Raman shift (cm -1 ) SO3 Raman shift (cm -1 ) Deflection (nm) SO SO 3 3 C.Jiang, et al. Phys. Rev. Lett. 2005, 95, Chain-like Au-NP aggregation + spreading of polymer chains Bridging multiple nanoparticles through stretched backbones Outstanding mechanical properties of SA-LbL films 14

15 Microcavity Arrays Half-inch wafer cavity array Over 4000 membranes 600μm 15

16 Thermal Bulging Heat Cool Heat Cool nm/k Deflection (nm) Experimental Finite Element Analysis Temperature (K) C.Jiang, et al. Chem. Mater. 2006, 18, Finite Element Analysis 16

17 Cellulose Nanocrystals 17

18 Cellulose Nanocrystals 18

19 Layer by Layer Assembly Gray et.al. Biomacromolecules, 2006, 7, Lvov et.al. Biomacromolecules 2007, 8, Kotov et.al. Langmuir 2007, 23,

20 Preparation of CNCs Hydrolysis of cellulose microfibers with H 2 SO 4 can produce nanoscale cellulose crystals with negative charges on their surface. FPL 20

21 Cellulose Nanocrystals CNC solution, 0.88 wt% Sample from Forest Product Laboratory, WI Cast film with 88 ppm solution 21

22 Diameters of the CNCs 5.25±1.21 nm unpublished results 22

23 Fabrication of CNC Nanofilms Poly(allamine hydrochloride) (PAH) (PAH/CNC) n Sacrificial Layer Acetone 23

24 PAH/CNC Multilayers (PAH/CNC) 6 88ppm CNC solution 16.7 nm 24

25 PAH/CNC Multilayers Film thickness (nm) Film thickness Linear Fit of Film thickness Equation y = a + b*x Weight Instrumental Residual Sum of Squares Adj. R-Square r 2 = 0.98 Value Standard Error Film thickness Intercept Slope Thickness of PAH/CNC bilayer can be tuned CNC Concentration (ppm) 25

26 PAH/CNC Multilayers (PAH/CNC) n 440ppm CNC solution Slope ~8 nm 100 Thickness (nm) Number of Bilayers 26

27 PAH/CNC/Au Multilayers (PAH/CNC) 3 PAH/Au(PAH/CNC) 3 PAH nm 27

28 CNC/Au Multilayer Films glass substrate glass substrate Layer Au NP 2 Layers Au NP 0.12 glass substrate Absorption [(PAH/CNC) n /Au] Wavelength (nm) 28

29 SEM of PAH/CNC/Au Multilayers glass substrate 100 nm 29

30 SERS in Nanomembranes glass substrate cm 1 glass substrate A.U. (Counts) Midlayer of CNC 3Midlayers of CNC Wavenumber (cm -1 ) 30

31 PAH/CNC Nanomembranes (PAH/CNC) ppm CNC solution 120 nm 50 μm 31

32 PAH/CNC Nanomembranes Buckle image with a 50x objective 3 2 Elastic modulus Film Substrate Ef Vf Es Vs d h GPa MPa μm nm C. M. Stafford, et al. Nature Mater. 2004, 3, 545. A. Nolte, et al. Macromolecules 2005, 38, C. Jiang, Nano Letters. 2006, 6,

33 Outlook Fabricating robust multilayer ultra-thin membranes with functional cellulose nanocrystals Studying the property-structure relationships of nanomembranes containing cellulose nanocrystals Using SERS properties to design portable sensitive membranes for chemical detection and mechanical sensing. 33

34 Summary Cellulose nanocrystals are excellent building blocks in assembling composite thin films. Ultrathin Layer-by-Layer multilayer containing cellulose nanocrystals were fabricated and their thickness and properties are tunable. Gold nanoparticles embedded in the CNC multilayer thin films cause SERS. Freely suspended CNC nanomembranes demonstrated excellent mechanical stabilities and potentials in sensing applications. 34

35 Acknowledgement Dr. Ed Duke SDSMT Mr. Bruce Gray at USD for help on AFM measurement. SEMA group at GaTech for freely-standing nanomembranes. 35

36 Materials 36

S-1. Dramatic enhancement of graphene oxide/silk nanocomposite membranes: increasing toughness and strength via annealing of interfacial structures

S-1. Dramatic enhancement of graphene oxide/silk nanocomposite membranes: increasing toughness and strength via annealing of interfacial structures S-1 Supporting Information Dramatic enhancement of graphene oxide/silk nanocomposite membranes: increasing toughness and strength via annealing of interfacial structures Yaxian Wang, a,b Ruilong Ma, b

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

Supplementary Information. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film. for Large-Area Fabrication of SERS Substrate

Supplementary Information. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film. for Large-Area Fabrication of SERS Substrate Supplementary Information Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate Huanhuan Zhang 1,2,3, Lin Xu*,2, Yabo Xu 1,3, Gang Huang 1,3, Xueyu

More information

Fabrication of micro/nano structures in glass by lasers

Fabrication of micro/nano structures in glass by lasers Lehigh University Lehigh Preserve International Workshop on Scientific Challenges for Glass Research Glass Conferences and Workshops Spring 4-1-2007 Fabrication of micro/nano structures in glass by lasers

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

2/27/2010. What is Nano? SCI 102 SANYAL. Nanoscale = billionths (10-9 ) 10 billion components 8 inch diameter. 6 billion people 8000 mile diameter

2/27/2010. What is Nano? SCI 102 SANYAL. Nanoscale = billionths (10-9 ) 10 billion components 8 inch diameter. 6 billion people 8000 mile diameter What is Nano? SANYAL SCI 102 Nanoscale = billionths (10-9 ) 6 billion people 8000 mile diameter 10 billion components 8 inch diameter 1 Nano in Therapeutics Drugs: up to ~10 nm Example: Insulin Surgery:

More information

Drying Cellulose Nanocrystal Suspensions

Drying Cellulose Nanocrystal Suspensions Drying Cellulose Nanocrystal Suspensions Abstract. Drying cellulose nanocrystals (CNCs) while maintaining their nanoscale dimensions is a major challenge for uses which require a dry form of the material.

More information

[Supporting Information] Piezopotential Gated Nanowire-Nanotube-Hybrid Field-Effect- Transistor

[Supporting Information] Piezopotential Gated Nanowire-Nanotube-Hybrid Field-Effect- Transistor [Supporting Information] Piezopotential Gated Nanowire-Nanotube-Hybrid Field-Effect- Transistor Weihua Liu 1,3, Minbaek Lee 1, Lei Ding 2, Jie Liu 2, Zhong Lin Wang 1* Authors equally contributed. 1 School

More information

Towards scalable fabrication of high efficiency polymer solar cells

Towards scalable fabrication of high efficiency polymer solar cells Towards scalable fabrication of high efficiency polymer solar cells Hui Joon Park 2*, Myung-Gyu Kang 1**, Se Hyun Ahn 3, Moon Kyu Kang 1, and L. Jay Guo 1,2,3 1 Department of Electrical Engineering and

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

What is Nano? Nanoscale = billionths (10-9 ) Nano in Therapeutics 10/04/ billion components 8 inch diameter

What is Nano? Nanoscale = billionths (10-9 ) Nano in Therapeutics 10/04/ billion components 8 inch diameter Nano Robots that can sail through your blood Capture and Kill foreign objects?? What is Nano? SANYAL SCI 102 Nanoscale = billionths (10-9 ) Nano in Therapeutics Drugs: up to ~10 nm Example: Insulin Surgery:

More information

Georgia Tech s Nanocellulose Resources and Capabilities

Georgia Tech s Nanocellulose Resources and Capabilities Georgia Tech s Nanocellulose Resources and Capabilities Norman Marsolan Director, Institute of Paper Science & Tech (IPST) Prof. of the Practice, School of Chemical & Molecular Engineering Robert J Moon

More information

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting White Paper: Pixelligent Internal Light Zhiyun (Gene) Chen, Ph.D., Vice President of Engineering Jian Wang, Ph.D., Manager, Application Engineering Pixelligent Technologies LLC, 6411 Beckley Street, Baltimore,

More information

Cellulose- and Chitin-Based Coatings and Films. Carson Meredith Professor Chemical & Biomolecular Engineering Georgia Tech Atlanta, GA

Cellulose- and Chitin-Based Coatings and Films. Carson Meredith Professor Chemical & Biomolecular Engineering Georgia Tech Atlanta, GA Cellulose- and Chitin-Based Coatings and Films Carson Meredith Professor Chemical & Biomolecular Engineering Georgia Tech Atlanta, GA 1 One Motivation - Packaging 1.3 billion tons of food, 1/3 of the world

More information

along the dashed line in Supplementary Fig. 1c and the thickness of CaCO3 nanoplatelets is ~320 nm.

along the dashed line in Supplementary Fig. 1c and the thickness of CaCO3 nanoplatelets is ~320 nm. d 4 Height (nm) 3 2 1 32nm 1 2 3 4 Distance( m) Supplementary Figure 1 Characterization of as synthesized CaCO 3 nanoplatelets. (a) SEM image, (b) XRD pattern, (c) Typical AFM image of a single CaCO3 nanoplatelet,

More information

Supporting Information: Gold nanorod plasmonic upconversion microlaser

Supporting Information: Gold nanorod plasmonic upconversion microlaser Supporting Information: Gold nanorod plasmonic upconversion microlaser 1 Materials Synthesis and Properties Ce Shi, Soheil Soltani, Andrea M. Armani 1.1 Nanorod synthesis First the gold nanorods (NRs)

More information

3D printed Nanocellulosic materials and their composite

3D printed Nanocellulosic materials and their composite 3D printed Nanocellulosic materials and their composite By Vincent Li 1, 2 Advised by Professor H.Qi 1,3, and Professor Y. Deng 1, 2 1 Renewable Bioproducts Institute 2 School of Chemical and Biomolecular

More information

CREOL, The College of Optics & Photonics, University of Central Florida

CREOL, The College of Optics & Photonics, University of Central Florida Metal Substrate Induced Control of Ag Nanoparticle Plasmon Resonances for Tunable SERS Substrates Pieter G. Kik 1, Amitabh Ghoshal 1, Manuel Marquez 2 and Min Hu 1 1 CREOL, The College of Optics and Photonics,

More information

Computer Simulation of Nanoparticle Aggregate Fracture

Computer Simulation of Nanoparticle Aggregate Fracture Mater. Res. Soc. Symp. Proc. Vol. 1056 2008 Materials Research Society 1056-HH08-45 Computer Simulation of Nanoparticle Aggregate Fracture Takumi Hawa 1,2, Brian Henz 3, and Michael Zachariah 1,2 1 National

More information

Structure and properties of extruded bio-nanocomposites based on bio-polyesters and chitin nanofibrils

Structure and properties of extruded bio-nanocomposites based on bio-polyesters and chitin nanofibrils Structure and properties of extruded bio-nanocomposites based on bio-polyesters and chitin nanofibrils Maria-Beatrice Coltelli 1,2, Patrizia Cinelli 1,2, Irene Anguillesi 1,2, Sara Salvadori 1,2, Andrea

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2011 Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201100049 Bulk Heterojunction Organic Photovoltaics Based on Carboxylated

More information

Ultrathin Nanosheets of Feroxyhyte: A New Two-dimensional. Hefei National Laboratory for Physical Sciences at Microscale,

Ultrathin Nanosheets of Feroxyhyte: A New Two-dimensional. Hefei National Laboratory for Physical Sciences at Microscale, Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Ultrathin Nanosheets of Feroxyhyte: A New Two-dimensional

More information

Department of Chemistry, University of California, Davis, California 95616, USA 2

Department of Chemistry, University of California, Davis, California 95616, USA 2 Enhance Solar Water Splitting Performance by Utilizing Near Infrared Radiation with Composite Films of Hematite and Rare Earth Doped Upconversion Materials Ming Zhang, 1 Yongjing Lin, 2 Thomas J. Mullen,

More information

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water.

Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S1 Photograph of MoS 2 and WS 2 flakes exfoliated by different metal naphthalenide (metal = Na, K, Li), and dispersed in water. Supplementary Figure S2 AFM measurement of typical LTMDs

More information

Supporting Information for the Manuscript: Dramatic. Increase In Polymer Glass Transition Temperature. Under Extreme Nanoconfinement In

Supporting Information for the Manuscript: Dramatic. Increase In Polymer Glass Transition Temperature. Under Extreme Nanoconfinement In Supporting Information for the Manuscript: Dramatic Increase In Polymer Glass Transition Temperature Under Extreme Nanoconfinement In Weakly-Interacting Nanoparticle Films Haonan Wang, Jyo Lyn Hor, Yue

More information

Aligned Carbon Nanofibre-Polymer Composite Membranes. CNT Growth and Manipulation. Eleanor Campbell Dept. of Physics, Göteborg University

Aligned Carbon Nanofibre-Polymer Composite Membranes. CNT Growth and Manipulation. Eleanor Campbell Dept. of Physics, Göteborg University Aligned Carbon Nanofibre-Polymer Composite Membranes CNT Growth and Manipulation Eleanor Campbell Dept. of Physics, Göteborg University Plasma CVD Growth Polymer/Nanofibre Composite Low ambient temperature

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Transmittance spectra of the TCM at different strains as tested before the fatigue test; (b) correlation between cyclic stress and cycles curve for the

More information

Layer-by-Layer Nanocoating on Lignocellulose Fibers: Conductive Polymers and Nanoparticles

Layer-by-Layer Nanocoating on Lignocellulose Fibers: Conductive Polymers and Nanoparticles Layer-by-Layer Nanocoating on Lignocellulose Fibers: Conductive Polymers and Nanoparticles 2006 International Conference on Nanotechnology, April 26-28, 2006 Atlanta, GA Presented by: Yuri Lvov, and George

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Tube structure of carbon nanotube (CNT) adhesive. A typical high-resolution transmission electron microscopic (TEM) image showing that double-walled CNTs dominate

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

A silicon nanocrystals/polymer nanocomposite as down-conversion layer in organic and hybrid solar cells

A silicon nanocrystals/polymer nanocomposite as down-conversion layer in organic and hybrid solar cells Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Material for A silicon nanocrystals/polymer nanocomposite as down-conversion layer

More information

DENSE AND POROUS NANOFIBRILLATED CELLULOSE (NFC) SUBSTRATES

DENSE AND POROUS NANOFIBRILLATED CELLULOSE (NFC) SUBSTRATES DENSE AND POROUS NANOFIBRILLATED CELLULOSE (NFC) SUBSTRATES P. Orsolini 1,2, C. Antonini 1, T. Geiger 1, T. Zimmermann 1, W. R. Caseri 2 1 Empa 2 ETH-Zürich Applied Wood Materials Functional Cellulose

More information

Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable Origami Substrates

Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable Origami Substrates Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable

More information

Inkjet printing of oxide thin films and nanoparticles with potential use for anti-counterfeiting films and patterns

Inkjet printing of oxide thin films and nanoparticles with potential use for anti-counterfeiting films and patterns 1 Inkjet printing of oxide thin films and nanoparticles with potential use for anti-counterfeiting films and patterns M. Vilardell, V.R. Vlad, X. Sintas, A. Calleja Oxolutia S.L., Edifici Eureka, PRUAB,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Controllable Exfoliation of Natural Silk Fibers into Nanofibrils

More information

Simple fabrication of highly ordered AAO nanotubes

Simple fabrication of highly ordered AAO nanotubes Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 79-84 Simple fabrication of highly ordered AAO nanotubes N. Taşaltin a, S. Öztürk a, H. Yüzer b, Z. Z. Öztürk a,b* a

More information

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose)

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) High Performance Structures and Materials IV 139 Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) Y. Ohnishi 1, T. Fujii 2 & K. Okubo 2 1 Graduate

More information

CELLULOSE/POLYSULFONE NANOCOMPOSITES. Graduate Student: Sweda Noorani. Advisors: Dr John Simonsen Dr Sundar Atre

CELLULOSE/POLYSULFONE NANOCOMPOSITES. Graduate Student: Sweda Noorani. Advisors: Dr John Simonsen Dr Sundar Atre CELLULOSE/POLYSULFONE NANOCOMPOSITES Graduate Student: Sweda Noorani Advisors: Dr John Simonsen Dr Sundar Atre OSU Oregon State University Corvallis,Oregon INTRODUCTION CONTENTS EXPERIMENTAL METHODS RESULTS

More information

Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL

Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL Pramana J. Phys. (2017) 89:10 DOI 10.1007/s12043-017-1398-8 Indian Academy of Sciences Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL GAURAV SAPRA and PREETIKA SHARMA UIET, Panjab University,

More information

Supporting Information. Low Temperature Oxidation-free Selective Laser Sintering of Cu

Supporting Information. Low Temperature Oxidation-free Selective Laser Sintering of Cu Supporting Information Low Temperature Oxidation-free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications Jinhyeong Kwon 1,, Hyunmin Cho

More information

NanoTrees: Making Paper Stronger than Steel. Robert Moon, PhD and Greg Schueneman, PhD Forest Biopolymer Science & Engineering

NanoTrees: Making Paper Stronger than Steel. Robert Moon, PhD and Greg Schueneman, PhD Forest Biopolymer Science & Engineering NanoTrees: Making Paper Stronger than Steel Robert Moon, PhD and Greg Schueneman, PhD Forest Biopolymer Science & Engineering What do they do? Parks & Forests Recreation Camping Forest Fires Wildlife &

More information

Superionic Solid State Stamping (S4)

Superionic Solid State Stamping (S4) Superionic Solid State Stamping (S4) Lead Faculty Researcher: Placid Ferreira Department: Materials Science & Engineering Hsu et al, Nano Letters, 2007 1. Description: This dry, single step, electrochemical

More information

Electricity from the Sun (photovoltaics)

Electricity from the Sun (photovoltaics) Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption 100 100 square kilometers of solar cells could produce all the electricity for the US. But they are still too costly. The required

More information

Nanodiamond-Polymer Composite Fibers and Coatings

Nanodiamond-Polymer Composite Fibers and Coatings Nanodiamond-Polymer Composite Fibers and Coatings Yury Gogotsi et al. A.J. Drexel Nanotechnology Institute and Department of Materials Science and Engineering Drexel University, Philadelphia, Pennsylvania

More information

1. Photonic crystal band-edge lasers

1. Photonic crystal band-edge lasers TIGP Nanoscience A Part 1: Photonic Crystals 1. Photonic crystal band-edge lasers 2. Photonic crystal defect lasers 3. Electrically-pumped photonic crystal lasers 1. Photonic crystal band-edge lasers Min-Hsiung

More information

Nanocellulose based piezoelectric sensors

Nanocellulose based piezoelectric sensors Tampere University of Technology Nanocellulose based piezoelectric sensors Citation Tuukkanen, S., Viehrig, M., Rajala, S., & Kallio, P. (216). Nanocellulose based piezoelectric sensors. 1-2. Paper presented

More information

ELECTROSPUN NANOFIBER PROCESS CONTROL

ELECTROSPUN NANOFIBER PROCESS CONTROL CELLULOSE CHEMISTRY AND TECHNOLOGY Received April 26, 2010 ELECTROSPUN NANOFIBER PROCESS CONTROL University of Guilan, P.O. Box 3756, Rasht, Iran Fiber diameter is an important structural characteristic

More information

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy Contract Number: AOARD-06-4074 Principal Investigator: Heh-Nan Lin Address: Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan

More information

Control of buckling in large nanomembranes using engineered support structures

Control of buckling in large nanomembranes using engineered support structures Control of buckling in large nanomembranes using engineered support structures Eiji Iwase 1, Pui-Chuen Hui 1, David Woolf 1, Alejandro W. Rodriguez 1,2, Steven G. Johnson 2, Federico Capasso 1, Marko Loncar

More information

Microstructured Optical Fibers as New Nanotemplates for High Pressure CVD

Microstructured Optical Fibers as New Nanotemplates for High Pressure CVD Mater. Res. Soc. Symp. Proc. Vol. 988 2007 Materials Research Society 0988-QQ04-02 Microstructured Optical Fibers as New Nanotemplates for High Pressure CVD Neil Baril 1, John Badding 1, Pier Savio 2,

More information

for Bioanalytical Applications

for Bioanalytical Applications Conferinţa Diaspora in Cercetarea Ştiinţifică şi Invăţămantul Superior din Romania Bucuresti, 21-24 Septembrie 2010 Multifunctional Plasmonic Nanosensors for Bioanalytical Applications Simion Astilean

More information

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing

Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing M.Stephan, S.Große: Micophotometric Control of Particles and Inhomogeneities in Flowing Polymer Melts during Extrusion Processing Workshop January, 28 th -29 th 2005, Dresden Particulate Heterogeneities

More information

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films R. K. SONI, MEENU TEOTIA* Department of Chemistry C.C.S, University, Meerut Ultraviolet radiation [UVR] UVR is divided

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film Lijia Pan, 1,2 Alex Chortos, 3 Guihua Yu,

More information

Effects of Film Thickness on the Yielding Behavior of Polycrystalline Gold Films

Effects of Film Thickness on the Yielding Behavior of Polycrystalline Gold Films Effects of Film Thickness on the Yielding Behavior of Polycrystalline Gold Films H.D. Espinosa and B.C. Prorok Department of Mechanical Engineering, Northwestern University Evanston, IL 628-3111, USA ABSTRACT

More information

Fabrication and Magnetotransport Properties of Carbon Films with Embedded Metal Nanoclusters

Fabrication and Magnetotransport Properties of Carbon Films with Embedded Metal Nanoclusters Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 Fabrication and Magnetotransport Properties of Carbon Films with Embedded Metal

More information

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May

Preprint - Mechatronics 2008, Le Grand-Bornand, France, May Potentialities of piezoresistive cantilever force sensors based on free standing thick films Hélène Debéda(*), Isabelle Dufour, Patrick Ginet, Claude Lucat University of Bordeaux 1, IMS Laboratory, 51

More information

Supplementary Information. for

Supplementary Information. for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for Nanoslitting Phase-separated Block Copolymers by Solvent Swelling

More information

Micro/Nano Mechanical Systems Lab Class#16

Micro/Nano Mechanical Systems Lab Class#16 Microsystems Laboratory Micro/Nano Mechanical Systems Lab Class#16 Liwei Lin Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator Center The University of California, Berkeley,

More information

SM10: Characterising Micro- and Nano- Scale Interfaces in Advanced Composites. Polymers: Multiscale Properties. 8 November 2007

SM10: Characterising Micro- and Nano- Scale Interfaces in Advanced Composites. Polymers: Multiscale Properties. 8 November 2007 SM10: Characterising Micro- and Nano- Scale Interfaces in Advanced Composites Polymers: Multiscale Properties 8 November 2007 Deliverables D1: Critique of test methods and predictive analysis for characterising

More information

2.3 Quantum Dots (QDs)

2.3 Quantum Dots (QDs) 2.3 Quantum Dots (QDs) QDs are inorganic nanocrystals, approximately 1 10 nm in size, with unique optical properties of broad excitation, narrow size-tunable emission spectra, high photochemical stability,

More information

Carbon-Binding Designer Proteins that Discriminate

Carbon-Binding Designer Proteins that Discriminate Carbon-Binding Designer Proteins that Discriminate Between Graphitic and Diamond Surfaces Brandon Coyle, 1 Marco Rolandi, 2 and François Baneyx 1 * Departments of 1 Chemical Engineering and 2 Materials

More information

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Aji P. Mathew and Kristiina Oksman Wood and Bionanocomposites, Division of Materials Science Luleå University of Technology,

More information

Self Assembled Heterojunction Solar Cell Active Layers: CFN/USB/CAT Collaboation

Self Assembled Heterojunction Solar Cell Active Layers: CFN/USB/CAT Collaboation Self Assembled Heterojunction Solar Cell Active Layers: CFN/USB/CAT Collaboation Supported in part by the SensorCat program at NYSTAR,NSF-MRSEC Jennifer A. Segui PhD student in Biomedical Engineering.

More information

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Oxford Lasers Ltd Moorbrook Park Didcot, Oxfordshire, OX11 7HP Tel: +44 (0) 1235 810088 www.oxfordlasers.com Outline Oxford Lasers Importance

More information

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Natural Filler and Fibre Composites: Development and Characterisation 95 Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Y. Ohnishi, T. Fujii & K.

More information

Tunable Plasmonic Nanostructures: from Fundamental Nanoscale Optics to. Surface-enhanced Spectroscopies

Tunable Plasmonic Nanostructures: from Fundamental Nanoscale Optics to. Surface-enhanced Spectroscopies Tunable Plasmonic Nanostructures: from Fundamental Nanoscale Optics to Surface-enhanced Spectroscopies Hui Wang Department of Chemistry, Rice University, Houston, Texas, 77005, USA The fascinating optical

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201302405 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles

More information

Macroscopic Arrays of Block Copolymers with Areal Densities of 10 Terbit/inch 2 and Beyond

Macroscopic Arrays of Block Copolymers with Areal Densities of 10 Terbit/inch 2 and Beyond Macroscopic Arrays of Block Copolymers with Areal Densities of 10 Terbit/inch 2 and Beyond Soojin Park*, Dong Hyun Lee, Bokyung Kim, Sung Woo Hong Department of Polymer Science and Engineering, University

More information

Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite based Strain sensor with Ultrahigh Sensitivity and Tunable Sensing Range

Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite based Strain sensor with Ultrahigh Sensitivity and Tunable Sensing Range Supporting Information Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite based Strain sensor with Ultrahigh Sensitivity and Tunable Sensing Range Yichen Cai, a Jie Shen, c Gang Ge, a Yizhou Zhang, a

More information

Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics

Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics Supporting Information for Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics Hamid Souri 1* and Debes Bhattacharyya 1 1 Centre for Advanced Composite Materials,

More information

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER

Fraunhofer ENAS Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS - Current results and future approaches in Wafer-level-packaging FRANK ROSCHER Fraunhofer ENAS Chemnitz System Packaging Page 1 System Packaging Outline: Wafer level packaging for MEMS

More information

Supplementary Information. PopTube Approach for Ultrafast Carbon Nanotube Growth

Supplementary Information. PopTube Approach for Ultrafast Carbon Nanotube Growth Supplementary Information PopTube Approach for Ultrafast Carbon Nanotube Growth Zhen Liu a, Jialai Wang b, Vinod Kushvaha c, Selcuk Poyraz a, Hareesh Tippur c, Seongyong Park d, Moon Kim d, Yang Liu a,

More information

Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition

Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition Huan Wang, Jiyun Feng, Xijun Hu and Ka Ming Ng* Department of Chemical Engineering Hong Kong University

More information

Optical Properties of CdSe Nanocrystals

Optical Properties of CdSe Nanocrystals UC Berkeley College of Chemistry Chemistry 125 Physical Chemistry Laboratory Optical Properties of CdSe Nanocrystals Author: Jonathan Melville Lab Partner: David Gygi Graduate Student Instructor: Marieke

More information

Platypus Gold Coated Substrates. Bringing Science to the Surface

Platypus Gold Coated Substrates. Bringing Science to the Surface Platypus Gold Coated Substrates Bringing Science to the Surface Overview Gold Coated Substrates - Gold Coating Introduction - Glossary of Terms - Gold Coating Methods - Critical Features Platypus Gold

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Cellulose Nanofiber/Nanocrystal Reinforced Capsules: A Fast and Facile Approach Toward Assembly of Liquid-Core Capsules with High Mechanical Stability. Anna J. Svagan, 1,2*

More information

Buckling behavior of metal film/substrate structure under pure bending

Buckling behavior of metal film/substrate structure under pure bending Buckling behavior of metal film/substrate structure under pure bending Ying Li, Xi-Shu Wang a Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P.R. China Xiang-Kang Meng National

More information

BLOCK COPOLYMER PHOTONIC GEL FOR DETECTING INTERFACIAL SEPARATION

BLOCK COPOLYMER PHOTONIC GEL FOR DETECTING INTERFACIAL SEPARATION BLOCK COPOLYMER PHOTONIC GEL FOR DETECTING INTERFACIAL SEPARATION Edwin P. Chan, Materials Research Engineer, National Institute of Standards and Technology, Gaithersburg, MD Introduction Mechanochromism,

More information

INTERFACIAL STUDIES OF CELLULOSE WHISKER POLYMER NANOCOMPOSITES

INTERFACIAL STUDIES OF CELLULOSE WHISKER POLYMER NANOCOMPOSITES INTERFACIAL STUDIES OF CELLULOSE WHISKER POLYMER NANOCOMPOSITES R. Rusli and S.J. Eichhorn Materials Science Centre, Northwest Composites Centre and the School of Materials, Grosvenor Street, University

More information

Surface modification of thermally evaporated CdTe thin films for sensing application of organic compounds

Surface modification of thermally evaporated CdTe thin films for sensing application of organic compounds Indian Journal of Pure & Applied Physics Vol. 55, October 2017, pp. 701-709 Surface modification of thermally evaporated CdTe thin films for sensing application of organic compounds Sukhvir Singh*, Sandeep

More information

LIGNOCELLVALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS

LIGNOCELLVALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS LIGNOCELLVALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS Nanofibrillated cellulose soy protein based templates for gold nanoparticles production Steering group meeting 2.5.211 Maria

More information

Three-dimensional SU-8 structures by reversal UV imprint

Three-dimensional SU-8 structures by reversal UV imprint Three-dimensional SU-8 structures by reversal UV imprint W. Hu, a B. Yang, C. Peng, and S. W. Pang b Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University

More information

Supporting Information: Softened Elastic Response and Unzipping in CVD Graphene Membranes

Supporting Information: Softened Elastic Response and Unzipping in CVD Graphene Membranes Supporting Information: Softened Elastic Response and Unzipping in CVD Graphene Membranes Carlos S. Ruiz-Vargas 1, Houlong L. Zhuang 2, Pinshane Y. Huang 1, Arend M. van der Zande 3, Shivank Garg 4, Paul

More information

Dramatic enhancements in toughness of polyimide nanocomposite via. long-cnt-induced long-range creep

Dramatic enhancements in toughness of polyimide nanocomposite via. long-cnt-induced long-range creep Electronic supplementary information for Dramatic enhancements in toughness of polyimide nanocomposite via long-cnt-induced long-range creep Xilai Jia, a Qiang Zhang, a,* Meng-Qiang Zhao, a Guang-Hui Xu,

More information

Supplementary Information

Supplementary Information Supplementary Information for Embedded Cavities and Waveguides in 3D Silicon Photonic Crystals by S. A. Rinne, F. García-Santamaría, and P. V. Braun, Nature Photonics, 2007 Figure S1. Figure S1 Detailed

More information

Nanotechnology for Next Generation Photovoltaics

Nanotechnology for Next Generation Photovoltaics 340 Nanotechnology for Next Generation Photovoltaics NARASIMHA RAO MAVILLA 1,2, CHETAN SINGH SOLANKI 1,3, JUZER VASI 1,2 * 1 National Centre for Photovoltaic Research & Education, IIT Bombay, Mumbai 400076,

More information

Supporting Information

Supporting Information Supporting Information Highly Thermally Conductive Yet Electrically Insulating Polymer/ Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability Jin Chen, Xingyi Huang*,

More information

Supporting Information

Supporting Information Supporting Information Self-Healing, Highly Sensitive Electronic Sensors Enabled by Metal-Ligand Coordination and Hierarchical Structure Design Yangyang Han, Xiaodong Wu, Xinxing Zhang, * and Canhui Lu*

More information

sensors ISSN

sensors ISSN Sensors 2010, 10, 6477-6487; doi:10.3390/s100706477 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled

More information

Shear Bands in Glassy Amorphous Polymers

Shear Bands in Glassy Amorphous Polymers Shear Bands in Glassy Amorphous Polymers Shear banding in tension or compression. Neck formation via shear bands (a) (b) (c) (d) Stress Image removed due to copyright restrictions. Please see Fig. 12a

More information

LTCC gas viscosity sensor

LTCC gas viscosity sensor LTCC gas viscosity sensor Th. Maeder, N. Dumontier, C. Jacq, G. Corradini and P. Ryser Laboratoire de Production Microtechnique Ecole Polytechnique Fédérale de Lausanne EPFL - LPM, Station 17, CH-1015

More information

Change in stoichiometry

Change in stoichiometry Measurement of Gas Sensor Performance Gas sensing materials: 1. Sputtered ZnO film (150 nm (Massachusetts Institute of Technology) 2. Sputtered SnO 2 film (60 nm) (Fraunhofer Institute of Physical Measurement

More information

Fractal Gold Nanoframework for Highly. Stretchable Transparent Strain-insensitive. Conductors

Fractal Gold Nanoframework for Highly. Stretchable Transparent Strain-insensitive. Conductors Supporting Information Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-insensitive Conductors My Duyen Ho,, Yiyi Liu, Dashen Dong, Yunmeng Zhao,, and Wenlong Cheng,,* Department of

More information

Supplementary information for

Supplementary information for Supplementary information for Metal hierarchical patterning by direct nanoimprint lithography Boya Radha 1,2, Su Hui Lim 2,3, Mohammad S. M. Saifullah 2* and Giridhar U. Kulkarni 1* 1 Chemistry and Physics

More information

Synthesis and Characterization of Novel Cellulosics

Synthesis and Characterization of Novel Cellulosics Synthesis and Characterization of Novel Cellulosics Problem statement Petroleum based polymeric materials Limited existing quantities of fossil supplies Escalating cost Problem of non biodegradability

More information

FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires

FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires K.Kanas, C.Lekakou and N.Vrellos Abstract This study comprises finite element simulations and experimental studies of the shape

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates

New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates Marielle Henriksson, Linda Fogelström, Lars A. Berglund, Mats Johansson, Anders Hult Fibre and

More information