Applications of Calculus to Forensic Science

Size: px
Start display at page:

Download "Applications of Calculus to Forensic Science"

Transcription

1 Cribas 1 Applications of Calculus to Forensic Science Emily Cribas Calculus II May 1, 2014

2 Cribas 2 Abstract Forensic science is an ever-growing field of science that can be further subdivided into: toxicology, anthropology, odontology, mathematics, and many others. Applications of calculus to forensic science can most clearly be seen in the fields of forensic biology and pathology. For calculus in forensic biology, DNA sequences use power series as a powerful tool to compare DNA from crime scenes, for example. To put it in simpler terms, power series are to functions what DNA molecules are to people. 1 Specifically for pathologists, calculus is needed to estimate the time of death for victims. Overall, calculus has many applications to many of the subfields and forensics and is often a useful tool in crime scene investigation.

3 Cribas 3 Introduction Since the beginning of the century and even a little before it, shows such as Law and Order, CSI, NCIS, etc, have made forensic science a subject of public fascination. This newfound popularity of a once unexplored and unknown field has popularized the science by making it seem much more interesting and efficient than it might seem. Just like court shows such as Judge Judy and Judge Mathis, these shows have done these professions an injustice by attracting unknowing college students to the major. In actuality, forensic science is the application of scientific knowledge and methodology to legal problems and criminal investigations. 2 It is used to solve crime scene investigations through the use of major sciences such as chemistry, physics, biology, and in this case, mathematics. In most cases, the methods used for this science are time-consuming and thorough, unlike what is portrayed through the media. To enter the forensic science major at Penn State, a student must take introductory chemistry, a chemistry lab, a forensics class covering the essential practices used in the field, and finally, a calculus I course. 3 This is the case for many universities with accredited forensic science programs, but why do students in this major need high-level math knowledge to help convict a criminal? In actuality, mathematics has several applications to forensic science. Anthropologists use linear equations and angle measurements to determine things such as the subpublic angle on the pelvis to determine gender. 3 Blood spatter analysts use trigonometry and asymptotes to determine angles of incidence and points of origin. 4 The forensics fire and explosives unit uses rational equations in gas laws to determine time and type of explosives fired, for example. 5

4 Cribas 4 Basically, mathematics can be applied to any field of forensic science and it is one of the most helpful tools used by scientists in the field. The Use of Power Series in DNA Sequencing Forensic biologists focus more on DNA sequencing using CODIS, the combined DNA investigation system, to compare DNA sequences already in the database to those discovered at crime scenes for example. DNA, deoxyribonucleic acid, is a hereditary material that is constantly replicated in the nuclei of cells. It is a molecule made up of smaller molecules called nucleotides. These nucleotides each consist of a phosphate group, a sugar group, and a nitrogenous base. The nitrogenous bases can be adenine (A), guanine (G), thymine (T), and cytosine (C). The order of these bases can determine what the DNA sequence of an individual may be. These sequences are used to form genes, which provide instructions to the cell on how to create proteins. Along with this, genes also determine physical characteristics that are inherited from parents. Each of these sequences is different for every single person on the planet. Therefore, it can help find individual characteristics to deduce potential subjects to just one. The entire human genome contains about 3 billion bases and about 20,000 genes. 6 Since this can be a haunting and time-consuming task to try and come up with and sequence every single gene by sequencing their respective bases, it is important to find more efficient ways to sequence certain parts of the genome to determine matching DNA. This can be accomplished through the use of calculus, specifically through the use of power series. Power series are to functions what DNA molecules are to people.

5 Cribas 5 Again, DNA sequences are just nucleotide bases rearranged in different orders. The sequence of nucleotides can be compared to a list of numbers. Both are lists of things, much like a normal sequence (a normal sequence is, in fact, a list of numbers.) Both consist of Taylor coefficients, which are numbers that these sequences consist of. In DNA, however, these numbers can be bonded to a basic monomial and added together to form an infinitely long polynomial, the Taylor series, a specific type of power series. 7 Each Taylor series, as discussed in class, is unique to functions, and can be used to perfectly approximate a function. By perfectly approximating DNA, the sequence of it can be perfectly known, matched, and even cloned from an individual. 8 When learning about Taylor series, it was seen that the series of one function can be easily manipulated and adapted to another function. The Taylor series serves as a parent function to the new function, which can be a derivative, antiderivative, or some other similar form of the original function. This perfectly resembles how the similar series of DNA units can be related to offspring, parents, and other family members. The similarities in the Taylor series of related members can be perfectly calculated as well by calculating both series and subtracting the difference. 9 By determining the Taylor series of a DNA sequence, it can be compared to a standard DNA sequence for the database CODIS. What forensic biologists try to figure out is what the power series of someone s DNA is, finding the function f(x), for which it is the Taylor series. Here s a summation of all the comparisons between DNA and Taylor series 10 :

6 Cribas 6 The relationship between power series and DNA molecules is clear, but how exactly can technicians use the information to actually sequence part of someone s DNA? Taylor series are helpful in comparing a more elementary function that can be solved for to any level of accuracy. Once the pattern of the first couple of Taylor coefficients is solved for, a Taylor series can be written for it. Once the Taylor series is written for it, the summations of the series get more and more accurate to what the actual function or original DNA genome actually is. This genome can then be tested to see if it is matching by applying convergence tests to The Use of Differential Equations in Forensic Pathology A different kind of calculus is used my medical examiners and forensic technicians everyday to estimate time of death of a victim. When a victim dies, they experience three stages of death, where the body starts to decompose. The first, livor mortis, occurs twenty minutes to three hours after death. In this stage, the blood settles to the lower part of the body, creating a purplish red discoloration of the skin. 11 Algor mortis is the rate at which the body cools after death. 12 Determining algor mortis is used to estimate time of death. Notably, if the victim has been dead for more than several hours, the change in body temperature may be so large which could sacrifice the accuracy of the time,

7 Cribas 7 because after several hours, the body cannot get any colder, or the changes is temperature start to reachequilibrium with the environment. The last stage is rigor mortis, which is when the body starts to stiffen. This process can last about 72 hours. 13 After this time, it is futile to try to estimate time of death because the temperature has already reached equilibrium with the environment for an uncertain amount of hours or minutes. Importantly, if the body is discovered only a few hours or less after death, it is easiest, and will yield the most accurate results, to determine time of death by using Newton s law of cooling: In this case, k is a constant, u is the temperature of the body discovered at the scene of the crime, and 70 is just an example of what the temperature of the environment could be. As many know, when hot objects are left in a colder atmosphere, the objects, or bodies, in this case, cool down to reach equilibrium with their environment. Newton discovered that this rate of cooling was directly proportional to the difference between the temperature of the object and the environment. 14 It can also be inferred from this law that the more of a difference between the object and the body, for example, if the body is extremely hot compared to the environment, the faster the object/body will cool. To solve for Newton s law of cooling, experience in differential equations and integration techniques is necessary. An example of a problem using this equation is shown below. Basically, the way Newton s law of cooling works is by calculating the instantaneous rate of change for the temperature of a body. To reiterate, the law states that the rate of change in

8 Cribas 8 temperature is proportional to the difference between the temperature of the object and that of the surrounding environment. With both temperatures, it is possible to figure out the constant and the rate by means of integration and the use of the properties of exponential functions. The following problem shows how this method works by determining both constants and, notably, by deriving a clear function between the temperature of a murdered body and time to estimate time of death based on initial conditions. 15

9 Cribas 9

10 Cribas 10

11 Cribas 11 Bibliography Stages.pdf

AGENDA for 10/11/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES:

AGENDA for 10/11/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: AGENDA for 10/11/13 AGENDA: 1. Finish 1.2.3 DNA Analysis Analyzing DNA Samples Using Current Forensic Methods OBJECTIVES: 1. Demonstrate the steps of gel electrophoresis 2. Analyze restriction fragment

More information

AGENDA for 10/10/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: Due Fri, 10-11

AGENDA for 10/10/13 AGENDA: HOMEWORK: Due end of the period OBJECTIVES: Due Fri, 10-11 AGENDA for 10/10/13 AGENDA: 1. 1.2.3 DNA Analysis Analyzing DNA Samples Using Current Forensic Methods OBJECTIVES: 1. Demonstrate the steps of gel electrophoresis 2. Analyze restriction fragment length

More information

How is DNA used to solve crimes?

How is DNA used to solve crimes? How is DNA used to solve crimes? 8 th Grade Forensic Science T. Trimpe http://sciencespot.net/ What is DNA? DNA stands for deoxyribonucleic acid and contains genetic information. It is found on chromosomes

More information

Review Instructions:

Review Instructions: How is DNA used to solve crimes? Review Instructions: Get out a separate sheet of notebook paper Put your name on it Write your partner s name under yours Title the paper- DNA Lecture Review Both people

More information

By the end of today, you will have an answer to: How can 1 strand of DNA serve as a template for replication?

By the end of today, you will have an answer to: How can 1 strand of DNA serve as a template for replication? Name: Period: Date: KIPP NYC College Prep Genetics and Biotech UNIT 9: Introduction to DNA Lecture 4: DNA Modeling and Intro to Replication By the end of today, you will have an answer to: How can 1 strand

More information

Further Reading - DNA

Further Reading - DNA Further Reading - DNA DNA BACKGROUND What is DNA? DNA (short for deoxyribonucleic acid ) is a complex molecule found in the cells of all living things. The blueprint for life, DNA contains all the information

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

GENETICS 1 Classification, Heredity, DNA & RNA. Classification, Objectives At the end of this sub section you should be able to: Heredity, DNA and RNA

GENETICS 1 Classification, Heredity, DNA & RNA. Classification, Objectives At the end of this sub section you should be able to: Heredity, DNA and RNA Classification, Heredity, DNA and Objectives At the end of this sub section you should be able to: RNA Heredity and Variation Gene Expression DNA structure DNA Profiling Protein Synthesis 1. Discuss the

More information

Genetics 101. Prepared by: James J. Messina, Ph.D., CCMHC, NCC, DCMHS Assistant Professor, Troy University, Tampa Bay Site

Genetics 101. Prepared by: James J. Messina, Ph.D., CCMHC, NCC, DCMHS Assistant Professor, Troy University, Tampa Bay Site Genetics 101 Prepared by: James J. Messina, Ph.D., CCMHC, NCC, DCMHS Assistant Professor, Troy University, Tampa Bay Site Before we get started! Genetics 101 Additional Resources http://www.genetichealth.com/

More information

DNA: The Hereditary Molecule

DNA: The Hereditary Molecule 1 CHAPTER DNA: The Hereditary Molecule Chapter 1 Modern Genetics for All Students S 1 CHAPTER 1 DNA: The Hereditary Molecule SECTION A What is DNA?..............................................S5 1. An

More information

DNA RNA Protein. THE DISCOVERY AND STRUCTURE OF DNA (SB2a) What is DNA? SCIENTISTS WHEN? IMPORTANT DISCOVERY

DNA RNA Protein. THE DISCOVERY AND STRUCTURE OF DNA (SB2a) What is DNA? SCIENTISTS WHEN? IMPORTANT DISCOVERY DNA RNA Protein Notes THE DISCOVERY AND STRUCTURE OF DNA (SB2a) SCIENTISTS WHEN? IMPORTANT DISCOVERY Frederick Mieshcer Discovered in the white blood cells Phoebus Levene Oswald Avery Erwin Chargaff Alfred

More information

DNA. Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins

DNA. Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins DNA DNA Deoxyribo- Nucleic Acid Shape = Double Helix (twisted ladder) The purpose of each cell having DNA is to have directions for the cell to make proteins Parts = nucleotide 1. Sugar (deoxyribose) 2.

More information

Appendix A DNA and PCR in detail DNA: A Detailed Look

Appendix A DNA and PCR in detail DNA: A Detailed Look Appendix A DNA and PCR in detail DNA: A Detailed Look A DNA molecule is a long polymer consisting of four different components called nucleotides. It is the various combinations of these four bases or

More information

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1

AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 AGRO/ANSC/BIO/GENE/HORT 305 Fall, 2016 Overview of Genetics Lecture outline (Chpt 1, Genetics by Brooker) #1 - Genetics: Progress from Mendel to DNA: Gregor Mendel, in the mid 19 th century provided the

More information

Genes and Gene Technology

Genes and Gene Technology CHAPTER 7 DIRECTED READING WORKSHEET Genes and Gene Technology As you read Chapter 7, which begins on page 150 of your textbook, answer the following questions. What If...? (p. 150) 1. How could DNA be

More information

The structure of DNA is two phosphate sugar chains held together by nitrogen bases

The structure of DNA is two phosphate sugar chains held together by nitrogen bases Name: Key Block: Define the following terms: 1. Chromosome-organized structures of DNA that stay inside the nucleus 2. DNA-Deoxyribonucleic Acid-the molecule that contains the code for traits 3. Gene-sections

More information

Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION

Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION Chapter 8 DNA STRUCTURE AND CHROMOSOMAL ORGANIZATION Chapter Summary Even though DNA has been known as a biochemical compound for over 100 years, it was not implicated as the carrier of hereditary information

More information

How have humans genetically manipulated other organisms in the past?

How have humans genetically manipulated other organisms in the past? Genetic Engineering Have you eaten genetically modified food? Frito-Lay Corn Chips Cap n Crunch Cereal Kellogg s Corn Flakes General Mills Total Corn Flakes Cereal Quaker Chewy Granola Bars Nabisco Snackwell

More information

The structure, type and functions of a cell are all determined by chromosomes:

The structure, type and functions of a cell are all determined by chromosomes: DNA Basics The structure, type and functions of a cell are all determined by chromosomes: They are found in the nucleus of a cell. These chromosomes are composed of DNA, the acronym for deoxyribonucleic

More information

Structure and Replication

Structure and Replication Structure and Replication 6.A: Students will identify components of DNA, and describe how information for specifying traits of an organism is carried in the DNA 6.B: Students will recognize that components

More information

DNA, Replication and RNA

DNA, Replication and RNA DNA, Replication and RNA The structure of DNA DNA, or Deoxyribonucleic Acid, is the blue prints for building all of life. DNA is a long molecule made up of units called NUCLEOTIDES. Each nucleotide is

More information

DNA STRUCTURE & REPLICATION

DNA STRUCTURE & REPLICATION DNA STRUCTURE & REPLICATION A MODEL OF DNA In 1953, two scientists named Watson & Crick built a model of DNA that demonstrates its exact structure and function. They called this model a double helix, which

More information

Nucleic acids. What important polymer is located in the nucleus? is the instructions for making a cell's.

Nucleic acids. What important polymer is located in the nucleus? is the instructions for making a cell's. Nucleic acids DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including

More information

DNA - The Double Helix

DNA - The Double Helix DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including cell reproduction,

More information

Friedrich Miescher (1869) Isolated nucleic acids from the nuclei of white blood cells

Friedrich Miescher (1869) Isolated nucleic acids from the nuclei of white blood cells Friedrich Miescher (1869) Isolated nucleic acids from the nuclei of white blood cells Collected pus from local hospital bandages After further examination he discovered a substance that he called Nuclein

More information

What is that here we go

What is that here we go Donations Requested We could use some Gummy Bears (we need lots of these) Red Twizzlers Black Twizzlers Why? Well we are going to be making models of DNA! What is that here we go ***I stand by my promise

More information

What is Bioinformatics? Bioinformatics is the application of computational techniques to the discovery of knowledge from biological databases.

What is Bioinformatics? Bioinformatics is the application of computational techniques to the discovery of knowledge from biological databases. What is Bioinformatics? Bioinformatics is the application of computational techniques to the discovery of knowledge from biological databases. Bioinformatics is the marriage of molecular biology with computer

More information

DNA FINGERPRINTING MADE EASY FOR FORENSICS

DNA FINGERPRINTING MADE EASY FOR FORENSICS DNA FINGERPRINTING MADE EASY FOR FORENSICS Presented by Eilene Lyons The St. Louis Community College Florissant Valley Biotechnology Program Some slides are from a downloaded PPT presentation from The

More information

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links

translation The building blocks of proteins are? amino acids nitrogen containing bases like A, G, T, C, and U Complementary base pairing links The actual process of assembling the proteins on the ribosome is called? translation The building blocks of proteins are? Complementary base pairing links Define and name the Purines amino acids nitrogen

More information

Chapter 6. Genes and DNA. Table of Contents. Section 1 What Does DNA Look Like? Section 2 How DNA Works

Chapter 6. Genes and DNA. Table of Contents. Section 1 What Does DNA Look Like? Section 2 How DNA Works Genes and DNA Table of Contents Section 1 What Does DNA Look Like? Section 1 What Does DNA Look Like? Objectives List three important events that led to understanding the structure of DNA. Describe the

More information

Central Dogma. 1. Human genetic material is represented in the diagram below.

Central Dogma. 1. Human genetic material is represented in the diagram below. Central Dogma 1. Human genetic material is represented in the diagram below. 4. If 15% of a DNA sample is made up of thymine, T, what percentage of the sample is made up of cytosine, C? A) 15% B) 35% C)

More information

Book chapter appears in:

Book chapter appears in: Mass casualty identification through DNA analysis: overview, problems and pitfalls Mark W. Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA 29 August 2007 2007 Cybergenetics Book chapter appears in:

More information

DNA analysis. Anja Bye Post doktor. K.G. Jebsen Senter for Hjertetrening. Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU

DNA analysis. Anja Bye Post doktor. K.G. Jebsen Senter for Hjertetrening. Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU DNA analysis Anja Bye Post doktor K.G. Jebsen Senter for Hjertetrening Institutt for Sirkulasjon og Bildediagnostikk Det Medisinske Fakultet NTNU Focus of this lecture What is DNA? Comparing DNA from different

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

DNA Structure and Function. Chapter 13

DNA Structure and Function. Chapter 13 DNA Structure and Function Chapter 13 Impacts, Issues Here Kitty, Kitty, Kitty, Kitty, Kitty Clones made from adult cells have problems; the cell s DNA must be reprogrammed to function like the DNA of

More information

DNA vs. RNA B-4.1. Compare DNA and RNA in terms of structure, nucleotides and base pairs.

DNA vs. RNA B-4.1. Compare DNA and RNA in terms of structure, nucleotides and base pairs. DNA vs. RNA B-4.1 Compare DNA and RNA in terms of structure, nucleotides and base pairs. Key Concepts l Nucleic Acids: l deoxyribonucleic acid (DNA) l ribonucleic acid (RNA) l Nucleotides: l nitrogen base,

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Outline Central Dogma of Molecular

More information

4.1. Genetics as a Tool in Anthropology

4.1. Genetics as a Tool in Anthropology 4.1. Genetics as a Tool in Anthropology Each biological system and every human being is defined by its genetic material. The genetic material is stored in the cells of the body, mainly in the nucleus of

More information

DNA: An Introduction to structure and function. DNA by the numbers. Why do we study DNA? Chromosomes and DNA

DNA: An Introduction to structure and function. DNA by the numbers. Why do we study DNA? Chromosomes and DNA DA: An Introduction to structure and function Hopefully a review The structure of DA - your job during the PowerPoint: Make a labeled sketch Label the structure of a nucleotide Know which bases pair up

More information

DNA Structure and Replication

DNA Structure and Replication Name: DNA Structure and Replication 1. DNA: Deoxyribonucleic Acid a. Credit for discovery is given to Watson & Crick b. DNA stands for c. This chemical substance is present in the of all cells in all living

More information

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment

DNA Chapter 12. DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B Griffith s Experiment DNA Chapter 12 DNA and RNA B.1.4, B.1.9, B.1.21, B.1.26, B.1.27 To truly understand genetics, biologists after Mendel had to discover the chemical nature of the gene. In 1928, Frederick Griffith was trying

More information

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? 12 DNA Big idea Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance? WHAT I KNOW WHAT I LEARNED 12.1 How did scientists determine

More information

DNA and Protein Synthesis Practice. C. protein D. carbohydrate 7. Which of the following best describes how DNA and RNA are similar?

DNA and Protein Synthesis Practice. C. protein D. carbohydrate 7. Which of the following best describes how DNA and RNA are similar? N and Protein Synthesis Practice Name: ate: 1. The discovery of which of the following has most directly led to advances in the identification of suspects in criminal investigations and in the identification

More information

DNA Structure and Replication, and Virus Structure and Replication Test Review

DNA Structure and Replication, and Virus Structure and Replication Test Review DNA Structure and Replication, and Virus Structure and Replication Test Review What does DNA stand for? Deoxyribonucleic Acid DNA is what type of macromolecule? DNA is a nucleic acid The building blocks

More information

DNA and RNA. Gene Composition. Gene Composition Introduction to DNA

DNA and RNA. Gene Composition. Gene Composition Introduction to DNA DNA and RNA 12.1 Introduction to DNA Gene Composition We know now that genes dictate characteristics of organisms. But what is it about the genes that produce this control? Not until the late 1920s did

More information

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION

CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION CHAPTER 11 DNA NOTES PT. 4: PROTEIN SYNTHESIS TRANSCRIPTION & TRANSLATION DNA and the Language of Life RECAP Synthesis= Making something Protein Synthesis= Making Proteins Three steps in Protein Synthesis

More information

The Structure of DNA

The Structure of DNA Name: The Structure of DNA 06/08/11 Students will turn in: 1. Assignment 1: DNA Worksheet 2. Assignment 2: Poster Draw a poster of the ladder structure of DNA, labeled. 3. Assignment 3: The completed DNA

More information

Topic 1 Year 10 Biology

Topic 1 Year 10 Biology Topic 1 Year 10 Biology TOPIC 1 STRUCTURE OF DNA Things to cover: 1. History 2. Location 3. Components 4. Base pairing 5. Shape Work to do: 1. Worksheet Nuclear Matter (questions & mind-map) 2. Worksheet

More information

BIO 2 GO! NUCLEIC ACIDS

BIO 2 GO! NUCLEIC ACIDS BIO 2 GO! NUCLEIC ACIDS 3115 Nucleic Acids are organic molecules that carry the genetic information for every living organism. All living things contain nucleic acids. The DNA and RNA are responsible for

More information

chapter 12 DNA and RNA Biology Mr. Hines

chapter 12 DNA and RNA Biology Mr. Hines chapter 12 DNA and RNA Biology Mr. Hines Transformation What is transformation? Process in which one strain of bacteria is changed by a gene or genes from another strain of bacteria. 12.1 DNA Remember

More information

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

DNA RNA PROTEIN. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA RNA PROTEIN Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted DNA Molecule of heredity Contains all the genetic info our cells inherit Determines

More information

24.5. Lesson 24.5 Nucleic Acids. Overview. In this lesson, you will cover the topics of DNA replication, gene mutation, and DNA technologies.

24.5. Lesson 24.5 Nucleic Acids. Overview. In this lesson, you will cover the topics of DNA replication, gene mutation, and DNA technologies. 24.5 Lesson 24.5 Nucleic Acids Objectives 24.5.1 Identify the functions of DNA and RNA. 24.5.2 Identify the number of bases of DNA required to specify one amino acid in a peptide chain. 24.5.3 Explain

More information

Chapter 13 - Concept Mapping

Chapter 13 - Concept Mapping Chapter 13 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the discovery of DNA structure. amount of base pairs five-carbon sugar purine DNA polymerases Franklin

More information

DNA - The Double Helix

DNA - The Double Helix DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including cell reproduction,

More information

DNA stands for deoxyribose nucleic acid.

DNA stands for deoxyribose nucleic acid. 1 DNA stands for deoxyribose nucleic acid. DNA controls the kind of cell which is formed (i.e. muscle, blood, nerve). DNA controls the type of organism which is produced (i.e. buttercup, giraffe, herring,

More information

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 10. DNA: The Molecule of Heredity. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 10 DNA: The Molecule of Heredity Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 10.1 What Is The Structure Of DNA? Deoxyribonucleic acid (DNA) is

More information

Active Learning Exercise 9. The Hereditary Material: DNA

Active Learning Exercise 9. The Hereditary Material: DNA Name Biol 211 - Group Number Active Learning Exercise 9. The Hereditary Material: DNA Reference: Chapter 16 (Biology by Campbell/Reece, 8 th ed.) 1. a.) What is a nucleotide? b.) What is a nitrogen base?

More information

Introduction to PCR. Kristen Wolslegel Manager, Education Programs BABEC

Introduction to PCR. Kristen Wolslegel Manager, Education Programs BABEC Introduction to PCR Kristen Wolslegel Manager, Education Programs BABEC What is DNA? It encodes within its structure the hereditary information that determines the form and function of all known living

More information

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling

DNA DNA Profiling 18. Discuss the stages involved in DNA profiling 19. Define the process of DNA profiling 20. Give two uses of DNA profiling Name: 2.5 Genetics Objectives At the end of this sub section students should be able to: 2.5.1 Heredity and Variation 1. Discuss the diversity of organisms 2. Define the term species 3. Distinguish between

More information

DNA and RNA. Chapter 12

DNA and RNA. Chapter 12 DNA and RNA Chapter 12 History of DNA Late 1800 s scientists discovered that DNA is in the nucleus of the cell 1902 Walter Sutton proposed that hereditary material resided in the chromosomes in the nucleus

More information

DNA & DNA Replication

DNA & DNA Replication DNA & DNA Replication DNA Structure How did Watson and Crick contribute to our understanding of genetics? Watson and Crick developed the double helix model for DNA DNA Structure What is a double helix?

More information

DNA - The Double Helix

DNA - The Double Helix DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including cell reproduction,

More information

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents

DNA Replication. DNA Replication. Meselson & Stahl Experiment. Contents DNA Replication Contents 1 DNA Replication 1.1 Meselson & Stahl Experiment 1.2 Replication Machinery 2 Polymerase Chain Reaction (PCR) 3 External Resources: DNA Replication Meselson & Stahl Experiment

More information

Name: Date: Pd: Nucleic acids

Name: Date: Pd: Nucleic acids Name: Date: Pd: DNA - The Double Helix Nucleic acids Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of

More information

THE COMPONENTS & STRUCTURE OF DNA

THE COMPONENTS & STRUCTURE OF DNA THE COMPONENTS & STRUCTURE OF DNA - How do genes work? - What are they made of, and how do they determine the characteristics of organisms? - Are genes single molecules, or are they longer structures made

More information

DNA, Genes and Chromosomes. Vocabulary

DNA, Genes and Chromosomes. Vocabulary Vocabulary Big Ideas Heredity and Reproduction Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information (DNA) contains genes

More information

3.1.5 Nucleic Acids Structure of DNA and RNA

3.1.5 Nucleic Acids Structure of DNA and RNA alevelbiology.co.uk 3.1.5 Nucleic Acids 3.1.5.1 Structure of DNA and RNA SPECIFICATION Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are important information-carrying molecules. In all living

More information

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material

PowerPoint Notes on Chapter 9 - DNA: The Genetic Material PowerPoint Notes on Chapter 9 - DNA: The Genetic Material Section 1 Identifying the Genetic Material Objectives Relate Griffith s conclusions to the observations he made during the transformation experiments.

More information

What can you tell me about DNA? copyright cmassengale 1

What can you tell me about DNA? copyright cmassengale 1 What can you tell me about DNA? copyright cmassengale 1 DNA and Replication copyright cmassengale 2 Credit for discovery of DNA is given to Watson & Crick 1 DNA DNA stands for deoxyribose nucleic acid

More information

Red and black licorice sticks, colored marshmallows or gummy bears, toothpicks and string. (Click here for the Candy DNA Lab Activity)

Red and black licorice sticks, colored marshmallows or gummy bears, toothpicks and string. (Click here for the Candy DNA Lab Activity) Course: Biology Agricultural Science & Technology Unit: DNA State Standard: Students will understand that genetic information coded in DNA is passed from parents to offspring by sexual and asexual reproduction.

More information

NUCLEIC ACID. Subtitle

NUCLEIC ACID. Subtitle NUCLEIC ACID Subtitle NUCLEIC ACID Building blocks of living organisms One of the four important biomolecule 1 st isolated from the nuclei of white blood cells by Friedrich Miescher (1860) Came from the

More information

DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA?

DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA? DNA: The Molecule of Heredity How did scientists discover that genes are made of DNA? By the late 1800s, scientists knew that genetic information existed as distinct units called genes. hapter 11 By the

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Living organisms are complex systems. Hundreds of thousands of proteins exist inside each one of us to help carry out our daily functions. These proteins are produced locally,

More information

Reliable Genetic Identification of Burned Human Remains

Reliable Genetic Identification of Burned Human Remains Davis 1 Taylore Davis Martin S. Phillips Intro Criminal Justice CJ-1010-007 April 2013 Reliable Genetic Identification of Burned Human Remains The reliable genetic identification of burned human remains

More information

BIOB111 - Tutorial activity for Session 13

BIOB111 - Tutorial activity for Session 13 BIOB111 - Tutorial activity for Session 13 General topics for week 7 Session 13: Types of nucleic acids, DNA replication Useful links: 1. Visit this website and use its menu to locate information and practice

More information

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE

THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Umm AL Qura University THE CELLULAR AND MOLECULAR BASIS OF INHERITANCE Dr. Neda Bogari www.bogari.net EMERY'S ELEMENTS OF MEDICAL GENETICS Peter Turnpenny and Sian Ellard 13 th edition 2008 COURSE SYLLABUS

More information

Chapter 13: DNA Structure & Function

Chapter 13: DNA Structure & Function Chapter 13: DNA Structure & Function Structure of the Hereditary Material Experiments in the 1950s showed that DNA is the hereditary material Scientists raced to determine the structure of DNA 1953 - Watson

More information

The Chemistry of Genes

The Chemistry of Genes The Chemistry of Genes Adapted from Success in Science: Basic Biology Key Words Codon: Group of three bases on a strand of DNA Gene: Portion of DNA that contains the information needed to make a specific

More information

DNA stands for deoxyribose nucleic acid

DNA stands for deoxyribose nucleic acid 1 DNA 2 DNA stands for deoxyribose nucleic acid This chemical substance is present in the nucleus of all cells in all living organisms DNA controls all the chemical changes which take place in cells The

More information

NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH

NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH NON MENDELIAN GENETICS. DNA, PROTEIN SYNTHESIS, MUTATIONS DUE DECEMBER 8TH MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 11/14 11/15 11/16 11/17 11/18 Non-Mendelian Genetics DNA Structure and Replication 11/28

More information

DNA Structure and Replication 1

DNA Structure and Replication 1 Name: # Date: Per: Why? DNA Structure and Replication How is genetic information stored and copied? Deoxyribonucleic acid or DNA is the molecule of heredity. It contains the genetic blueprint for life.

More information

People have always wondered. How do traits get passed from one generation to the next?

People have always wondered. How do traits get passed from one generation to the next? DNA People have always wondered How do traits get passed from one generation to the next? When did we discover that DNA existed? 1869- Johann Freidrich Meischer Found in the nucleus To simple for heredity

More information

Making a Model of DNA Instructions

Making a Model of DNA Instructions Instructions 1) Colour the individual structures on the worksheet as follows: adenine = red guanine = blue phosphate = brown thymine = green cytosine = yellow deoxyribose = purple 2) Cut out each structure.

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance The Molecular Basis of Inheritance Chapter 16 Objectives Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin;

More information

Genetic material must be able to:

Genetic material must be able to: Genetic material must be able to: Contain the information necessary to construct an entire organism Pass from parent to offspring and from cell to cell during cell division Be accurately copied Account

More information

Chapter 16: The Molecular Basis of Inheritance

Chapter 16: The Molecular Basis of Inheritance AP Biology Reading Guide Name Chapter 16: The Molecular Basis of Inheritance Concept 16.1 DNA is the genetic material 1. What are the two chemical components of chromosomes? 2. The search for identifying

More information

Chapter 9: DNA: The Molecule of Heredity

Chapter 9: DNA: The Molecule of Heredity Chapter 9: DNA: The Molecule of Heredity What is DNA? Answer: Molecule that carries the blueprint of life General Features: DNA is packages in chromosomes (DNA + Proteins) Gene = Functional segment of

More information

Super Models. Deoxyribonucleic Acid (DNA) Molecular Model Kit. Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult

Super Models. Deoxyribonucleic Acid (DNA) Molecular Model Kit. Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult Super Models Deoxyribonucleic Acid (DNA) Molecular Model Kit Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult! Caution: Atom centers and vinyl tubing are a choking hazard. Do not eat

More information

DNA - The Double Helix

DNA - The Double Helix Name Date Period DNA - The Double Helix Recall that the nucleus is a small spherical, dense body in a cell. It is often called the "control center" because it controls all the activities of the cell including

More information

Chapter 11 Quiz #8: February 13 th You will distinguish between the famous scientists and their contributions towards DNA You will demonstrate replication, transcription, and translation from a sample

More information

For items 1-3 utilize the following information. If an answer cannot be derived write cannot be determined.

For items 1-3 utilize the following information. If an answer cannot be derived write cannot be determined. This exercise was adapted from Brooker et al. Biology. 2 nd Edition, McGraw-Hill (2009). Scenario: Alien DNA NASA s Exobiology Branch (http://exobiology.nasa.gov/) supports research to increase knowledge

More information

Name: Date: 10/12/17 Section: Broughton High School of Wake County

Name: Date: 10/12/17 Section: Broughton High School of Wake County Name: Date: 10/12/17 Section: 1 Deoxyribonucleic acid (DNA) is found in the cells of all organisms. It can be detected in blood, saliva, semen, tissues, hair, and bones. With the exception of identical

More information

DNA. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

DNA. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: DNA Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following nucleotide pair bonds would be found in a DNA molecule? a.

More information

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below.

DNA/RNA STUDY GUIDE. Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Name: Period: Date: DNA/RNA STUDY GUIDE Part A: DNA History Match the following scientists with their accomplishments in discovering DNA using the statement in the box below. Used a technique called x-ray

More information

Chapter 15 DNA and RNA

Chapter 15 DNA and RNA Chapter 15 DNA and RNA www.mrcbiology.com 1 Variation Variation means that individuals in a species have different characteristics to one another. Acquired Variation are not inherited. e.g learnt during

More information

DNA: The Molecule of Heredity

DNA: The Molecule of Heredity DNA: The Molecule of Heredity STRUCTURE AND FUNCTION - a nucleic acid o C, H, O, N, P o Made of nucleotides = smaller subunits o Components of nucleotides: Deoxyribose (simple sugar) Phosphate group Nitrogen

More information

Review of ORGANIC CHEMISTRY

Review of ORGANIC CHEMISTRY Nucleic Acids: DNA Review of ORGANIC CHEMISTRY Definition: Contains CARBON (C) and Hydrogen (H) Large polymers can be made of smaller individual monomers. Ex: For carbohydrates, polysaccharides are large

More information

Cell Division (pages 55 62)

Cell Division (pages 55 62) Cell Division (pages 55 62) Stage 1: Interphase (page 56) Key Concept: During interphase, the cell grows, makes a copy of its DNA, and prepares to divide into two cells. For living things to grow, their

More information