Climate forcing from carbon emissions

Size: px
Start display at page:

Download "Climate forcing from carbon emissions"

Transcription

1 Climate forcing from carbon emissions hilip Goodwin 1 Thanks to: Ric Williams 1, Mick Follows 2, Andy Ridgwell 3, Stephanie Dutkiewicz 2 1 University of Liverpool 2 Massachusetts nstitute of Technology, USA 3 University of ristol

2 Rising atmospheric carbon dioxide ( ): Anthropogenic projection F Aims: A) Relate emissions to steady state ) Consider radiative forcing C) Consider feedbacks gnore carbonate and silicate rock weathering [CC 27] The rise in partial pressure of atmospheric CO 2 ( ) causes a radiative forcing ( F) which alters climate

3 RELATNG EMSSONS TO For the same em, eventually same steady state 25 2 (a) em (Gt C) (b) (ppm) Time (years) Air-sea model response to a em = 2GtC EMSSON: Same steady state

4 RELATNG EMSSONS TO Carbon in the atmosphere and ocean CO 2 (artial pressure, ) ATMOSHERE Atmospheric carbon inventory: A =V atm x OCEAN CO 2 H 2 CO 3 HCO 3 - CO 3 2- Ocean carbon inventory: O =V ocean xc DC C DC = CO 2 + H 2 CO 3 + HCO 3- + CO 3 2- A steady state is reached when: [ ] ocean

5 RELATNG EMSSONS TO Emissions without ocean chemistry Steady state when: CO [ ] 2 Therefore: CO 2 A O Thus proportional to total air-sea carbon: [CO 2 ] And: ( + O A δ δ ( + ) O A ) Special case; O =V ocean x[co 2 ] We can make a ratio: δ = δ Change in air-sea carbon is emission, δ em =δ( A + O ): Therefore we can write: δ ln ( + ) A A A + = δ + em O O O

6 RELATNG EMSSONS TO Emissions with ocean chemistry [CO 2 ] [H 2 CO 3 ] [HCO 3- ] [CO 3 2- ] C DC = CO 2 + H 2 CO 3 + HCO 3- + CO 3 2- At steady state: ut: CO [ ] 2 / + A O We must define a new inventory, [Goodwin et al, 27], that accounts for the dissociation of CO 2 in seawater NO OCEAN CHEMSTRY : OCEAN CHEMSTRY A + O = A + O WHERE: δ = δ C CO 2 DC C DC CO 2 δ ln = δ + A em O δ ln = δ em

7 RELATNG EMSSONS TO GCM experiment: how links to carbon emission SURFACE TEMERATURE ( O C) MT GCM Realistic circulation Realistic carbon cycling Monthly mean forcing Add carbon to atmosphere over ~5years ntegrate for ~3 years for steady state Measure final p (ppm) CURRENT EMSSONS MTGCM CONVENTONAL RESERVES Carbon emission (GtC)

8 RELATNG EMSSONS TO Testing the independent analytical equation Evaluate at pre-industrial steady state for MTGCM integrate by assuming remains constant [Goodwin et al, 27]: ln = em f = i exp em Compare to model results: ANALYTCAL EQUATON NUMERCAL SOLUTON p (ppm) CURRENT EMSSONS MTGCM Our method CONVENTONAL RESERVES Carbon emission (GtC)

9 RELATNG TO F How can CO 2 affect climate? Add CO 2 Radiation imbalance, F Temperature increases, T How do levels affect F (and so T)? F = α ln [Myhre et al, 1998] Why logarithmic? CO 2 only absorbs at certain wavelengths Amount of those wavelengths in atmosphere reduces with increasing An increase in absorbs set fraction of what is left in the atmosphere Therefore, write equations in log form.

10 RELATNG EMSSONS TO F How about Radiative forcing? F (W/m2) GCM Equation Carbon Emissions (GtC) ln [p] F From: We get: = 1.7Wm 2 F F = α em ln ln Using CC [21] α, we find for MTGCM: = = α per 1Gt C em The contribution of today s emissions to the climate from 1 to 5 years cf current forcing ~1.6Wm -2 in transient state ossibly rising to ~7.5Wm -2 lasting for thousands of years

11 CLMATE SENSTVTY Climate sensitivity of the past (1ppm) Evaluate of GENE model forced with palaeo constraints from Ridgwell (25) F for a 1GtC emission (Wm -2 ) Years (Ma) δf α = δ em The present day has a high climate sensitivity

12 CONSDERNG CARON CYCLE FEEDACKS Feedbacks from carbon cycles changes Atmosphere Terrestrial carbon store, Surface ocean Deep ocean iological organic carbon drawdown iological CaCO 3 drawdown Many factors affect in addition to anthropogenic emissions

13 RELATNG OTHER CARON CYCLES TO Testing the independent analytical relations Evaluate at pre-industrial steady state and plot: (a) δ δ (GtC) em ter f Terrestrial = i exp ter (ppm) (b) δc bio +δc dis (global average mol m 3 ) Soft tissue f V C = i exp bio ANALYTCAL EQUATON NUMERCAL SOLUTON 35 3 (c) δc CaCO3 (global average mol m 3 ) f CaCO3 = i O( A C) O( A C) V C CaCO3 exp ( ) A O( A C ) C CaCO3

14 CONSDERNG CARON CYCLE FEEDACKS Time (yrs) Feedbacks from carbon cycles changes over time for: i) 2GtC emission, ii) Change in soft tissue biology, iii) Change in biological CaCO 3 production (ppm)

15 CONSDERNG CARON CYCLE FEEDACKS Time (yrs) Feedbacks from carbon cycles changes Feedbacks combine in a non-linear way to alter ( ) ( ) + ( ) + ( ) overall EMSSON SOFT TSSUE CaCO (ppm)

16 CONSDERNG CARON CYCLE FEEDACKS Time (yrs) Feedbacks from carbon cycles changes Maths predicts: overall = EMSSON SOFT TSSUE CaCO (ppm)

17 Conclusions Analytical link to numerical models: insight into non-linear feedbacks overall = EMSSON SOFT TSSUE CaCO3 Can compare future steady state forcing to present transient levels: resent climate sensitivity to carbon perturbations is large: 1.7Wm -2 per 1Gt C for thousands of years F (W/m2) Carbon Emissions (GtC) GCM Equation ln [p]

18 Why should we assume remains constant? can be expressed in terms of a carbon buffer factor, : y writing: δ[ ] C = [ CO ] δc 2 = A + O DC DC p (ppm) EMSSONS (GtC) p While increases as increases; they have opposing effects on the value of. Causing: << b (GtC) b VALD UNTL ~ 5GtC EMSSONS (GtC)

Environmental Science. Physics and Applications

Environmental Science. Physics and Applications Environmental Science 1 Environmental Science. Physics and Applications. Carbon Cycle Picture from the IPCC report on the environment. 4. Carbon cycle 4.1 Carbon cycle, introduction 4.2 The oceans 4.3

More information

Prof Brendan Mackey, PhD

Prof Brendan Mackey, PhD Role of forests in global carbon cycle and mitigation Presentation for Land use and Forests in the Paris Agreement, real world implications of negative emissions and Bioenergy CCS (BECCS) May 12 th & 13

More information

Ocean Carbon Sequestration

Ocean Carbon Sequestration Aspen Global Change Institute Ocean Carbon Sequestration Ken Caldeira DOE Center for Research on Ocean Carbon Sequestration and Lawrence Livermore National Laboratory Outline Carbon management and ocean

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 62 Chemical Oceanography Reading: Libes, Chapter 15, pp. 8 94 (Remainder of chapter: Biogenic production, carbonate saturation and sediment distributions ) 1. CO 2

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 31 January 2013 Reading: Libes, Chapter 15, pp. 383 394 (Remainder of chapter will be used with the lecture: Biogenic production, carbonate

More information

ATM S 211 Final Examination June 4, 2007

ATM S 211 Final Examination June 4, 2007 ATM S 211 Final Examination June 4, 2007 Name This examination consists of a total of 100 points. In each of the first two sections, you have a choice of which questions to answer. Please note that you

More information

Ocean Production and CO 2 uptake

Ocean Production and CO 2 uptake Ocean Production and CO 2 uptake Fig. 6.6 Recall: Current ocean is gaining Carbon.. OCEAN Reservoir size: 38000 Flux in: 90 Flux out: 88+0.2=88.2 90-88.2 = 1.8 Pg/yr OCEAN is gaining 1.8 Pg/yr Sum of the

More information

Climate: Earth s Dynamic Equilibrium

Climate: Earth s Dynamic Equilibrium Climate: Earth s Dynamic Equilibrium review session CCIU April 30, 2016 High-school standard HS-ESS2-4 focuses on the role energy flows play in Earth s climate HS-ESS2-4 Use a model to describe how variations

More information

from volcanoes; carbonate (CaCO 3 + CO 2 + H 2 . The sinks are carbonate rock weathering + SiO2. Ca HCO

from volcanoes; carbonate (CaCO 3 + CO 2 + H 2 . The sinks are carbonate rock weathering + SiO2. Ca HCO The Carbon Cycle Chemical relations We would like to be able to trace the carbon on Earth and see where it comes and where it goes. The sources are CO 2 from volcanoes; carbonate (CaCO 3 ) formation in

More information

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The Carbon cycle Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The oceans store much more carbon than the atmosphere and the terrestrial biosphere The oceans essentially

More information

Global Climate Change

Global Climate Change Global Climate Change Greenhouse Gases and Earth s Energy Balance 400 380 CO 2 in air 360 340 320 1960 1970 1980 1990 2000 2010 Year Global Climate Change 1 / 30 Outline of Topics 1 The Natural Earth System

More information

Understanding how carbon dioxide emissions from human activity contribute to global climate change MYLES ALLEN Environmental Change Institute, School

Understanding how carbon dioxide emissions from human activity contribute to global climate change MYLES ALLEN Environmental Change Institute, School Understanding how carbon dioxide emissions from human activity contribute to global climate change MYLES ALLEN Environmental Change Institute, School of Geography and the Environment & Department of Physics

More information

Atmosphere, the Water Cycle and Climate Change

Atmosphere, the Water Cycle and Climate Change Atmosphere, the Water Cycle and Climate Change OCN 623 Chemical Oceanography 16 April 2013 (Based on previous lectures by Barry Huebert) 2013 F.J. Sansone 1. The water cycle Outline 2. Climate and climate-change

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report :

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report : Introduction Greenhouse Gases & Climate Change Laurent Bopp LSCE, Paris When did the story start? ¾1827 Fourier hypothesizes greenhouse effect ¾1860 Tyndal identifies CO2 and water vapor as heat trapping

More information

The Ocean Carbon Cycle. Doug Wallace Dalhousie University, Halifax, Canada

The Ocean Carbon Cycle. Doug Wallace Dalhousie University, Halifax, Canada The Ocean Carbon Cycle Doug Wallace Dalhousie University, Halifax, Canada KISS Satellite to Seafloor Workshop, Pasadena, 6 October, 2013 Premise: There are Two Flavours (or Colours) of Carbon Natural carbon

More information

GEOPHYSICAL RESEARCH LETTERS

GEOPHYSICAL RESEARCH LETTERS GEOPHYSICAL RESEARCH LETTERS Supporting Information for: The Seasonal Cycle of Ocean-Atmosphere CO 2 Flux in Ryder Bay, West Antarctic Peninsula Oliver J. Legge 1,2, Dorothee C.E. Bakker 1, Martin T. Johnson

More information

Present and future ocean-atmosphere CO 2 fluxes, and EO measurement needs

Present and future ocean-atmosphere CO 2 fluxes, and EO measurement needs Present and future ocean-atmosphere CO 2 fluxes, and EO measurement needs Andy Watson, Ute Schuster, Jamie Shutler, Ian Ashton College of Life and Environmental Science, University of Exeter Parvadha Suntharalingam,

More information

At present rates of increase it would take about 360 years for atmospheric methane levels to double.

At present rates of increase it would take about 360 years for atmospheric methane levels to double. The Methane Misconceptions A paper by Dr Wilson Flood Summary A doubling of the amount of methane in the atmosphere with its present composition would produce a warming equal to only about one thirtieth

More information

Understanding Sequestration as a Means of Carbon Management. Howard Herzog MIT Energy Laboratory

Understanding Sequestration as a Means of Carbon Management. Howard Herzog MIT Energy Laboratory Understanding Sequestration as a Means of Carbon Management Howard Herzog MIT Energy Laboratory In understanding carbon management options, it is helpful to start with a simple mass balance on anthropogenic

More information

Lecture 22: Atmospheric Chemistry and Climate

Lecture 22: Atmospheric Chemistry and Climate Lecture 22: Atmospheric Chemistry and Climate Required Reading: FP Chapter 14 (only sections that I cover) Suggested Introductory Reading: Jacob Chapter 7 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring

More information

The Science of Climate Change

The Science of Climate Change The Science of Climate Change http://data.giss.nasa.gov/gistemp/ Glaciers are retreating worldwide, including Colorado Arapahoe Glacier, 1917 Arapahoe Glacier, 2004 Sea Level is Rising End of summer ice

More information

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life The Carbon Cycle WHY CARBON? Inventories: black text Fluxes: purple arrows Carbon dioxide (+4) AN = 6 (6P/6N) AW = 12.011 Oxidation: -4 to +4 Isotopes: 11 C, 12 C, 1 C, 14 C Methane (-4) Carbon is the

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle In a nutshell We are mining fossil CO 2 and titrating into the oceans, (buffered by acid-base chemistry) Much of the fossil CO 2 will remain in the atmosphere for thousands of years

More information

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection CO 2 and the carbonate system II Carbon isotopes as a tracer for circulation The (solid) carbonate connection with ocean acidity Climate The ocean climate connection The carbon cycle the carbon cycle involves

More information

climate change Contents CO 2 (ppm)

climate change Contents CO 2 (ppm) climate change CO 2 (ppm) 2007 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Contents 1. Summary 2. Background 3. Climate change: observations 4. CO 2 5. Other Greenhouse Gases (GHGs)

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change A deeper look at the carbon dioxide cycle, greenhouse gases, and oceanic processes over the last 150 years OCN 623 Chemical Oceanography 18 April 2013 Reading: Libes,

More information

CLIMATE MODELS: LARGE SCALE AND PREDICTABLE

CLIMATE MODELS: LARGE SCALE AND PREDICTABLE CCS 5-1 CLIMATE MODELS: LARGE SCALE AND PREDICTABLE 1. Print this file (and associated linked images if any). Also answer the "Concept of the Week" questions in the Weekly Climate News File. (Check for

More information

The Chemistry of Climate Change. Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy

The Chemistry of Climate Change. Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy The Chemistry of Climate Change Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy The Science of Global Climate There's a lot of differing data, but as far as I can gather, over the

More information

1) The Changing Carbon Cycle

1) The Changing Carbon Cycle 1) The Changing Carbon Cycle WG1 Chapter 6, figure 1 The numbers represent carbon reservoirs in Petagrams of Carbon (PgC; 10 15 gc) and the annual exchanges in PgC/year. The black numbers and arrows show

More information

Carbonate rocks 60 x 10 6 GT C. Kerogen 20 x 10 6 GT C. Atmospheric CO GT C. Terrestrial Plants 900 GT C. Uplift, exposure and erosion

Carbonate rocks 60 x 10 6 GT C. Kerogen 20 x 10 6 GT C. Atmospheric CO GT C. Terrestrial Plants 900 GT C. Uplift, exposure and erosion Atmospheric CO 2 750 GT C Uplift, exposure and erosion Terrestrial Plants 900 GT C Soils 2000 GT C Carbonate rocks 60 x 10 6 GT C Terrestrial Primary Production 50-100 GT C yr -1 River flux 0.5 GT C yr

More information

State of the planetary life support system

State of the planetary life support system State of the planetary life support system "We're simply talking about the very life support system of this planet Joachim Hans Schellnhuber, Director of the Potsdam Climate Impacts Institute and Climate

More information

Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales

Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales Environmental Research Letters LETTER OPEN ACCESS Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales To cite this article: Thomas L Frölicher

More information

A consideration of the forcings of climate change using simple physics

A consideration of the forcings of climate change using simple physics Grantham Institute for Climate Change Discussion paper No 2 April 211 A consideration of the forcings of climate change using simple physics Dr Arnaud Czaja, department of physics, IMperial college london

More information

Basics of greenhouse gases and climate change

Basics of greenhouse gases and climate change Basics of greenhouse gases and climate change Facts and theories We need to distinguish between what we know (facts), and what we think will happen (theories). In the subject of greenhouse gases and global

More information

Anthropogenic atmospheric CO 2 increases. A warming Earth. The rise in atmospheric CO 2 (and other GHGs) is responsible for global warming

Anthropogenic atmospheric CO 2 increases. A warming Earth. The rise in atmospheric CO 2 (and other GHGs) is responsible for global warming IPCC AR4 Anthropogenic atmospheric CO 2 increases A warming Earth The rise in atmospheric CO 2 (and other GHGs) is responsible for global warming Required amount of CO 2 reduction to mitigate global warming

More information

The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; Local 2307

The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; Local 2307 The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; erik.krogh@viu.ca; Local 2307 Biogeochemical Cycling - Where on Earth is all the carbon and what s it doing

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Laurent Bopp LSCE, Paris Introduction CO2 is an important greenhouse gas Contribution to Natural Greenhouse Effect Contribution to Anthropogenic Effect 1 From NASA Website 2 Introduction

More information

Journal of Quantitative Spectroscopy & Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 177 181 Contents lists available at ScienceDirect Journal of Quantitative Spectroscopy & Radiative Transfer journal homepage: www.elsevier.com/locate/jqsrt

More information

CHAPTER 6. GEOCHEMICAL CYCLES

CHAPTER 6. GEOCHEMICAL CYCLES 83 CHAPTER 6. GEOCHEMICAL CYCLES So far we have viewed the concentrations of species in the atmosphere as controlled by emissions, transport, chemistry, and deposition. From an Earth system perspective,

More information

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge GLOBAL WARMING Editorial Prof. B.N. Goswami (Director, IITM, Pune) Dr. G. Beig (ENVIS Co-ordinetor) Ms. Neha S. Parkhi (Program Officer) Mr. Rajnikant

More information

DOC and major carbon reservoirs and fluxes

DOC and major carbon reservoirs and fluxes The Composition and cycling of Dissolved organic matter-i Review of DOC distribution Review of radiocarbon in DOC Sources of DOC Seasonal cycling of DOC above the permanent thermocline Composition of DOC

More information

Lightning and Atmospheric Chemistry

Lightning and Atmospheric Chemistry Lightning and Atmospheric Chemistry 1785 Cavendish performed the first experiments with a spark discharge in glass tube. Discovered that oxidized nitrogen (NO x =NO + NO 2 ) compounds resulted from the

More information

Estimated Global Temperature and Growth Rate since Estimated global mean temperature

Estimated Global Temperature and Growth Rate since Estimated global mean temperature 1.1 Global Warming Estimated Global Temperature and Growth Rate since 1850 14.6 Estimated global mean temperature C 14.4 14.2 14.0 13.8 13.6 Period Years 25 50 100 150 Annual mean Smoothed series Growth

More information

FAIR v1.1: A simple emissions-based impulse response and carbon cycle model

FAIR v1.1: A simple emissions-based impulse response and carbon cycle model FAIR v1.1: A simple emissions-based impulse response and carbon cycle model Christopher J. Smith 1, Piers M. Forster 1, Myles Allen 2, Nicholas Leach 2, Richard J. Millar 3,4, Giovanni A. Passerello 1,

More information

Earth Explorer 8 Candidate

Earth Explorer 8 Candidate Earth Explorer 8 Candidate Hartmut Bösch University of Leicester CarbonSat Earth Explorer 8 Mission Advisory Group Heinrich Bovensmann, IUP, University of Bremen, Bremen, D (Chair) Hartmut Bösch, University

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Effects of Fuel and Forest Conservation on Future Levels of Atmospheric Carbon Dioxide

Effects of Fuel and Forest Conservation on Future Levels of Atmospheric Carbon Dioxide Effects of Fuel and Forest Conservation on Future Levels of Atmospheric Carbon Dioxide JAMES C.G. WALKER a AND JAMES F. KASTING b a Department of Atmospheric, Oceanic, and Space Sciences, University of

More information

On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W.

On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W. On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W. Pacala, Outline 1. Effort required to solve the carbon and climate problem

More information

Dynamic interactions of geochemical cycles

Dynamic interactions of geochemical cycles The Carbon Cycle Marine Perspectives 1 Dynamic interactions of geochemical cycles Oceanography (study of the oceans), and Chemical Oceanography (chemistry of the oceans based on the distribution and dynamics

More information

CarbonTracker - CH 4. Lori Bruhwiler, Ed Dlugokencky, Steve Montzka. Earth System Research Laboratory Boulder, Colorado

CarbonTracker - CH 4. Lori Bruhwiler, Ed Dlugokencky, Steve Montzka. Earth System Research Laboratory Boulder, Colorado CarbonTracker - CH 4 Lori Bruhwiler, Ed Dlugokencky, Steve Montzka Earth System Research Laboratory Boulder, Colorado CO 2 CH 4 Fluxes We Estimate: Terrestrial Biosphere Oceans Fluxes We Know : Fossil

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Tom Bibby September 2003 bibby@imcs.rutgers.edu falko@imcs.rutgers.edu The Carbon Cycle - Look at past climatic change; as controlled by the carbon cycle. - Interpret the influence

More information

Happamoittavien päästöjen vaikutus ilmakehän hiilidioksiditasapainoon.

Happamoittavien päästöjen vaikutus ilmakehän hiilidioksiditasapainoon. Luonnonfilosofian seura, Tieteiden talo 12.12.2017 1 Happamoittavien päästöjen vaikutus ilmakehän hiilidioksiditasapainoon. TkT Tuomo Suntola Termodynaaminen analyysi osoittaa, että valtameret-ilmakehä

More information

Biomass and Biofuels

Biomass and Biofuels Biomass and Biofuels PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 11, 2014 What is bioenergy? Photosynthesis: the primary energy

More information

Recent carbon trends and the fate of the natural sink

Recent carbon trends and the fate of the natural sink Recent carbon trends and the fate of the natural sink Biosphere between sink & source 22.01.2008 Johannes Enssle GCM 2007 Student presentation Physical Fundamentals of Global Change Content 1. Recent global

More information

Climate impacts of energy technologies depend on emissions timing

Climate impacts of energy technologies depend on emissions timing SUPPLEMENTARY INFORMATION DOI: 1.138/NCLIMATE224 Climate impacts of energy technologies depend on emissions timing Morgan R. Edwards, Jessika E. Trancik Contents 1 Reference Scenarios and Metric Testing

More information

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts Study Outline: Chapters 5, 6, & 9 Environmental Science AP Instructor: Ben Smith Biogeochemical Cycles: Global Recycling Program Ch. 5 Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31,

More information

Climate and carbon cycle changes under the overshoot scenario

Climate and carbon cycle changes under the overshoot scenario Available online at www.sciencedirect.com Global and Planetary Change 62 (2008) 164 172 www.elsevier.com/locate/gloplacha Climate and carbon cycle changes under the overshoot scenario Jesse Nusbaumer a,

More information

Quantifying Sources & Sinks of Atmospheric CO 2. Uptake and Storage of Anthropogenic Carbon

Quantifying Sources & Sinks of Atmospheric CO 2. Uptake and Storage of Anthropogenic Carbon Quantifying Sources & Sinks of Atmospheric CO 2 Uptake and Storage of Anthropogenic Carbon by Christopher L. Sabine ; NOAA/PMEL, Seattle, WA USA Acknowledgements: Richard A. Feely (PMEL), Frank Millero

More information

The Carbon Cycle. 1. The Global Carbon Budget

The Carbon Cycle. 1. The Global Carbon Budget The Carbon Cycle 1. The global carbon budget... 1 2. The oceanic carbon cycle... 7 3. The terrestrial carbon cycle and "missing sink"... 12 4. Fossil fuel emissions of CO 2... 15 1. The Global Carbon Budget

More information

Plankton stoichiometry and ocean change

Plankton stoichiometry and ocean change Plankton stoichiometry and ocean change Impacts of Ocean Change on Primary Producers Ulf Riebesell Ulf Riebesell Joana Barcelos e Ramos, Antje Biermann, Klaus von Bröckel, Jan Czerny, Arne Körtzinger,

More information

IN THE INDIAN OCEAN? Marta Álvarez

IN THE INDIAN OCEAN? Marta Álvarez IS THERE A HIGHER C ANT STORAGE IN THE INDIAN OCEAN? Marta Álvarez C. Lo Monaco, T. Tanhua, A. Yool, A. Oschlies, J.L. Bullister, C. Goyet, F. Touratier, E. McDonagh and H.L. Bryden. IMEDEA, CSIC UIB,

More information

CLIMATE CHANGE, HUMAN SYSTEMS, AND POLICY Vol. III - Integrated Assessment of Policy Instruments to Combat Climate Change - Hans Asbjorn Aaheim

CLIMATE CHANGE, HUMAN SYSTEMS, AND POLICY Vol. III - Integrated Assessment of Policy Instruments to Combat Climate Change - Hans Asbjorn Aaheim INTEGRATED ASSESSMENT OF POLICY INSTRUMENTS TO COMBAT CLIMATE CHANGE Hans Asbjorn Aaheim Center for International Climate and Energy Research-Oslo, University of Oslo, Norway Keywords: Climate policy,

More information

LINKE TURBIDITY FACTOR FOR BRAŞOV URBAN AREA

LINKE TURBIDITY FACTOR FOR BRAŞOV URBAN AREA LINKE TURBIDITY FACTOR FOR BRAŞOV URBAN AREA Elena EFTIMIE Abstract: Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter

More information

Why is carbon dioxide so important? Examining the evidence

Why is carbon dioxide so important? Examining the evidence Why is carbon dioxide so important? Examining the evidence In the light of new evidence and taking into account the remaining uncertainties, most of the observed warming over the last 50 years is likely

More information

MODELING HEATING OF THE EARTH What Makes You Hot?

MODELING HEATING OF THE EARTH What Makes You Hot? MODELING HEATING OF THE EARTH What Makes You Hot? Created in the Making Global Local workshops University of Colorado at Boulder Summer, 2010 http://learnmoreaboutclimate.colorado.edu Created by: Grant

More information

Composition and Energy AOSC 200 Tim Canty

Composition and Energy AOSC 200 Tim Canty Composition and Energy AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Atmospheric composition cont. Energy transfer Lecture 03 Sept 5 2017 1 Today s Weather

More information

Climate system dynamics and modelling

Climate system dynamics and modelling Climate system dynamics and modelling Hugues Goosse Chapter 6 Future climate changes Outline Methods used to estimate future climate changes. Description of the main results at different timescales. Interpretation

More information

Deep sea gradients in [DOC]

Deep sea gradients in [DOC] Deep sea gradients in [DOC] NMR and carbohydrate analyses of deep sea HMWDOC monosaccharide distribution surface relative % 5200m relative % NMR and carbohydrate analyses of deep sea HMWDOC 13 C- and 1

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change or the unnatural carbon dioxide cycle and oceanic processes over the last few hundred years OCN 623 Chemical Oceanography Reading: Libes, Chapter 25 (a good summary) In

More information

The context: 6.7 billion people 1 planet. Is there a future?

The context: 6.7 billion people 1 planet. Is there a future? Global Warming: The Scientific Basis for Anthropogenic Climate Change The context: 6.7 billion people 1 planet. Is there a future? The global average net effect of human activities since 1750 has been

More information

Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319

Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319 Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319 May 2, 2008 1 Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? It is difficult to experimentally

More information

Characteristics of source of energy

Characteristics of source of energy Energy Sources Characteristics of source of energy Provide adequate amount of useful energy at a steady rate over a long period of time. It should be safe & convenient to use economical & easy to store

More information

A simple carbon cycle representation for economic and policy analyses

A simple carbon cycle representation for economic and policy analyses A simple carbon cycle representation for economic and policy analyses Online resources / supplementary materials Michael J. Glotter 1, Raymond T. Pierrehumbert 1, Joshua W. Elliott,3, Nathan J. Matteson

More information

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes!

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes! 1 2 3 Yes! 4 Yes! But Earth's climate is always changing! 5 Yes! But Earth's climate is always changing! 6 Throughout its 4.5 billion year history, Earth's climate has alternated between periods of warmth

More information

Carbon cycling and climate: the CO 2. connection

Carbon cycling and climate: the CO 2. connection Carbon cycling and climate: the C 2 connection Gasses in the ocean The carbonate system (and buffering in the ocean) Carbon dioxide and the climate connection. Importance of C 2 to climate C 2 acts like

More information

Overview of Climate Science

Overview of Climate Science 1 Overview of Climate Science This overview of climate science is written to support the development of a K- 14 climate education plan for the Pacific Islands Climate Education Partnership (PCEP). It aims

More information

Global Climate Change

Global Climate Change Global Climate Change Devizes & District U3A, 24 th November 2015 Prof. Richard Allan, Department of Meteorology University of Reading Why does Earth s climate change? Earth s Climate has always been changing

More information

OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography

OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography 1 Introduction Everyone knows that the sea is salty but what exactly is the salt in

More information

Errata to Activity: The Impact of Climate Change on the Mountain Pine Beetle and Westerns Forests

Errata to Activity: The Impact of Climate Change on the Mountain Pine Beetle and Westerns Forests Errata to Activity: The Impact of Climate Change on the Mountain Pine Beetle and Westerns Forests Under Internet Resources Needed Fifth bullet, correct URL is: http://www.barkbeetles.org/mountain/fidl2.htm

More information

Climate Change: Demystifying the Application of Earth Systems Models for Climate Science

Climate Change: Demystifying the Application of Earth Systems Models for Climate Science Climate Change: Demystifying the Application of Earth Systems Models for Climate Science Richard B. Rood Cell: 301-526-8572 2525 Space Research Building (North Campus) rbrood@umich.edu http://clasp.engin.umich.edu/people/rbrood

More information

GCM-Simulated Surface Energy Fluxes in Climate Change Experiments

GCM-Simulated Surface Energy Fluxes in Climate Change Experiments DECEMBER 1997 WILD ET AL. 3093 GCM-Simulated Surface Energy Fluxes in Climate Change Experiments MARTIN WILD AND ATSUMU OHMURA Department of Geography, Swiss Federal Institute of Technology, Zurich, Switzerland

More information

The Ca r bon Cycle Ga me

The Ca r bon Cycle Ga me The Ca r bon Cycle Ga me Time Required: 30 minutes Materials/Space Required: Carbon Cycle Reservoir Cards (7) Dice (6) Traveling Carbon Passport Sheets (1 per student) Felt markers or pencil crayons for

More information

Canadian Forest Carbon Budgets at Multi-Scales:

Canadian Forest Carbon Budgets at Multi-Scales: Canadian Forest Carbon Budgets at Multi-Scales: Dr. Changhui Peng, Uinversity of Quebec at Montreal Drs. Mike Apps and Werner Kurz, Canadian Forest Service Dr. Jing M. Chen, University of Toronto U of

More information

Ocean Sequestration of CO 2

Ocean Sequestration of CO 2 Ocean Sequestration of CO 2 Dr. David K. Ryan Department of Chemistry University of Massachusetts Lowell & School of Marine Sciences University of Massachusetts http://faculty.uml.edu/david_ryan Acknowledgements

More information

Combined Mass and Energy Transients

Combined Mass and Energy Transients Lecture T3 Combined Mass and Energy Transients We now consider processes in which the amounts of both mass and energy are changing in the system. In these cases, the material and energy balances are both

More information

The Fifth Assessment: A Discussion of the IPCC Working Group 1 AR5 Report

The Fifth Assessment: A Discussion of the IPCC Working Group 1 AR5 Report The Fifth Assessment: A Discussion of the IPCC Working Group 1 AR5 Report Prof. Chris E. Forest The Pennsylvania State University (ceforest@psu.edu) Lead Author - Chapter 9 - Evaluation of Climate Models!

More information

Carbon Isotope Systematics in Soil

Carbon Isotope Systematics in Soil Carbon Isotope Systematics in Soil Soil Pathway Summary Organic matter finds it s way into soils and decomposes SOM (Soil Organic Matter) is further decomposed by microbes which emit CO 2 as a bi-product

More information

Arctic Observing Network (AON)

Arctic Observing Network (AON) Arctic Observing Network (AON) Martin O. Jeffries National Science Foundation Office of Polar Programs Division of Arctic Sciences National Science Foundation ational Science Foundation Ocean Research

More information

The relationship between peak warming and cumulative CO 2 emissions, and its use to quantify vulnerabilities in the carbon climate human system

The relationship between peak warming and cumulative CO 2 emissions, and its use to quantify vulnerabilities in the carbon climate human system PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (211), 63B, 14 164 Printed in Singapore. All rights reserved C 211 CSIRO Tellus B

More information

Dr. Shelley Kauffman Albright College

Dr. Shelley Kauffman Albright College Dr. Shelley Kauffman Albright College skauffman@albright.edu HS-ESS2-4.Use a model to describe how variations in the flow of energy into and out of Earth s systems result in changes in climate. [Clarification

More information

Changes to the Underlying Scientific-Technical Assessment to ensure consistency with the approved Summary for Policymakers

Changes to the Underlying Scientific-Technical Assessment to ensure consistency with the approved Summary for Policymakers THIRTY-SIXTH SESSION OF THE IPCC Stockholm, 26 September 2013 IPCC-XXXVI/Doc. 4 (27.IX.2013) Agenda Item: 3 ENGLISH ONLY ACCEPTANCE OF THE ACTIONS TAKEN AT THE TWELFTH SESSION OF WORKING GROUP I Working

More information

Quantifying the Uncertainty in Climate Predictions

Quantifying the Uncertainty in Climate Predictions Quantifying the Uncertainty in Climate Predictions Mort Webster and Andrei Sokolov MIT Joint Program on the Science and Policy of Global Change Abstract Uncertainties in projections of future climate change

More information

Soil Carbon Sequestration

Soil Carbon Sequestration Soil Carbon Sequestration Rattan Lal Carbon Management and The Ohio State University Columbus, OH 43210 USA 1 BIOSEQUESTRATION OF ATMOSPHERIC CO 2 Only 0.05% of the 3800 zettajoules (10 21 J) of solar

More information

Carbon Cycle Processes Processes of Flow in the Terrestrial Realm Processes of Flow in the Oceanic Realm

Carbon Cycle Processes Processes of Flow in the Terrestrial Realm Processes of Flow in the Oceanic Realm Carbon Cycle Processes An overview of processes depicted in a STELLA model of the global carbon cycle. Dave Bice Dept. of Geosciences Penn State University Processes of Flow in the Terrestrial Realm Photosynthesis

More information

CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS

CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS 5.5 (a) Briefly explain the concept of a driving force. (b) What is the driving force for steady-state diffusion? (a) The driving force is that which compels a reaction

More information

OCN 201. Light and sound in the ocean

OCN 201. Light and sound in the ocean OCN 201 Light and sound in the ocean Questions you always wanted to know the answer to: Why does the sand burn your feet at the beach while the ocean is cool? Why is the ocean blue? How can whales communicate

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Deep sea gradients in [DOC]

Deep sea gradients in [DOC] Deep sea gradients in [DOC] NMR and carbohydrate analyses of deep sea HMWDOC monosaccharide distribution surface relative % 5200m relative % NMR and carbohydrate analyses of deep sea HMWDOC 13 C- and 1

More information