Novel Microfluidic Valving and Packaging Designs for Protein Containing Biochips

Size: px
Start display at page:

Download "Novel Microfluidic Valving and Packaging Designs for Protein Containing Biochips"

Transcription

1 Novel Microfluidic Valving and Packaging Designs for Protein Containing Biochips Chunmeng Lu and L. James Lee Department of Chemical and Biomolecular Engineering The Ohio State University

2 Lab-on on-a-chip O.R.C.A microfluids (Micronics, Inc.) LabCard TM (ACLARA BioSciences, Inc.) Microtiterplate Lilliput (STEAG microparts GmbH) NanoChip TM (Nanogen, Inc.) LabChip (Caliper, Inc.) Point of care -- fast response Small amount of sample < μl Parallel detection Information storage

3 Lab-on on-a-chip 10~100μm 10~10,000nm Application DNA/Gene chips PCR chips Enzyme assays Immunoassays Cell chips (cell reactors) Drug delivery systems Biological functions Micro/nano fluidic Platforms Micro/nano fluidics Fabrication Packaging Pumping Valving (Switching) Mixing/Diluting Metering (Splitting) Separation Master Making - CNC Machining - Lithography - DRIE - Electroplating Replication - Casting - Embossing - Injection molding Surface Modification Platform Bonding Reagent Loading Integration Control Circuit Sensors/Detectors

4 ELISA Enzyme-linked Immuno-Sorbent Assay Bioassays in life sciences research Food Safety detection of foodborne pathogens and toxins Biodiagnostics detection of cancer and immuno diseases Environmental pollutants National security detection of bio- and chemi-warfare agents $5-10B/yr. ELISA market for cancer, HIV, food and water detection!

5 Schematic of ELISA Incubation Washing Incubation Washing Incubation Washing Incubation Washing Blocking protein Antigen Conjugate Substrate 1 st antibody adsorption Blocking 1 st antibody Blocking protein Antigen Conjugate (2 nd antibody) Antibody - antigen reaction Enzyme Substrate Conjugate binding Detectable product Enzymatic reaction High Selectivity!! High Sensitivity!!

6 Conventional 96-well ELISA Time consuming (hours to 2~3 days) Immunoreaction is diffusion controlled Long incubation time (several hours) Relatively large reagent consumption (several hundred μl) Labor intensive Inconsistent results

7 CD Microfluidic Platform System Point of care -- fast response Small amount of sample -- < μl Parallel detection Information storage

8 Pumping and Valving Driving Force Centrifugal force Capillary Valve Balance of centrifugal force and capillary force Center of CD F C R 2 R 1 F S Chamber θ ω f b = π 2 γ sin θ ρ R ΔR d H

9 M. J. Madou, L.J. Lee, S. Daunert, K. W. Koelling, S. Lai, C-H Shih, Biomedical Microdevices, 2001 Pumping and Valving - Flow Sequencing Flow Sequencing 1400 Burst frequencies of different chambers based on DI water Burst Frequency (rpm) Design First CD Second CD Displacement in Optode Chamber # Chamber index: 1- Calibration 1; 2- Wash 1; 3- Calibration 2; 4- Wash 2; 5- Sample

10 CD-ELISA Chip Design Automation Parallel substance conjugate primary antibody washing solution blocking protein antigen waste measurement

11 Issues Design: dimension control; aspect ratio; multiple depth; many reservoirs Protein blocking: Valving Protein preloading: Bonding

12 CD Manufacturing Mask fabrication (metal mask) multi-layer photolithography (SU-8 mold) Assembly CAD design Electroplating (Nickel mold)

13 Design Issues Higher aspect ratio desirable Multiple depth is needed for a larger design window for 9-reservoir CD and bubble free sample loading Mold fabrication is more difficult Mold release First layer Second layer Electroplating Nickel mold

14

15 Issues Flow sequence: dimension; aspect ratio; multiple depth, more reservoirs Protein blocking: Valving Protein preloading: Bonding

16 Protein Issues in Capillary Valving Surface property changes after protein blocking The valving capacity lost or reduced w/o protein blocking with protein blocking

17 Principle of Super-hydrophobicity Wensel s theory cos θ = ( γ γ ) / γ r sv sl lv (1) r=real surface area/projected surface area (roughness factor) Fig.1 Cassie s theory cosθ* = f cosθ (1 f ) (2) f is the solid fraction at the interface Fig.2

18 Plasma Treated and Surface Microstructured PMMA Typical PMMA θ~ 73 º Fluorine plasma (CHF3) treated PMMA surface θ ~ 108º Fluorine plasma treated micro-patterned PMMA surface θ > 160º, f=0.1

19 Effect of Protein Blocking on Contact Angle Treat method and substrate materials 0 min 5 min No plasma without protein treatment (PMMA) Picture of Teflon-PLA Edited image Young-Laplace Equation: γ sv γ sl cosθ = γ Lv Calculated result γlv γsl θ Reference Plane γsv No plasma with protein treatment (PMMA) No plasma with protein treatment (PLGA) No plasma with protein treatment (Tape) Controlled environment CCD camera Drop profile analysis Treatment BSA solution=1.0% Testing BSA solution=0.2% No plasma with protein treatment(coc) With plasma with protein treatment (PMMA) With plasma without protein treatment (PMMA) With plasma with protein (PMMA with microfeaturel)

20 Fishbone Design Based on Superhydrophobicity valve l Hydrophilic surface Protein solution d w Fishbone design Advantages: Protein-proof with superhydrophobic property Easy fabrication (embossing or injection molding) Easy alignment of bonding Protein solution With food color

21 Blocking Process Simulation (Flow-3D ) and Visualization Channel: 200µm) Flow speed: 2mm/s Hydrophobic Hydrophilic PMMA surface w/o plasma treatment m Hydrophobic surface with plasma treatment

22 calculated burst frequency Top view φ Top Hc φ Bottom F Bottom Side view PMMA F Right Wc θ F Left θ Tape f = ω / 2π = 2γ sinθ γ (cosθtop + cosθ Wc H c 2 4π ρδrr bottom ) 1/ 2 Side view Top and bottom view

23 Holding pressure test Micrometer Optical microscope Water tank Microchip Static pressure Centrifugal force

24 Experimental vs. theoretical Burst frequency Single channel -Syringe injection plus vacuum removal CD device -Centrifugal force Parameter Protein Treatment Type R1 (mm) R2 (mm) R_delta Width Valve wt% BSA soak Valve wt% BSA soak Valve3 0.1 wt% BSA soak Valve4 0.1 wt% BSA soak Valve5 0.1 wt% BSA soak Why discrepant? -bonding defect -local defect Depth(mm) (mn/m) Density Burst Freq loading defect Exp. Burst Freq Match? YES NO YES NO YES

25 Issues Flow sequence: dimension; aspect ratio; multiple depth; more reservoirs Protein issues: Valving Protein preloading: Bonding

26 Platform Bonding Methods Silicon/Glass/Metal Materials: Anodic bonding Fusion bonding Eutectic bonding Adhesive bonding Polymeric Materials: Welding (hot plate, laser, ultrasound) Lamination ( adhesive tape, film thermal bonding) Chemical (solvent) bonding Well developed in IC industry Usually high temperature, high voltage, or high pressure most not applicable to polymers Well developed in polymer industry Applicable mainly to relatively large features (several hundred microns) Typical dimensions in BioNEMS/MEMS applications: 10 nm ~ 100 μm

27 Surface T g of PS under CO 2 Particle Penetration Depth Surface Layer Thickness Surface T g Y. Yang, L.J. Lee

28 CO 2 Bonding Experimental Setup CO 2 gas Heating blocks N 2 gas Chip assembly Stopper CO2 bonding (200psi, 75psi, 1 hour)

29 CO 2 Bonding and Testing Results 140 Normalized Signal Intensity CO2 bonding (200psi, 75psi, 1 hour, PLGA interlayer) 0 Thermal CO2 Control CO2 bonded: 120umx150um Bonding Method (injection molded) Thermal lamination: 140ºC, 10sec

30 Collaboration with Ritek and Tecan BioLOC/OSU Microfluidics design Surface modification Reagent loading Packaging RITEK CD manufacturing Tecan Reader (detection/equipment) Software development

Alternative MicroFabrication and Applications in Medicine and Biology

Alternative MicroFabrication and Applications in Medicine and Biology Alternative MicroFabrication and Applications in Medicine and Biology Massachusetts Institute of Technology 6.152 - Lecture 15 Fall 2003 These slides prepared by Dr. Hang Lu Outline of Today s Materials

More information

D Eggenstein-Leopoldshafen, Germany 2 University of Karlsruhe (TH), Institute for Microstructure Technology (IMT),

D Eggenstein-Leopoldshafen, Germany 2 University of Karlsruhe (TH), Institute for Microstructure Technology (IMT), Sub-µ structured Lotus Surfaces Manufacturing M. Worgull 1, M. Heckele 1, T. Mappes 2, B. Matthis 1, G. Tosello 3, T. Metz 4, J. Gavillet 5, P. Koltay 4, H. N. Hansen 3 1 Forschungszentrum Karlsruhe (FZK),

More information

CENTRIFUGAL MICROFLUIDICS

CENTRIFUGAL MICROFLUIDICS CENTRIFUGAL MICROFLUIDICS Yoon-Kyoung Cho School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea ABSTRACT Lab-on-a-disc, in which

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Micro Injection Molding of Micro Fluidic Platform

Micro Injection Molding of Micro Fluidic Platform Micro Injection Molding of Micro Fluidic Platform S. C. Chen, J. A. Chang, Y. J. Chang and S. W. Chau Department of Mechanical Engineering, Chung Yuan University, Taiwan, ROC Abstract In this study, micro

More information

FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY

FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY Tom Huang, 1,5 Woo-Jin Chang, 2 Demir Akin, 2 Rafael Gomez, 2 Rashid Bashir, 2,3 Nathan Mosier, 4 and Michael R.

More information

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Other Polymer Techniques Embossing Low cost High throughput Structures as small as 25 nm Injection molding Features

More information

High-throughput Immunoassay through In-channel Microfluidic Patterning

High-throughput Immunoassay through In-channel Microfluidic Patterning Supporting Information High-throughput Immunoassay through In-channel Microfluidic Patterning Chunhong Zheng, a,b Jingwen Wang, a Yuhong Pang, a,b Jianbin Wang, a Wenbin Li, c Zigang Ge,*,a and Yanyi Huang*,a,b

More information

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication Outline Introduction to the LIGA Microfabrication Process Dr. Bruce K. Gale Fundamentals of Microfabrication What is LIGA? The LIGA Process Lithography Techniques Electroforming Mold Fabrication Analyzing

More information

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis Supporting Information: Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis Cindy K. Harnett, Yehya M. Senousy, Katherine A. Dunphy-Guzman #, Jeremy Templeton * and Michael

More information

Quality Analysis of Periodical Microstructures, Created By Using High Frequency Vibration Excitation

Quality Analysis of Periodical Microstructures, Created By Using High Frequency Vibration Excitation OPEN ACCESS Conference Proceedings Paper Sensors and Applications www.mdpi.com/journal/sensors Quality Analysis of Periodical Microstructures, Created By Using High Frequency Vibration Excitation Rokas

More information

Bio MEMS Class -1 st week

Bio MEMS Class -1 st week Bio MEMS Class -1 st week Jang, Jaesung Ref: Bashir ADDR Review paper, 2004. 1 Introduction Bio-MEMS: devices or systems, constructed using techniques inspired from micro/nano-scale fabrication, that are

More information

FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING. Chao-Heng Chien, Hui-Min Yu,

FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING. Chao-Heng Chien, Hui-Min Yu, Stresa, Italy, 26-28 April 2006 FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING, Mechanical Engineering Department, Tatung University 40 Chung Shan N. Rd. Sec. 3 Taipei, Taiwan ABSTRACT In MEMS

More information

Surface Plasmon Resonance Analyzer

Surface Plasmon Resonance Analyzer Surface Plasmon Resonance Analyzer 5 6 SPR System Based on Microfluidics Wide Dynamic Range Kinetic Analysis by Detection of Association /Dissociation of Bio-Molecules Measuring of Mass Change below

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2018 Supplementary Information Additional Methods The HYPER pad fabrication The HYPER pad has a

More information

The content is broken down into the following outline:

The content is broken down into the following outline: Microfluidics has been around for a long time now, yet there are so many silos of information, and so many folks offering a variety of solutions, it s hard to ask the right questions to ensure you're choosing

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2018 Supplementary Information Additional Methods The HYPER pad fabrication The HYPER pad has a

More information

The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial

The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial The BioFlux 200 System Using Well Plate Microfluidics for Live Cell Assays Product Overview and Tutorial Introduction to the BioFlux System Enables live-cell assays with precisely-controlled shear flow

More information

Rapid Prototyping of Purification Platforms

Rapid Prototyping of Purification Platforms Rapid Prototyping of Purification Platforms Tom Huang, Nathan Mosier, Michael Ladisch Department of Agricultural and Biological Engineering Weldon School of Biomedical Engineering Laboratory of Renewable

More information

Providing Technical Solutions for Biological Processes and Medical Devices

Providing Technical Solutions for Biological Processes and Medical Devices Cooperations, clients and partners Our R&D services range from strategic background research and bilateral industrial projects to the coordination of industrial project consortia in, for instance, joint

More information

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures

SUPPLEMENTAL INFORMATION: 1. Supplemental methods 2. Supplemental figure legends 3. Supplemental figures Supplementary Material (ESI) for Lab on a Chip This journal is The Royal Society of Chemistry 2008 A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound

More information

MICROFLUIDIC STRUCTURES FOR SINGLE CELL ANALYSIS

MICROFLUIDIC STRUCTURES FOR SINGLE CELL ANALYSIS MICROFLUIDIC STRUCTURES FOR SINGLE CELL ANALYSIS CAROLINE BECK ADIELS MICRO- AND NANOPROCESSING TECHNOLOGIES, MARCH 2015 What is microfluidics? Fairly young, interdisciplinary research field Evolved from:

More information

BIO-MEDIATED ASSEMBLY OF FUNCTIONALIZED MICROBEADS FOR CAPTURE OF MICROORGANISMS

BIO-MEDIATED ASSEMBLY OF FUNCTIONALIZED MICROBEADS FOR CAPTURE OF MICROORGANISMS BIO-MEDIATED ASSEMBLY OF FUNCTIONALIZED MICROBEADS FOR CAPTURE OF MICROORGANISMS Tom Huang, 1,7 Tao Geng, 2 Demir Akin, 3 Woo-Jin Chang, 3 Jennifer Sturgis, 4 Rashid Bashir, 3,5 Arun K. Bhunia, 2 J. Paul

More information

MICROFLUIDIC ASSEMBLY BLOCKS

MICROFLUIDIC ASSEMBLY BLOCKS ELECTRONIC SUPPLEMENTARY INFORMATION MICROFLUIDIC ASSEMBLY BLOCKS Minsoung Rhee 1,2 and Mark A. Burns 1,3, * 1 Department of Chemical Engineering, the University of Michigan 2300 Hayward St. 3074 H.H.

More information

Microfluidic Devices that Capture Bacteria for Growth and Kill Analysis

Microfluidic Devices that Capture Bacteria for Growth and Kill Analysis Microfluidic Devices that Capture Bacteria for Growth and Kill Analysis Michael J. Lochhead, PhD. Accelr8 Technology Corporation Denver, CO AVS Symposium Biomaterial Interfaces Microbe-Surface Interactions

More information

m-mold SHAPE DEPOSITION MANUFACTURING OF CERAMIC PARTS

m-mold SHAPE DEPOSITION MANUFACTURING OF CERAMIC PARTS m-mold SHAPE DEPOSITION MANUFACTURING OF CERAMIC PARTS S.W. NAM, J. STAMPFL, H.C. LIU, S. KANG, F. B. PRINZ Rapid Prototyping Laboratory, Building 530, Room 226, Stanford University, Stanford CA 94305,

More information

Application Note Insulin ELISA on high binding MICROLON 600 and CELLSTAR microplates

Application Note Insulin ELISA on high binding MICROLON 600 and CELLSTAR microplates Application Note Insulin ELISA on high binding MICROLON 600 and CELLSTAR microplates 1 Introduction ELISA (enzyme-linked immunosorbent assay) is one of the most widely used laboratory techniques in analysis

More information

Femtosecond micromachining in polymers

Femtosecond micromachining in polymers Femtosecond micromachining in polymers Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur fs-micromachining focus laser beam inside

More information

Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, Germany

Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, Germany Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Self-assembled magnetic bead chains for sensitivity enhancement

More information

FAQs for Laboratory Professionals

FAQs for Laboratory Professionals FAQs for Laboratory Professionals QuantiFERON -TB Gold Plus Sample to Insight Contents Questions and answers 3 Test principle 3 Blood collection 4 The blood hasn t reached the black mark on the side of

More information

A new method to fabricate micro-structured products by. using a PMMA mold made by X-ray lithography

A new method to fabricate micro-structured products by. using a PMMA mold made by X-ray lithography A new method to fabricate micro-structured products by using a PMMA mold made by X-ray lithography Hiroyuki Ikeda SR center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan Abstract

More information

A Novel Extrusion Microns Embossing Method of Polymer Film

A Novel Extrusion Microns Embossing Method of Polymer Film Modern Mechanical Engineering, 2012, 2, 35-40 http://dx.doi.org/10.4236/mme.2012.22005 Published Online May 2012 (http://www.scirp.org/journal/mme) A Novel Extrusion Microns Embossing Method of Polymer

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

Micro-Nano Fabrication Research

Micro-Nano Fabrication Research Micro-Nano Fabrication Research Technical Education Quality Improvement Programme 22-23 December 2014 Dr. Rakesh G. Mote Assistant Professor Department of Mechanical Engineering IIT Bombay rakesh.mote@iitb.ac.in;

More information

Fabrication of sub-100nm thick Nanoporous silica thin films

Fabrication of sub-100nm thick Nanoporous silica thin films Fabrication of sub-100nm thick Nanoporous silica thin films Abstract M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill Department of chemical and biological engineering, Rensselaer Polytechnic Institute Low refractive

More information

Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195

Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 Supplementary information Contact Angle Changes Induced by Immunocomplex Formation Jong-Hoon Kim, a Amy Q. Shen, a Kyong-Hoon Lee, b Gerard A. Cangelosi c and Jae-Hyun Chung* a a Department of Mechanical

More information

PRODUCT DESCRIPTION. Ordyl SY 300 could be used for sealing application, due to the capability to be pressed together with a top plate.

PRODUCT DESCRIPTION. Ordyl SY 300 could be used for sealing application, due to the capability to be pressed together with a top plate. ORDYL SY 300 PRODUCT DATA SHEET Edition 06 12 March 2018 PRODUCT DESCRIPTION Ordyl SY 300 is a solvent type permanent dry film for special MEMS applications. The Ordyl SY 300 in connection with his auxiliary

More information

Nano-imprinting Lithography Technology І

Nano-imprinting Lithography Technology І Nano-imprinting Lithography Technology І Agenda Limitation of photolithograph - Remind of photolithography technology - What is diffraction - Diffraction limit Concept of nano-imprinting lithography Basic

More information

Precision Electroforming in High-Strength NiColoy

Precision Electroforming in High-Strength NiColoy Taking the Stress out of Electroforming www.nicoform.com Precision Electroforming in High-Strength NiColoy Copyright 2007 NiCoForm, Inc. (Rochester, NY) Electroforming What is it? What is it good for?

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

How Aculon Surface Coatings are Enabling Medical Devices

How Aculon Surface Coatings are Enabling Medical Devices How Aculon Surface Coatings are Enabling Medical Devices AGENDA Overview Aculon surface treatment for medical devices Electronics Protection Repellency Hydrophilic Q&A OVERVIEW Aculon is a leading provider

More information

Fabrication of Oxygenation Microfluidic Devices for Cell Cultures

Fabrication of Oxygenation Microfluidic Devices for Cell Cultures Fabrication of Oxygenation Microfluidic Devices for Cell Cultures Shauharda Khadka Department of Engineering Physics, Ramapo College of New Jersey, Mahwah, NJ Gerardo Mauleon and David T. Eddington Department

More information

ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE

ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE ULTRAPRECISION MICROMACHINING OF MICROFLUIDIC DEVICES BY USE OF A HIGH-SPEED AIRBEARING SPINDLE Chunhe Zhang 1, Allen Y. Yi 1, Lei Li 1, L. James Lee 1, R. Ryan Vallance 2, Eric Marsh 3 1 The Ohio State

More information

Immersed Superhydrophobic Surfaces: Anti-Fouling and Drag Reduction Surfaces

Immersed Superhydrophobic Surfaces: Anti-Fouling and Drag Reduction Surfaces Immersed Superhydrophobic Surfaces: Anti-Fouling and Drag Reduction Surfaces Glen McHale, Michael I. Newton, Carl R. Evans, Paul Roach, Neil J. Shirtcliffe, Yong Zhang School of Science & Technology Biomimetic

More information

1. Introduction. What is implantation? Advantages

1. Introduction. What is implantation? Advantages Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

Mass Fabrication of Microstructured Parts with SR - Requirements to Throughput, Cost, and Quality

Mass Fabrication of Microstructured Parts with SR - Requirements to Throughput, Cost, and Quality Mass Fabrication of Microstructured Parts with SR - Requirements to Throughput, Cost, and Quality Markus Arendt 1, Pascal Meyer 2, Joachim Schulz 2 1 ANKA Angströmquelle Karlsruhe GmbH, P.O. Box 36 40,

More information

Polymer-based Microfabrication

Polymer-based Microfabrication Polymer-based Microfabrication PDMS SU-8 PMMA Hydrogel 1 Soft Lithography Developed by Whitesides, et. al A set of techniques for microfabrication based on the use of lithography, soft substrate materials

More information

An Introduction to Immunoassay

An Introduction to Immunoassay 101 Innovation Boulevard, Suite 302, State College, PA 16803 USA Tel: 814.234.7748 Fax: 814.234.1608 www.salimetrics.com An Introduction to Immunoassay Immunoassay is an important laboratory technique

More information

Soft Fabrication and Polymers

Soft Fabrication and Polymers Introduction to BioMEMS & Medical Microdevices Soft Fabrication and Polymers Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ R012408

More information

The Effect of Hydrophobic Patterning on Micromolding of Aqueous-Derived Silk Structures

The Effect of Hydrophobic Patterning on Micromolding of Aqueous-Derived Silk Structures The Effect of Hydrophobic Patterning on Micromolding of Aqueous-Derived Silk Structures Konstantinos Tsioris 1, Robert D White 1, David L Kaplan 2, and Peter Y Wong 1 1 Mechanical Engineering, Tufts University,

More information

Micro Fabrication : Soft Lithography

Micro Fabrication : Soft Lithography Micro Fabrication : Soft Lithography Last Class: 1. Electrowetting on Dielectric (EWOD) 2. Setup in EWOD 3. Basic Manipulations : Mixing Splitting, Translation 4. Optoelectrowetting (OEW) Today s Contents:

More information

An expedition to modern optical bio-diagnostic tools

An expedition to modern optical bio-diagnostic tools An expedition to modern optical bio-diagnostic tools Advisor Prof. James F. Rusling Dhanuka Wasalathanthri CHEM 5395 How sensitive it is? Prostate Specific Antigen (PSA) in serum (normal) - 0.5 to 2 ng

More information

A new trend of wet coating technology from mass production to ubiquitous applications

A new trend of wet coating technology from mass production to ubiquitous applications A new trend of wet coating technology from mass production to ubiquitous applications An-Bang Wang, Yi-Kuang Yen, Yu-Wen Hsieh, Institute of Applied Mechanics National Taiwan University, Taipei, Taiwan

More information

Evaluation of length scale effects for micro and nano-sized cantilevered structures

Evaluation of length scale effects for micro and nano-sized cantilevered structures University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2010 Evaluation of length scale effects for micro and nano-sized

More information

Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric- Pressure Plasma System

Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric- Pressure Plasma System 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Surface Wettability Properties of 304 Stainless

More information

Fabrication of Oxygenation Microfluidic Devices for Cell Cultures

Fabrication of Oxygenation Microfluidic Devices for Cell Cultures 1 Fabrication of Oxygenation Microfluidic Devices for Cell Cultures Shauharda Khadka skhadka@ramapo.edu Department of Engineering Physics, Ramapo College of New Jersey Gerardo Mauleon mauleon2@uic.edu

More information

Case Studies of Micro-Biosensors

Case Studies of Micro-Biosensors Case Studies of Micro-Biosensors Lecture April 18 Jeff T.H.Wang website: http://pegasus.me.jhu.edu/~thwang/ New course : BioMEMS and BioSensing (Spring 04 ) Advantages of Micro Biosensors Bench process

More information

Droplet Routing Simulation for Digital Microfluidic Biochip

Droplet Routing Simulation for Digital Microfluidic Biochip Droplet Routing Simulation for Digital Microfluidic Biochip Thesis submitted in partial fulfillment of the Requirement for the degree of Master Of Technology in Computer Science and Engineering 2008 By

More information

Fluorescent Antibody technique Can identify microorganisms in clinical specimens and can detect the presences of a specific antibody in

Fluorescent Antibody technique Can identify microorganisms in clinical specimens and can detect the presences of a specific antibody in Lecture:7 Practical immunit Fluorescent Antibody technique Can identify microorganisms in clinical specimens and can detect the presences of a specific antibody in serum. These techniques combine fluorescent

More information

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films R. K. SONI, MEENU TEOTIA* Department of Chemistry C.C.S, University, Meerut Ultraviolet radiation [UVR] UVR is divided

More information

Microfluidic for Testing Mechanical Properties of Cancer Cells

Microfluidic for Testing Mechanical Properties of Cancer Cells Kaleidoscope Volume 11 Article 82 July 2014 Microfluidic for Testing Mechanical Properties of Cancer Cells Adrianne Shearer Follow this and additional works at: https://uknowledge.uky.edu/kaleidoscope

More information

Figure SI-1. Fabrication process of the microchip. (A) Heater and sensor. 1) Au/Cr

Figure SI-1. Fabrication process of the microchip. (A) Heater and sensor. 1) Au/Cr Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supplemental Information 1. Microfluidic Device Fabrication Figure SI-1. Fabrication process

More information

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine

Nanoimprinting in Polymers and Applications in Cell Studies. Albert F. YEE Chemical Engineering & Materials Science UC Irvine Nanoimprinting in Polymers and Applications in Cell Studies Albert F. YEE Chemical Engineering & Materials Science UC Irvine Presentation outline Motivation Reversal imprinting Soft inkpad imprinting on

More information

Spying on Cells: Cellular and Subcellular Analysis using Novel Polymeric Micro- and Nanostructures. Xin Zhang Associate Professor.

Spying on Cells: Cellular and Subcellular Analysis using Novel Polymeric Micro- and Nanostructures. Xin Zhang Associate Professor. Spying on Cells: Cellular and Subcellular Analysis using Novel Polymeric Micro- and Nanostructures Xin Zhang Associate Professor Boston University US-Korea Nano Forum April 2008 Road Map of Nanobio-sensors

More information

Analysis of pressure-driven air bubble elimination in a. microfluidic device

Analysis of pressure-driven air bubble elimination in a. microfluidic device Analysis of pressure-driven air bubble elimination in a microfluidic device Joo H. Kang, a Yu Chang Kim a,b and Je-Kyun Park* a a Department of Bio and Brain Engineering, Korea Advanced Institute of Science

More information

Fabrication of Microchannel and Micro Chamber for Microfluidic Lab-on-Chip

Fabrication of Microchannel and Micro Chamber for Microfluidic Lab-on-Chip Australian Journal of Basic and Applied Sciences, 7(1): 166-170, 2013 ISSN 1991-8178 Fabrication of Microchannel and Micro Chamber for Microfluidic Lab-on-Chip 1 U. Hashim, 1 Tijjani Adam and 2 Peter Ling

More information

Data Sheet. CTLA4:B7-1[Biotinylated] Inhibitor Screening Assay Kit Catalog # Size: 96 reactions

Data Sheet. CTLA4:B7-1[Biotinylated] Inhibitor Screening Assay Kit Catalog # Size: 96 reactions Data Sheet CTLA4:B7-1[Biotinylated] Inhibitor Screening Assay Kit Catalog # 72009 Size: 96 reactions DESCRIPTION: The activation of naïve T cells requires two signals, the specific T cell receptor recognition

More information

Surface Plasmons and Their Bio- Applications

Surface Plasmons and Their Bio- Applications Surface Plasmons and Their Bio- Applications Pei-Kuen Wei Associate Research Fellow, Research Center for Applied Sciences Academia Sinica, Taipei, Taiwan Outline 1. Introduction to Immunoassay 2. Surface

More information

Aero MEMS. Micro electronics. Pressure sensor Shear stress sensor Hot wire sensor

Aero MEMS. Micro electronics. Pressure sensor Shear stress sensor Hot wire sensor Aero MEMS Micro electronics Pressure sensor Shear stress sensor Hot wire sensor Micro flap Micro bubble Micro injector M 3 System (Micro electronics, Micro sensor & Micro actuator) for aerodynamic and

More information

Transfer Printing of Thermoreversible Ion Gels for Flexible Electronics

Transfer Printing of Thermoreversible Ion Gels for Flexible Electronics Supporting Information Transfer Printing of Thermoreversible Ion Gels for Flexible Electronics Keun Hyung Lee, Sipei Zhang, Yuanyan Gu, Timothy P. Lodge * and C. Daniel Frisbie * Department of Chemical

More information

FAQs for Laboratory Professionals. QuantiFERON -TB Gold

FAQs for Laboratory Professionals. QuantiFERON -TB Gold FAQs for Laboratory Professionals QuantiFERON -TB Gold Questions and answers These Frequently Asked Questions (FAQs) relate to the QuantiFERON -TB Gold (QFT ) assay. The answers provided are meant to act

More information

nanoprecipitation mpeg-pla 2 nd Emulsion mpeg-pla in DCM

nanoprecipitation mpeg-pla 2 nd Emulsion mpeg-pla in DCM THERAPEUTIC NANOTECHNOLOGY LAB MODULE Location: BioNano Lab, 3119 Micro and Nanotechnology Laboratory (MNTL) Instructor: Jianjun Cheng, Assistant Professor of Materials Science and Engineering Lab Assistants:

More information

Atul Gupta, Eric Snyder, Christiane Gottschalk, Kevin Wenzel, James Gunn

Atul Gupta, Eric Snyder, Christiane Gottschalk, Kevin Wenzel, James Gunn First Demonstration of Photoresist Cleaning for Fine-Line RDL Yield Enhancement by an Innovative Ozone Treatment Process for Panel Fan-out and Interposers Atul Gupta, Eric Snyder, Christiane Gottschalk,

More information

Micromilling Manufacturing for Polymeric Biochips

Micromilling Manufacturing for Polymeric Biochips Micromilling Manufacturing for Polymeric Biochips Pin-Chuan Chen Abstract Microfluidics technology has developed rapidly over the past two decades, with diverse applications in various fields but particularly

More information

Be careful what you wish for

Be careful what you wish for Be careful what you wish for Four Point Probe Key measurement tool in microelectronics fabrication What is Four Point Probing Four Point Probing is a method for measuring the resistivity of a substance.

More information

Soft Lithography: MIMIC. Micro Contact Printing. Microtransfer Molding. Soft Lithography: Replica Molding. Soft Lithography.

Soft Lithography: MIMIC. Micro Contact Printing. Microtransfer Molding. Soft Lithography: Replica Molding. Soft Lithography. Can We Measure Everything? Microfabrication Using Polymers Dr. Bruce K. Gale ENGR 494C and 594C Polymers for Microfabrication Examples diverse PDMS PMMA Polyurethane Polyimide Polystyrene Disadvantages

More information

Ultrasensitive and Highly Stable Resistive Pressure Sensors with. Biomaterial-Incorporated Interfacial Layers for Wearable

Ultrasensitive and Highly Stable Resistive Pressure Sensors with. Biomaterial-Incorporated Interfacial Layers for Wearable Supporting Information Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces Hochan Chang,,

More information

SUPPLEMENTARY MATERIALS. An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping

SUPPLEMENTARY MATERIALS. An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping SUPPLEMENTARY MATERIALS An Integrated Microfluidic Platform for In-situ Cellular Cytokine Secretion Immunophenotyping Nien-Tsu Huang a #, Weiqiang Chen a,b #, Bo-Ram Oh a, Timothy T. Cornell c, Thomas

More information

Biomarker Discovery using Surface Plasmon Resonance Imaging

Biomarker Discovery using Surface Plasmon Resonance Imaging F e a t u r e A r t i c l e Feature Article Biomarker Discovery using Surface Plasmon Resonance Imaging Elodie LY-MORIN, Sophie BELLON, Géraldine MÉLIZZI, Chiraz FRYDMAN Surface Plasmon Resonance (SPR)

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Fabricating Microfluidic Devices for High-Density Biological Assays

Fabricating Microfluidic Devices for High-Density Biological Assays Fabricating Microfluidic Devices for High-Density Biological Assays Todd Thorsen Department of Mechanical Engineeering MIT Panamerican Advanced Studies Institute Micro-Electro-Mechanical Systems San Carlos

More information

Design and Optimization of a Digital Microfluidic Biochip for Protein Crystallization

Design and Optimization of a Digital Microfluidic Biochip for Protein Crystallization Design and Optimization of a Digital Microfluidic Biochip for Protein Crystallization Tao Xu 1 and Krishnendu Chakrabarty 1 and Vamsee K. Pamula 2 1 Department of Electrical and Computer Engineering Duke

More information

MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY

MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY MICROSTRUCTURE-BASED ANALYTICS AND SENSOR TECHNOLOGY 1 CTCelect: Isolation of single CTCs 2 Diagnostic fluidic chip 3 Fluidic chip for cell isolation 4 Helium detector 5 MEMS micro densitometer 1 APPLICATION

More information

Optical evaluation of periodical microstructure, replicated using ultrasonic hot imprint, according to process regimes

Optical evaluation of periodical microstructure, replicated using ultrasonic hot imprint, according to process regimes Optical evaluation of periodical microstructure, replicated using ultrasonic hot imprint, according to process regimes Rokas Šakalys 1, Giedrius Janušas 2, Arvydas Palevičius 3, Elingas Čekas 4 Kaunas

More information

9-11 April 2008 Micro-electroforming Metallic Bipolar Electrodes for Mini-DMFC Stacks

9-11 April 2008 Micro-electroforming Metallic Bipolar Electrodes for Mini-DMFC Stacks 9-11 April 8 Micro-electroforming Metallic Bipolar Electrodes for Mini-DMFC Stacks R. F. Shyu 1, H. Yang, J.-H. Lee 1 Department of Mechanical Manufacturing Engineering, National Formosa University, Yunlin,

More information

PDMS coated grip. Au film. Delamination Zone

PDMS coated grip. Au film. Delamination Zone P Delamination Zone a a PDMS coated grip t Au film Supplementary Figure S1. A schematic diagram of delamination zone at the interface between the Au thin film specimen under the tensile load, P, and the

More information

COLLABORATIVE PROJECT

COLLABORATIVE PROJECT COLLABORATIVE PROJECT Collaborative pilot project: combination of advanced laser processes for the rapid fabrication of microfluidic devices made of polymer materials Kohler/KIT TABLE OF CONTENTS 1. Introduction...

More information

Thermal Nanoimprinting Basics

Thermal Nanoimprinting Basics Thermal Nanoimprinting Basics Nanoimprinting is a way to replicate nanoscale features on one surface into another, like stamping copies are made by traditional fabrication techniques (optical/ebeam lith)

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

ImmunoTag Human HIV ( antibodies plus p24 antigen ELISA Kit

ImmunoTag Human HIV ( antibodies plus p24 antigen ELISA Kit G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name ImmunoTag Human HIV (1+ 0 + 2 antibodies plus p24 antigen ELISA Kit A Complete ELISA kit

More information

Photolithography I ( Part 2 )

Photolithography I ( Part 2 ) 1 Photolithography I ( Part 2 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Ceramic and glass technology

Ceramic and glass technology 1 Row materials preperation Plastic Raw materials preperation Solid raw materials preperation Aging wet milling mastication Mixing seving Grain size reduction Milling Crushing Very fine milling Fine milling

More information

INTRODUCTION Intrinsic cellular mechanical properties (e.g., instantaneous Young s modulus (E instantaneous ) and

INTRODUCTION Intrinsic cellular mechanical properties (e.g., instantaneous Young s modulus (E instantaneous ) and TUMOR CELL CLASSIFICATION BASED ON INSTANTANEOUS YOUNG S MODULUS USING CONSTRICTION CHANNEL BASED MICROFLUIDIC DEVICES Y. Luo 1, D. Chen 1, Y. Zhao 1, C. Wei 1, X. Zhao 2, W. Yue 2, R. Long 3*, J. Wang

More information

Developments in low-temperature metal-based packaging

Developments in low-temperature metal-based packaging Developments in low-temperature metal-based packaging 2011. 12.14 Jiyoung Chang and Liwei Lin Ph.D. Candidate, Department of Mechanical Engineering University of California at Berkeley 1 1 Contents Project

More information

Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures.

Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures. Enhancement of electrochemical biosensor performances using redox cycling at 3D sub-micrometer scale electrode architectures Heungjoo Shin School of Mechanical and Nuclear Engineering Contents 1 Introduction

More information

Assay of Cytokines in Tissue Culture Supernatants AfCS Procedure Protocol PP Version 1, 03/17/04

Assay of Cytokines in Tissue Culture Supernatants AfCS Procedure Protocol PP Version 1, 03/17/04 AfCS Procedure Protocol PP00000223 Version 1, 03/17/04 The Bio-Plex cytokine assay employs a liquid suspension array for quantification of cytokines in tissue culture supernatants or serum. Using this

More information

AML. AML- Technical Benefits. 4 Sept Wafer Bonding Machines & Services MEMS, IC, III-Vs.

AML. AML- Technical Benefits. 4 Sept Wafer Bonding Machines & Services  MEMS, IC, III-Vs. AML AML- Technical Benefits 4 Sept 2012 www.aml.co.uk AML In-situ Aligner Wafer Bonders Wafer bonding capabilities:- Anodic Bonding Si-Glass Direct Bonding e.g. Si-Si Glass Frit Bonding Eutectic Bonding

More information

Manufacturing Technologies for MEMS and SMART SENSORS

Manufacturing Technologies for MEMS and SMART SENSORS 4 Manufacturing Technologies for MEMS and SMART SENSORS Dr. H. K. Verma Distinguished Professor (EEE) Sharda University, Greater Noida (Formerly: Deputy Director and Professor of Instrumentation Indian

More information

Laser Processes for Micro and Nano Scale Functionalisation of Surfaces

Laser Processes for Micro and Nano Scale Functionalisation of Surfaces Laser Processes for Micro and Nano Scale Functionalisation of Surfaces Claudia Hartmann Sebastian Theiß, Fritz Klaiber, Arnold Gillner Hannover, 21.04.2010 Outline Functional structures examples from nature

More information