Atomic Transport & Phase Transformations. PD Dr. Nikolay Zotov

Size: px
Start display at page:

Download "Atomic Transport & Phase Transformations. PD Dr. Nikolay Zotov"

Transcription

1 Atomic Transport & Phase Transformations PD Dr. Nikolay Zotov

2 Atomic Transport & Phase Transformations Part II Lecture Diffusion Short Description 1 Introduction; Non-equilibrium thermodynamics 2 Diffusion, Diffusion Equations 3 Solutions of the Diffusion Equations 4 Atomic Mechansims of Diffusion 5 Statistical Interpretation 6 Measuremens of Diffusion Coefficents 7 8 Diffusion in Ordered Alloys 9 High Diffusion Pathways 2

3 Atomic Transport & Phase Transformations Lecture II-8 Outline Ordered Intermetallic Alloys Long-range Order Parameters Atomic Diffusion Mechanisms Reaction Diffusion Effect of Order Parameters on the Diffusion 3

4 4

5 Ordered Alloys Intermetallic Phases Stoichiometric Ordered Structures Different atoms occupying different positions Sub-Lattices Occupied by only 1 type of atoms (molecules) Fractional coordinates in the unit cell + Translations {L} = {SLa} + {SLß} + a Bcc Fe ß Sub-Lattice a: {Fe, 0,0,0} Sub-Lattice ß: {Fe, ½ ½ ½ } 5

6 Ordered Alloys Intermetallic Phases Al B2 type NiAl Ni Sub-Lattice a: {Al, 0,0,0} Sub-Lattice b: {Ni, ½ ½ ½ } 6

7 Ordered Alloys Intermetallic Phases CuAu, L1 o type structure Tetragonal ; P 4/m mm Sub-Lattice a: {Au, 0 ½ ½ } Sub-Lattice b: {Cu, 0 0 0} Sub-Lattice g: {Cu, ½ ½ 0} 7

8 Ordered Alloys Intermetallic Phases Crystal structure Strukturbericht symbol Pearson symbol fcc A1 cf4 bcc A2 ci2 hcp A3 hp2 Diamond (C) A4 cf8 White Tin (Sn) A5 ti4 aas A7 hr2 Graphite (C) A9 hp4 a-mn A12 ci58 b-w (WO 3 ) A15 cp8 NaCl B1 cf8 Strukturbericht Symbol A Elements B XY Structures C - XY 2 Structures D - X m Y n Structures E - > 2 Elements 8

9 B2 Ordered Alloys Intermetallic Phases Cu 3 Au L1 2 CuAu L1 o Fe 3 Al DO 3 Mg 3 Cd DO 19 R.E. Smallman (1970) 9

10 Ordered Alloys Defects Mono-vacancies; Di-vacancies (clusters of vacancies); Substitutional Vacancies (Ni Al or Al Ni ); Anti-Site Defects (Ni Al + Al Ni ). Minimization of the Gibbs Energy with respect to the number of (different) defects Fu et al. (1993) 10

11 Non-Stoichiometric Ordered Structures B2 NiAl (AB) Sub-Lattice a: {A, 0,0,0} Sub-Lattice b: {B, ½ ½ ½ } Ordered Alloys Intermetallic Phases A-rich alloys A 1+x B 1-x ; Substituion of A on ß sub-lattice (A b ) Vacancies on the ß sub-lattice (V b ) B-rich alloys A 1-x B 1+x ; Substituion of B on a sub-lattice (B a ) Vacancies on the a sub-lattice (V a ) Experimental Observations: for A=Co,Ni,Fe, Pd and B = Al, Ga, In A-rich alloys: A b mechanism B-rich alloys: V a mechanism Bocquet et al. (1996) 11

12 Long-range Order Parameters Definitions: r a fraction of a sites occupied by A atoms r b fraction of b sites occupied by B atoms (Lecture I 9) w a fraction of wrong (B) atoms occupying a sites w a = 1 r a ; w b fraction of wrong (A) atoms occupying b sites w b = 1 r b ; h LRO = (r a X A )/(1 X A ) h LRO = (r b X B )/(1 X B ) 12

13 Long-range Order Parameters Non-Stoichiometric CuAu h LRO = r a w b or h LRO = r b w a ; CuAu X Au < 0.5 Maximum Order: Cu site fully occupied, some Cu on the Au site r a = 1; w b = (X Cu -0.5)/0.5 = [(1-X Au ) 0.5]/ 0.5 = 1 2X Au ; h = 2X Au X Au > 0.5 Maximum order: Au site fully occupied; some Au on the Cu site r b = 1; w a = (X Au - 0.5)/ 0.5 = 2X Au - 1; h = 2-2X Au LRO Parameter 1,0 0,8 0,6 0,4 0,2 Maximum LRO 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 X Au

14 Ordered Alloys Atomic Mechanisms of Diffusion Ring Mechanism (Cu and Zn exchange positions) This would lead to disorderd (random) alloy. Cu ß CuZn T < T c = 727 K B2 structure ordered ß CuZn T > T c = 727 K A2 structure Disordered Zn What atomic jump mechanisms could preserve the average LRO? 14

15 Ordered Alloys Atomic Mechanisms of Diffusion Type Proposed 6-jump cycle (6JC) Elcock and McCombie (1958), Hunigton (1961) Triple Defect (TD) Stolwijk et al. (1980) Anti-site bridge (ASB) Kao & Chang (1993) Path Probability Mechanism Kikuchi & Sato (1969) Preservation of (local) stoichiometry Only nearest-neighbour jumps! 15

16 Ordered Alloys Atomic Mechanisms of Diffusion 6JC 16

17 Ordered Alloys Atomic Mechanisms of Diffusion 6JC Wynblatt (1967) Limited applicability, because the individual energy barriers relatively high. Fig Paul et al. (2014) 17

18 Ordered Alloys Atomic Mechanisms of Diffusion Triple Defect (TD) For Al-rich alloys 2 Vacancies on the Ni sub-lattice + Ni Al ; Only Ni diffuses 18

19 Ordered Alloys Atomic Mechanisms of Diffusion TD For Al-rich alloys 2 Vacancies on the Ni sub-lattice + Ni Al ; Both Ni and Al diffuse 19

20 Ordered Alloys Atomic Mechanisms of Diffusion Anti-site Bridge (ABS) For Ni-rich alloys Ni on Al sites + V Al ; Only Ni diffuses 20

21 Diffusion in Ordered Alloys Reaction Diffusion, Thermodynamic Discussion 2 Peritectic Reactions L + a ß L + ß g 21

22 Diffusion in Ordered Alloys Thermodynamic Discussion DG 22

23 Diffusion in Ordered Alloys Formation of Intermetallic Compounds Diffusion Couple a + g; ß a J g g J a xa xg 23

24 Diffusion in Ordered Alloys Formation of Intermetallic Phases Diffusion Couple Al/Cu G. Schmitz 24

25 J g = - Ď c Bg / x xg ; J a = - Ď c Ba / x xa ; Diffusion in Ordered Alloys Kinetic c/ x = (c/rt) µ/ x Ideal Solution J g = - Ď (c Bg /RT) µ Bg / x ; J a = - Ď (c Ba /RT) µ Ba / x ; J g v g c B g = dx g /dt c Bg ; J a v a c a = dx a /dt c Ba ; w = x g - x a w - Width of the diffusion zone of the (ß) phase 25

26 Diffusion in Ordered Alloys Kinetic dw/dt = d/dt (x g - x a ) = d x g /dt d x a /dt = J g / c Bg - J a / c a ; dw/dt = Ď/RT (µ Ba - µ Bg )/ x ~ Ď/RT Dµ/ x ~ Ď/RT DG/w ; µ Ba - µ Bg = G a G g + RT ln(x Ba /X Bg ) wdw = Ď/RT DG dt w 2 = kt; k = 2DG Ď/RT ; w(0) = 0, [k] = m 2 /s Parabolic growth 26

27 Diffusion in Ordered Alloys Effect of Order Parameter A* D A * = G A <r 2 > f/6 G = vexp(-q o /k B T) (Lecture II-5) AB G A = <n A > exp[ - Q o (1 + a A h 2 )/ (T/T c ) ] Girifalco (1964) D A * = D oa exp[- Q o (1 + a A h 2 )/ (T/T c ) ] ln(d A * ) = ln (D oa ) - Q o (1 + a A h 2 )/(T c /T) D Zn Girifalco (1964) 27

28 Diffusion in Ordered Alloys Effect of Order Parameter Experimenatl Observations for B2 Compounds (Bocquet et al. 1996) # The Diffusion coefficient varies with composition and exhibits a minimum at the stoichiometric composition h has a maximum for the stoichiometric composition Q has a maximum at the stoichiometric composition Variation of activation energy in NiAl with composition LRO Parameter 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 X Au Bakker (1984) Q = Q o (1 + a A h 2 )/ (T/T c ) 28

29 Diffusion in Ordered Alloys Effect of Order Parameter Experimenatl Observations for B2 Compounds (Bocquet et al. 1996) # The Activation energy for tracer diffusion is higher in the ordered state than in the disordered state (typical for B2 alloys with substitutional disorder) D A * = D oa exp[- Q o (1 + a A h 2 )/ (T/T c ) ] Change of slope at T > T c. Cu ( ) Zn (o) D Bakker (1984) O (Roman numbers denote different Zb concentrations) 29

30 Diffusion in Ordered Alloys Effect of Order Parameter D A *= G A <r 2 > f/6 f is a function of temperature and u = e BB e AA /<e> [<e> = e AB (e AA + e BB )/2] u Bakker (1984) T c /T The correlation factor also depends indirctly on the order parameter 30

Atomic Transport & Phase Transformations Lecture 7

Atomic Transport & Phase Transformations Lecture 7 Atomic Transport & Phase Transformations Lecture 7 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Lecture I-7 Outline Limited solubility in the solid state Effect of the maximum temperature of the miscibility

More information

Phase Transformation of Materials

Phase Transformation of Materials 2009 fall Phase Transformation of Materials 10.08.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Contents for previous class Interstitial

More information

Lecture 7: Solid State Reactions Phase Diagrams and Mixing

Lecture 7: Solid State Reactions Phase Diagrams and Mixing Lecture 7: Solid State Reactions Phase Diagrams and Mixing Prof Ken Durose, Univ of Liverpool Text book for this lecture: Callister Materials Science and Engineering Learning objectives 1.Solid state reactions

More information

VACANCY MOBILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION

VACANCY MOBILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION 1 VACANCY MOILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION IN AI, JIAWEN FAN and GARY S. COLLINS* Department of Physics, Washington State University, Pullman, WA 99164, *collins@wsu.edu ASTRACT The fractional

More information

Phase Transformations Workshop David Laughlin

Phase Transformations Workshop David Laughlin Phase Transformations Workshop David Laughlin Materials Science and Engineering Carnegie Mellon University Pittsburgh, PA 15213 Outline What is a Phase? Heterogeneous / Homogeneous Transformations Nucleation

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

Development of Microstructure in Eutectic Alloys

Development of Microstructure in Eutectic Alloys CHAPTER 10 PHASE DIAGRAMS PROBLEM SOLUTIONS Development of Microstructure in Eutectic Alloys 10.16 Briefly explain why, upon solidification, an alloy of eutectic composition forms a microstructure consisting

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

Kinetics. Rate of change in response to thermodynamic forces

Kinetics. Rate of change in response to thermodynamic forces Kinetics Rate of change in response to thermodynamic forces Deviation from local equilibrium continuous change T heat flow temperature changes µ atom flow composition changes Deviation from global equilibrium

More information

Homework #4 PROBLEM SOLUTIONS

Homework #4 PROBLEM SOLUTIONS Homework #4 PROBLEM SOLUTIONS 4.2 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations (4.1) and (4.2) as follows: N V N exp Q V kt N

More information

Materials Engineering. Phase transformation Phase diagrams

Materials Engineering. Phase transformation Phase diagrams Materials Engineering Phase transformation Phase diagrams Phase Transformation Why is it important for us? o Temperature, chemical composition and pressure can change the properties of materials o Understanding

More information

CHAPTER 4 DIFFUSIVITY AND MECHANISM

CHAPTER 4 DIFFUSIVITY AND MECHANISM 68 CHAPTER 4 DIFFUSIVITY AND MECHANISM 4.1 INTRODUCTION The various elements present in the alloys taken for DB joining diffuse in varying amounts. The diffusivity of elements into an alloy depends on

More information

Chapter 2 Structure of Materials

Chapter 2 Structure of Materials Chapter 2 Structure of Materials In this chapter, we will briefly go through the hierarchical structure of materials. First, the atomic bonding and crystal structures are covered briefly. Then, the emphasis

More information

Definition and description of different diffusion terms

Definition and description of different diffusion terms Definition and description of different diffusion terms efore proceeding further, it is necessary to introduce different terms frequently used in diffusion studies. Many terms will be introduced, which

More information

Modelling of long-term phase stability in Ni-based superalloys based on thermodynamic and kinetic CALPHAD calculations

Modelling of long-term phase stability in Ni-based superalloys based on thermodynamic and kinetic CALPHAD calculations Modelling of long-term phase stability in Ni-based superalloys based on thermodynamic and kinetic CALPHAD calculations R. Rettig, R. F. Singer Institute of Science and Technology of Metals (WTM) DFG-Research

More information

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Concept of alloying Classification of alloys Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams

More information

Diffusion & Crystal Structure

Diffusion & Crystal Structure Lecture 5 Diffusion & Crystal Structure Diffusion of an interstitial impurity atom in a crystal from one void to a neighboring void. The impurity atom at position A must posses an energy E to push the

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections In the Name of God Materials Science CHAPTER 5: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects

More information

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials.

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Tilley, Understanding solids : Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Q: What characterize a material?

More information

From sand to silicon wafer

From sand to silicon wafer From sand to silicon wafer 25% of Earth surface is silicon Metallurgical grade silicon (MGS) Electronic grade silicon (EGS) Polycrystalline silicon (polysilicon) Single crystal Czochralski drawing Single

More information

the Phase Diagrams Today s Topics

the Phase Diagrams Today s Topics MME 291: Lecture 03 Introduction to the Phase Diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Concept of alloying Classification of alloys Introduction to the phase diagram

More information

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? Diffusion in Solids ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Chapter 9 Phase Diagrams. Dr. Feras Fraige

Chapter 9 Phase Diagrams. Dr. Feras Fraige Chapter 9 Phase Diagrams Dr. Feras Fraige Chapter Outline Definitions and basic concepts Phases and microstructure Binary isomorphous systems (complete solid solubility) Binary eutectic systems (limited

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Always motivate your answers All sub-questions have equal weight in the assessment Question 1 Precipitation-hardening aluminium alloys are, after

More information

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor PHASE DIAGRAMS Phase a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase

More information

10/7/ :43 AM. Chapter 5. Diffusion. Dr. Mohammad Abuhaiba, PE

10/7/ :43 AM. Chapter 5. Diffusion. Dr. Mohammad Abuhaiba, PE 10/7/2013 10:43 AM Chapter 5 Diffusion 1 2 Why Study Diffusion? Materials of all types are often heat-treated to improve their properties. a heat treatment almost always involve atomic diffusion. Often

More information

POINT DEFECTS IN CRYSTALS

POINT DEFECTS IN CRYSTALS POINT DEFECTS IN CRYSTALS Overview Vacancies & their Clusters Interstitials Defects in Ionic Crytals Frenkel defect Shottky defect Part of MATERIALS SCIENCE & ENGINEERING A Learner s Guide AN INTRODUCTORY

More information

Silver Aluminium Titanium

Silver Aluminium Titanium 16 Ti Silver uminium Titanium Hans Leo Lukas Literature Data Köster and Sampaio [1957Koe] investigated ternary isothermal sections at 0 C, 1000 C and 1100 C by X-ray and metallographic analyses (x Ti >

More information

Cu/Ag Eutectic System

Cu/Ag Eutectic System Eutectic Systems The simplest kind of system with two solid phases is called a eutectic system. A eutectic system contains two solid phases at low temperature. These phases may have different crystal structures,

More information

CHAPTER 5: DIFFUSION IN SOLIDS

CHAPTER 5: DIFFUSION IN SOLIDS CHAPTER 5: DIFFUSION IN SOLIDS ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion

More information

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. The circles represent atoms: (a) To what crystal system does the unit cell belong? (b) What would

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987

Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987 Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987 Problem 1: (a) The compound CsCl is an ordered arrangement of Cs and Cl over the sites of a BCC lattice. Draw

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Crystal Structures of Interest

Crystal Structures of Interest rystal Structures of Interest Elemental solids: Face-centered cubic (fcc) Hexagonal close-packed (hcp) ody-centered cubic (bcc) Diamond cubic (dc) inary compounds Fcc-based (u 3 u,nal, ß-ZnS) Hcp-based

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. 315 Problems 1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. (a) Find the temperature and partial pressure of O 2 where Ni(s), Ni(l), and NiO(s) are in equilibrium.

More information

Introduction to Point Defects. Version 2.1. Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University

Introduction to Point Defects. Version 2.1. Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University Introduction to Point Defects Version 2.1 Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University October 1997 Assumed Pre-knowledge This module has been developed

More information

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10 PHASE DIAGRAMS IE-114 Materials Science and General Chemistry Lecture-10 Importance of Phase Diagrams There is a strong correlation between microstructure and mechanical properties. Phase diagrams provides

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10. Liquids and Solids Three States of Matter H 2 O Volume constant constant no Shape constant no no Why in three different states? 1 Intermolecular Force dipole-dipole attraction V dip-dip : 1.

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Exploration of High-Entropy Alloys for Turbine Applications

Exploration of High-Entropy Alloys for Turbine Applications Exploration of High-Entropy Alloys for Turbine Applications Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number(s) DE-SC0013220. SBIR Program PHASE

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Imperfections in Solids. Imperfections in Solids. Point Defects. Types of Imperfections

Imperfections in Solids. Imperfections in Solids. Point Defects. Types of Imperfections Imperfections in Solids In this topic we will try to answer the following questions: What types of defects arise in solids? Are these defects undesirable? How do defects affect material properties? Can

More information

Preparation of Materials Lecture 6

Preparation of Materials Lecture 6 PY3090 Preparation of Materials Lecture 6 Colm Stephens School of Physics PY3090 6 iffusion iffusion Mass transport by atomic motion Mechanisms Gases & Liquids random (Brownian) motion Solids vacancy diffusion

More information

Simulation of Bulk and Grain Boundary Diffusion in B2 NiAl

Simulation of Bulk and Grain Boundary Diffusion in B2 NiAl Simulation of Bulk and Grain Boundary Diffusion in B2 NiAl Benjamin J. Soulé de Bas Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of

More information

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June Basics of metal hydrides

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June Basics of metal hydrides 2245-5 Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems 13-18 June 2011 Basics of metal hydrides J. Huot Universite du Quebec a Trois-Rivieres Canada &

More information

Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624

Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624 ch22.qxd 9/22/4 5:29 PM Page 619 22 Alloys GENERAL CONSIDERATIONS 621 SUBSTITUTIONAL SOLID SOLUTIONS HUME-ROTHERY RULES 624 ORDER-DISORDER TRANSFORMATION 627 Elementary theory of order 629 PHASE DIAGRAMS

More information

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 19 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Water Redox Comp/Disproportionation Latimer Diagram Frost Diagram Pourbaix Diagram... 2 Ellingham

More information

Point defects. process complicated. Now we shall discuss on defects, which will help to understand the atomic mechanism of diffusion.

Point defects. process complicated. Now we shall discuss on defects, which will help to understand the atomic mechanism of diffusion. Point defects Diffusion of elements is possible because of the presence of defects. For example, substitutional diffusion occurs because of exchange of an atom with acancies. Further, impurities are present

More information

Chapter 5. Imperfections in Solids

Chapter 5. Imperfections in Solids Chapter 5 Imperfections in Solids Chapter 5 2D Defects and Introduction to Diffusion Imperfections in Solids Issues to Address... What types of defects arise in solids? Can the number and type of defects

More information

Crystal Structure. Insulin crystals. quartz. Gallium crystals. Atoms are arranged in a periodic pattern in a crystal.

Crystal Structure. Insulin crystals. quartz. Gallium crystals. Atoms are arranged in a periodic pattern in a crystal. Crystal Structure Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Many important materials (silicon, steel) are crystals

More information

Diffusion controlled growth of phases in metal tin systems related to microelectronics packaging. Guides: Prof. Aloke Paul and Prof.

Diffusion controlled growth of phases in metal tin systems related to microelectronics packaging. Guides: Prof. Aloke Paul and Prof. Diffusion controlled growth of phases in metal tin systems related to microelectronics packaging Ph.D. thesis Varun A Baheti, Department of Materials Engineering, Indian Institute of Science Guides: Prof.

More information

These metal centres interact through metallic bonding

These metal centres interact through metallic bonding The structures of simple solids The majority of inorganic compounds exist as solids and comprise ordered arrays of atoms, ions, or molecules. Some of the simplest solids are the metals, the structures

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS by K.C. HARI KUMAR APPLIED MECHANICS DEPARTMENT Thesis submitted in fulfilment of the requirements of the Degree of DOCTOR OF PHILOSOPHY be vt, to

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

10/8/2016 8:29 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE

10/8/2016 8:29 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Diffusion 1 2 Home Work Assignments 10, 13, 17, 21, 27, 31, D1 Due Tuesday 18/10/2016 3 rd Exam on Sunday 23/10/2016 3 Why Study Diffusion? Materials of all types are often heattreated to improve

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111 Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants

More information

Database. Sept , 2014, Aachen, Germany. Thermo-Calc Anwendertreffen

Database. Sept , 2014, Aachen, Germany. Thermo-Calc Anwendertreffen Database Sept. 11-12, 2014, Aachen, Germany Thermo-Calc Anwendertreffen Thermodynamic and kinetic databases New Databases, June 2014 TCAL3 TCMG3 TCSLD2 TCSI1 TCNI7 MOBNI3 TCAL3.0 TCAL3.0 TCAL1.0 2011.05

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Atomic Transport & Phase Transformations Lecture III-3

Atomic Transport & Phase Transformations Lecture III-3 Atomic Transport & Phase Transformations Lecture III-3 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Recrystallization textures in metals and alloys

Recrystallization textures in metals and alloys Recrystallization textures in metals and alloys Uniaxial deformation Aluminium wire F.C.C. Metals and alloys FCC wires retain deformation texture ([111]+[100]) upon recrystallisation Composition / Purity

More information

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak 3.014 Materials Laboratory November 13 th 18 th, 2006 Lab week 3 Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak Objectives: a) Understand magnetic and thermal

More information

Thermotech AL-DATA INFORMATION

Thermotech AL-DATA INFORMATION Thermotech AL-DATA INFORMATION N.SAUNDERS THERMOTECH LTD, SURREY TECHNOLOGY CENTRE 40 OCCAM RD, THE SURREY RESEARCH PARK GUILDFORD, SURREY GU2 7YG, U.K. AL-DATA (VER.8) Thermotech has developed a database

More information

11/2/2018 7:57 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE

11/2/2018 7:57 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Diffusion 1 2 Bonus Outsource a software for heat treatment Install the software Train yourself in using the software Apply case studies on the software Present your work in front of your colleagues

More information

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K)

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Crystal Defects Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Real crystal - all crystals have some imperfections - defects, most atoms are

More information

Solid State-1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[mei, Q. S.] On: 14 February 2008 Access Details: [subscription number 790583253] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

Lecture 3: Description crystal structures / Defects

Lecture 3: Description crystal structures / Defects Lecture 3: Description crystal structures / Defects Coordination Close packed structures Cubic close packing Hexagonal close packing Metallic structures Ionic structures with interstitial sites Important

More information

Binary phase diagrams

Binary phase diagrams inary phase diagrams inary phase diagrams and ibbs free energy curves inary solutions with unlimited solubility Relative proportion of phases (tie lines and the lever principle) Development of microstructure

More information

PHASE EQUILIBRIUM P + F = C + 2

PHASE EQUILIBRIUM P + F = C + 2 PHASE EQUILIBRIUM Component: is either pure metal and/or compound of which an alloy is composed. They refer to the independent chemical species that comprise the system. Solid Solution: It consists of

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

EE CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a

EE CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a 1 EE 1 FALL 1999-00 CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3 z a B Crystal Structure z a z a C y y y A x x Cubic BCC FCC x Crystals are characterized by a unit cell

More information

modeling of grain growth and coarsening in multi-component alloys

modeling of grain growth and coarsening in multi-component alloys Quantitative phase-field modeling of grain growth and coarsening in multi-component alloys N. Moelans (1) Department of metallurgy and materials engineering, K.U.Leuven, Belgium (2) Condensed Matter &

More information

Point coordinates. x z

Point coordinates. x z Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,

More information

Metals I. Anne Mertens

Metals I. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 19/09/2017 25/10/2016 Metals I Anne Mertens Introduction Outline Metallic materials Materials Selection: case

More information

N = N A Al A Al. = ( atoms /mol)(2.62 g /cm 3 ) g /mol. ln N v = ln N Q v kt. = kt ln v. Q v

N = N A Al A Al. = ( atoms /mol)(2.62 g /cm 3 ) g /mol. ln N v = ln N Q v kt. = kt ln v. Q v 4.3 alculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 (773 K) is 7.57 10 23 m -3. The atomic weight and density (at 500 ) for aluminum

More information

Introduction to phase diagrams

Introduction to phase diagrams ASM Phase Diagram Database Diagram No. 901229 Department of Physics and Astronomy Introduction to phase diagrams William Meier Physics 590B Fall 2018 Outline Part 1 Introduction and basics Part 2 Fundamental

More information

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.)

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.) Chapter 12 Metals 12.1 Classification of Solids Covalent Ionic Molecular Metallic Solids Solids Solids Solids Molecular consist of molecules held next to each other by IMF s. Relatively low to moderate

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 5. Diffusion Learning objectives: - To know the

More information

Ferromagnetic Transitions

Ferromagnetic Transitions Ferromagnetic Transitions Module γ -3: Phase Transitions and Magnetic Properties Jorge Feuchtwanger Objectives: 1. understand the chemical order-disorder transition and how it alters magnetic properties,

More information

Chapter 4: Imperfections (Defects) in Solids

Chapter 4: Imperfections (Defects) in Solids Chapter 4: Imperfections (Defects) in Solids ISSUES TO ADDRESS... What types of defects exist in solids? How do defects affect material properties? Can the number and type of defects be varied and controlled?

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

Material Properties and Phase Diagrams

Material Properties and Phase Diagrams PY2M20 Material Properties and Phase Diagrams Lecture 6 P. Stamenov, PhD School of Physics, TCD PY2M20-6 Microstructures in Eutectic ti Systems: I C o < 2 wt% Sn Result: - at extreme ends - polycrystal

More information

Oxidation Reactions. This oxide will from only if thermodynamics favour a reaction of the form: M + O 2 = MO 2. Which must form rapidly (favourable(

Oxidation Reactions. This oxide will from only if thermodynamics favour a reaction of the form: M + O 2 = MO 2. Which must form rapidly (favourable( Oxidation of s Oxidation is a general term used to define the reaction between a metal or alloy and its environment. s or alloys are oxidised when heated to elevated temperatures es in air or highly oxidised

More information

The Stabilities of phase

The Stabilities of phase The Stabilities of phase What is a phase? A phase is a form of matter that is uniform throughout in chemical composition and physical state Example Fig 1. White phosphorus Fig 2.Black phosphorus Fig 3.

More information

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden

More information

www-materials.eng.cam.ac.uk/typd

www-materials.eng.cam.ac.uk/typd Part IB Paper 3: MATERIALS Examples Paper 3/1: TEACH YOURSELF PHASE DIAGRAMS This examples paper forms part of an interactive online resource Teach Yourself Phase Diagrams which is available at: www-materials.eng.cam.ac.uk/typd

More information

INGE Engineering Materials. Chapter 3 (cont.)

INGE Engineering Materials. Chapter 3 (cont.) Some techniques used: Chapter 3 (cont.) This section will address the question how do we determine the crystal structure of a solid sample? Electron microscopy (by direct and indirect observations) Scanning

More information

Diffusional Transformations in Solids

Diffusional Transformations in Solids Diffusional Transformations in Solids The majority of phase transformations that occur in the solid state take place by thermally activated atomic movements. The transformations that will be dealt with

More information

Chapter 9: Phase Diagrams

Chapter 9: Phase Diagrams Chapter 9: Phase Diagrams When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and --a temperature (T ) then... How

More information

Cu-Ag phase diagram Brazil s map

Cu-Ag phase diagram Brazil s map Phase Diagrams [9] Cu-Ag phase diagram Brazil s map 1> Some important definitions Component - chemically recognizable species (Fe and C in carbon steel, H2O and NaCl in salted water). A binary alloy contains

More information