Performance analysis of flood control facilities in São Paulo Metropolitan Region during extreme rainfall events, based on hydrological simulation

Size: px
Start display at page:

Download "Performance analysis of flood control facilities in São Paulo Metropolitan Region during extreme rainfall events, based on hydrological simulation"

Transcription

1 Performance analysis of flood control facilities in São Paulo Metropolitan Region during extreme rainfall events, based on hydrological simulation Graciosa, M.C.P. 1* ; Coelho, G.A. 2 ; Vieira, J.R.S 3. e Canholi, A.P. 4 1 Hidrostudio Engineering, Rua Cardoso de Almeida, 167, cj. 72, , São Paulo, SP, Brazil. *Corresponding author: melissa@hidrostudio.com.br ABSTRACT The Metropolitan Region of São Paulo MRSP, comprises 19 million inhabitants spread over an area of km², which is completely within the Upper Tietê River Basin. Recurrent flooding problems on this watershed occur mainly because of the complexity of the system, which conducts the entire runoff of this urban area to the same watercourse, the Tietê River. The maximum available capacity of Tietê River is already achieved, considering the impossibility of enlarging the existing channel. Thus, flood control must be based on the reduction of contributions from the tributaries watersheds, by keeping or restoring its storage capability. The Upper Tietê Urban Drainage Master Plan PDMAT, developed by Hidrostudio Company for the Department of Water and Power of The State of São Paulo DAEE, has recommended many hydraulic flood control structures, mostly detention basins, to be implemented on the sub-catchments. Those facilities consist of the enlargement of river beds, detention basins and floodplain parks which are planned to be implemented in phases, according to its priority, defined by the graveness of each case. In this study, the effectiveness of the proposed structures was evaluated by using hydrologic modeling. Observed rainfall events occurred from 2009 to 2011 were analyzed. The current facilities provide protection against the most frequent rainfall events. After the implementation of all the planned detentions basins, the watershed is expected to have protection against floods until 100-years return period. KEYWORDS Hydrological Modeling, Metropolitan Region of São Paulo and Urban drainage. INTRODUCTION Flood control in the Metropolitan Region of São Paulo MRSP is a problem with many boundary conditions. One of the most important restraints for this problem is the limitation of capacity of water courses, notably Tietê River, to conduct the discharge originating from runoff during extreme rainfall events. Figure 1 shows the flow scheme of Upper Tietê River Basin, with the hydraulic capacity of the Tietê River and its main tributaries. The maximum available hydraulic capacity of Tietê River, downstream the junction with the Pinheiros River, that corresponds to the downstream limit of the River inside São Paulo city, is limited to m³/s. This limitation was settled considering the impossibility of enlarging the existing channel. Graciosa et al. 1

2 Thus, flood control must be based on the reduction of contributions from the tributaries watersheds, what can be achieved by keeping or restoring the storage capability of these watersheds. The Upper Tiete River Basin Urban Drainage Master Plan for flood control PDMAT, developed by Hidrostudio Company for the Department of Water and Power of The State of São Paulo DAEE, has recommended many flood control facilities to be implemented on the watershed, in order to control the runoff in the catchment areas where it is generated. Those facilities consist of enlargement of river beds, detention basins and floodplain parks which are planned to be implemented in phases, according to its priority, defined by the graveness of each case. Some of them were already implemented, and provide protection against the most frequent rainfall events. In this study, the effectiveness of the proposed structures was evaluated by using hydrologic modeling. Observed rainfall events occurred from 2009 to 2011 were analysed. Figure 1. Flow scheme of Upper Tiete River Basin. (Source: DAEE-PDMAT, ) METHODOLOGY In this study, the effectiveness of flood control facilities were evaluated by using hydrologic modeling. Rainfall records from stations operated by São Paulo s Inundation Warning System (SAISP), for the 2009/2010 hydrological year, were applied. The mainly watersheds comprised by the Upper Tietê Urban Drainage Master Plan (PDMAT) were studied. Three sceneries were evaluated: (1) Natural that considers the natural situation of the basin, without any flood control (2) Current that considers all the currently implemented facilities for flood control (3) Planned that evaluates the expected behavior of the basin after the implementation of all planned flood control facilities. 2 Performance analysis of flood control facilities in São Paulo Metropolitan Region

3 Hydrologic Modeling The hydrological modeling was performed by using the SCS rainfall-runoff model (Natural Resources Conservation Soil, 1976). The simulations were done with the software HEC-HMS (U.S. Army Corps of Engineers). The main watersheds studied in the Upper Tietê Urban Drainage Master Plan were evaluated. This article presents the results for Tamanduateí River Basin, one of the main tributaries of Tietê River in the south part of the MRSP, that encompasses, partial or totally, areas of the municipalities of Mauá, Santo André, São Bernardo do Campo, São Caetano do Sul, Diadema and São Paulo City. For this study, the watershed was divided in sub-basins, according to the catchment areas of its tributaries. Four precipitation events, which registered significant total precipitation amount, were simulated: September/2009, December/2009, January/2010 and January/2011. The hyetographs are shown in Figure 2. September 8th, :00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 2,0 4,0 6,0 8,0 12,0 14,0 16,0 18,0 22,0 5,0 15,0 25,0 3 35,0 4 45,0 5 55,0 January 21th, :00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 2,0 4,0 6,0 8,0 12,0 14,0 16,0 18,0 5,0 15,0 25,0 3 35,0 4 45,0 5 December 8th, :00 20:00 22:00 00:00 02:00 04:00 06:00 January 18th, :00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 PROSPERIDADE CÓR. ORATÓRIO TAMANDUATEÍ - MAUÁ COR. SARACATAN CÓR. CHRYSLER RIB. MENINOS - VOLKS RUDGE RAMOS RIB. MENINOS RIB. COUROS VILA MARIANA CÓR. IPIRANGA R. TAMANDUATEÍ - VD PACHECO CHAVES Figure 2. Simulated hyetographs. RESULTS Simulations for the event of January/2011resulted on the higher discharge peaks. For this event, simulated hydrographs obtained for Tamanduateí River watershed are shown in Figure 3. The hydrographs on Figure 3 corresponds to the main modelling junctions: 79 exutory of upper Tamanduateí River basin; 99 Meninos River basin; 133 exutory of upper Meninos River basin and 173 mouth of Tamanduateí River, on Tietê River. Figure 3 also shows the location of the precipitation gages. Table 1 shows the peak discharge simulated for the nodes presented on Figure 3. Attenuation of the peaks for each scenario is presented. Graciosa et al. 3

4 Figure 3. Simulated hydrographs for rainfall-runoff event of January/2011. Table 1. Simulated discharge peaks. JUNCTION DRAINAGE AREA (km²) DESCRIPTION Tamanduateí River basin NATURAL DISCHARGE (m³/s) EVENT: JAN/18/2011 CURRENT ATTENUATION DISCHARGE (m³/s) PLANNED ATTENUATION % % Meninos River basin % % Meninos River basin % % mouth of Tamanduateí River, on Tietê River % % 4 Performance analysis of flood control facilities in São Paulo Metropolitan Region

5 The hydrographs compares the three evaluated sceneries: natural, current and planned. The red line represents the natural scenario, that corresponds to the state of the watershed before the implementation of any facilities. The blue line corresponds to the hydrograph that represents the simulations with all structures currently implemented on the watershed. The green line corresponds to the planned scenario. The orange lines represent the discharge capacity of the channel cross sections. CONCLUSIONS Results have shown that the detention pounds can attenuate discharge peaks and restore the storage capability of the watershed. The concept of those structures are based on the best management practices in urban drainage, once they control floods within the watersheds they are generated. The discharge attenuation provided for the basins has effects along large river reaches downstream the structure. The outflow functions of the reservoirs were adopted considering the optimized operation for the project storm of 25 years return period. Those functions remained constant for all the simulated sceneries. Current studies have shown that the efficiency of detention pounds can be optimized, if the inflow structures are planned to be controlled according to the rainfall forecasting. This procedure consists of design the reservoir operation system in order to allow the detention volume to be optimized for the predicted volume or precipitation. Once the peak of reservation is as close as possible to the peak of the hydrograph, the operation of the detention basin is optimized. That goal can be achieved by controlled that operates according to the precipitation forecasting. This type of system ensures that the water levels in the detention basin will be close to its capacity. Simulated hydrographs based on observed rainfall events have shown that the existent facilities provide flood peak reduction when compared with natural peaks. The planned detention basins are expected to decrease flood risk in a range of 10 to 100-year return periods. The continuation of the structures implementation is recommended in order to prevent against floods with increasable higher return periods. REFERENCES Canholi A.P. (2005) Drenagem Urbana e Controle de Enchentes. Oficina de Textos, 302p, São Paulo. Hidrostudio / DAEE Departamento de Água e Energia Elétrica Plano Diretor de Macrodrenagem da Bacia do Alto Tietê. Relatório Síntese (2009). United States Army Corps of Engineers (2008) Hydrologic Modelling System user s manual. Institute of Water Resources, Hydrologic Engineering Center. Davis, CA, 278p. Natural Resources Conservation Service, Conservation Engineering Division (1986). Urban Hydrology for Small Watersheds. Technical Release 55. SAISP Sistema de Alerta a Inundações do Estado de São Paulo. Fundação Centro Tecnológico de hidráulica FCTH. Access: September 8-09, December 8-09 and January Graciosa et al. 5

TUCCI, C.E.M Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p

TUCCI, C.E.M Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p TUCCI, C.E.M. 1999. Urban Drainage in Brazil In: Hydrology of Humid Tropics, IAHS publication n.362, p 10-18. URBAN DRAINAGE PLAN IN BRAZIL Carlos E. M. Tucci Institute of Hydraulic Research - Federal

More information

MATHEMATICAL MODELLING SUPPORT TO THE PDMAT-3 STUDY FOR SÃO PAULO

MATHEMATICAL MODELLING SUPPORT TO THE PDMAT-3 STUDY FOR SÃO PAULO MATHEMATICAL MODELLING SUPPORT TO THE PDMAT-3 STUDY FOR SÃO PAULO M. A. Correa 1, J. R. S. Martins 2, G.F. Prinsen 3, E. A. Yassuda 1 and A. Verwey 4 1. Tetra Tech, São Paulo 2. Universidade de São Paulo

More information

Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions

Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions 2 th International Conference on Urban Drainage, Porto Alegre/Brazil, -6 September 2 Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions A. C. D. Morihama, C. Amaro,

More information

Control and mitigation of floods along transbasin diversion channel of Mekong tributaries and Nan river, Thailand

Control and mitigation of floods along transbasin diversion channel of Mekong tributaries and Nan river, Thailand Control and mitigation of floods along transbasin diversion channel of Mekong tributaries and Nan river, Thailand Tawatchai Tingsanchali* School of Civil Engineering, Asian Institute of Technology, P.O.Box

More information

Pedro Roberto Jacobi Program in Environmental Science, PROCAM-USP University of São Paulo

Pedro Roberto Jacobi Program in Environmental Science, PROCAM-USP University of São Paulo Pedro Roberto Jacobi prjacobi@usp.br Program in Environmental Science, PROCAM-USP University of São Paulo Issues Water Governance What is at stake? Transformations of Water Policy in Brazil Water Governance

More information

Introduction. Keywords: Oil Palm, hydrology, HEC-HMS, HEC-RAS. a * b*

Introduction. Keywords: Oil Palm, hydrology, HEC-HMS, HEC-RAS. a * b* The Effect of Land Changes Towards in Sg. Pandan Perwira Bin Khusairi Rahman 1,a* and Kamarul Azlan bin Mohd Nasir 1,b 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia a * wirakhusairirahman@gmail.com,

More information

Chapter 1 Introduction

Chapter 1 Introduction Engineering Hydrology Chapter 1 Introduction 2016-2017 Hydrologic Cycle Hydrologic Cycle Processes Processes Precipitation Atmospheric water Evaporation Infiltration Surface Runoff Land Surface Soil water

More information

Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control

Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control 12 nd International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011 Sustainable Stormwater Management: use of multifunctional landscapes in urban drainage for flood control O.M.

More information

Introduction to HEC HMS. Daene C. McKinney

Introduction to HEC HMS. Daene C. McKinney CE 374 K Hydrology Introduction to HEC HMS Daene C. McKinney Hydrologic Engineering Center U.S. Army Corps ofengineers (USACE) Hydrologic Engineering Center (HEC) Formed 1964 to institutionalize the technical

More information

Assessment of the influence of wastewater control options on Tietê River water quality

Assessment of the influence of wastewater control options on Tietê River water quality This paper is part of the Proceedings of the 13 International Conference th on Modelling, Monitoring and Management of Water Pollution (WP 2016) www.witconferences.com Assessment of the influence of wastewater

More information

US Army Corps of Engineers Kansas City District. A Dam Safety Study Involving Cascading Dam Failures

US Army Corps of Engineers Kansas City District. A Dam Safety Study Involving Cascading Dam Failures A Dam Safety Study Involving Cascading Dam Failures Policy / Technical Issues How to account for the failure of other dams in the drainage basin How to account for the behavior of all basin dams acting

More information

Hydrologic Calibration:

Hydrologic Calibration: Hydrologic Calibration: UPDATE OF EFFECTIVE HYDROLOGY FOR MARYS CREEK October 2010 Agenda Background Hydrologic model Calibrated rainfall Hydrologic calibration 100 year discharges, Existing Conditions

More information

BRAZIL: FLOOD MANAGEMENT IN CURITIBA METOROPOLITAN AREA

BRAZIL: FLOOD MANAGEMENT IN CURITIBA METOROPOLITAN AREA WORLD METEOROLOGICAL ORGANIZATION THE ASSOCIATED PROGRAMME ON FLOOD MANAGEMENT INTEGRATED FLOOD MANAGEMENT CASE STUDY 1 BRAZIL: FLOOD MANAGEMENT IN CURITIBA METOROPOLITAN AREA January 2004 Edited by TECHNICAL

More information

The Drainage Basin System

The Drainage Basin System The Drainage Basin System These icons indicate that teacher s notes or useful web addresses are available in the Notes Page. This icon indicates that the slide contains activities created in Flash. These

More information

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar Hydrology and Water Management Dr. Mujahid Khan, UET Peshawar Course Outline Hydrologic Cycle and its Processes Water Balance Approach Estimation and Analysis of Precipitation Data Infiltration and Runoff

More information

Creating a Flood Forecasting System for the San Diego River Watershed

Creating a Flood Forecasting System for the San Diego River Watershed Creating a Flood Forecasting System for the San Diego River Watershed Rand Allan County of San Diego Flood Control Martin J. Teal, P.E., P.H., D.WRE WEST Consultants inc. OUTLINE San Diego River Watershed

More information

Extended Abstract. PUC-Rio - Certificação Digital Nº /CA

Extended Abstract. PUC-Rio - Certificação Digital Nº /CA Extended Abstract Fonseca, Fabiana Lanzillotta da; Romanel, Celso (Advisor); Costa, Ernani de Souza (Co-advisor). Stormwater Management with watercourse valorization: computational simulation of the Tintas

More information

Hydrology and Hydraulic Modeling for Flash Floods Risk Assessment and Mapping

Hydrology and Hydraulic Modeling for Flash Floods Risk Assessment and Mapping Hydrology and Hydraulic Modeling for Flash Floods Risk Assessment and Mapping A Methodology Proposal Konstantinos Papatheodorou Eleni A. Tzanou Konstantinos Ntouros Flash Flood Assessment From Regional

More information

Hypothetical Flood Computation for a Stream System

Hypothetical Flood Computation for a Stream System US Army Corps of Engineers Hydrologic Engineering Center Hypothetical Flood Computation for a Stream System December 1968 Approved for Public Release. Distribution Unlimited. TP-12 REPORT DOCUMENTATION

More information

SECTION IV WATERSHED TECHNICAL ANALYSIS

SECTION IV WATERSHED TECHNICAL ANALYSIS A. Watershed Modeling SECTION IV WATERSHED TECHNICAL ANALYSIS An initial step in the preparation of this stormwater management plan was the selection of a stormwater simulation model to be utilized. It

More information

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT 10 th International Conference on Hydroinformatics HIC 2012, Hamburg, GERMANY RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT CHI DUNG DOAN (1)(3), JIANDONG LIU (1), SHIE-YUI LIONG (1), ADRI VERWEY

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological Response: a Case in Malaysia

Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological Response: a Case in Malaysia International Proceedings of Chemical, Biological and Environmental Engineering, Vol. 93 (2016) DOI: 10.7763/IPCBEE. 2016. V93. 23 Impacts of Rainfall Event Pattern and Land-Use Change on River Basin Hydrological

More information

APPENDIX 4 ARROYO MODELING

APPENDIX 4 ARROYO MODELING APPENDIX 4 ARROYO MODELING The existing HEC-HMS model can serve as a baseline for further development and analysis of major arroyos in the city. The model would need to be updated and expanded to consider

More information

Alternative Approaches to Water Resource System Simulation

Alternative Approaches to Water Resource System Simulation US Army Corps of Engineers Hydrologic Engineering Center Alternative Approaches to Water Resource System Simulation May 1972 Approved for Public Release. Distribution Unlimited. TP-32 REPORT DOCUMENTATION

More information

Suspended Sediment Discharges in Streams

Suspended Sediment Discharges in Streams US Army Corps of Engineers Hydrologic Engineering Center Suspended Sediment Discharges in Streams April 1969 Approved for Public Release. Distribution Unlimited. TP-19 REPORT DOCUMENTATION PAGE Form Approved

More information

MACRO DRAINAGE AND RETENTION OF FIRST RAIN IN CLOSED CATCHMENTS

MACRO DRAINAGE AND RETENTION OF FIRST RAIN IN CLOSED CATCHMENTS MACRO DRAINAGE AND RETENTION OF FIRST RAIN IN CLOSED CATCHMENTS J. A. Guimarães 1 Junior, A. M. Righetto 1 and L. F. F. Moreira 1 1. Water Resources and Environmental Sanitation Laboratory (LARHISA) UFRN

More information

Simulation of Daily Streamflow

Simulation of Daily Streamflow US Army Corps of Engineers Hydrologic Engineering Center Simulation of Daily Streamflow April 1968 Approved for Public Release. Distribution Unlimited. TP-6 REPORT DOCUMENTATION PAGE Form Approved OMB

More information

Computer Determination of Flow Through Bridges

Computer Determination of Flow Through Bridges US Army Corps of Engineers Hydrologic Engineering Center Computer Determination of Flow Through Bridges July 1970 Approved for Public Release. Distribution Unlimited. TP-20 REPORT DOCUMENTATION PAGE Form

More information

Hydrostatistics Principles of Application

Hydrostatistics Principles of Application US Army Corps of Engineers Hydrologic Engineering Center Hydrostatistics Principles of Application July 1969 Approved for Public Release. Distribution Unlimited. TP-15 REPORT DOCUMENTATION PAGE Form Approved

More information

SOUTHEAST TEXAS CONTINUING EDUCATION

SOUTHEAST TEXAS CONTINUING EDUCATION EXAM No. 118 FLOOD - RUNOFF ANALYSIS 1. Information gained from flood - runoff analysis includes which one: A. Stage, discharge, volume. B. Measure depth, volume. C. Velocity, depth, storm occurrence.

More information

3.3 Acceptable Downstream Conditions

3.3 Acceptable Downstream Conditions iswm TM Criteria Manual - = Not typically used or able to meet design criterion. 1 = The application and performance of proprietary commercial devices and systems must be provided by the manufacturer and

More information

Distribution Restriction Statement Approved for public release; distribution is unlimited.

Distribution Restriction Statement Approved for public release; distribution is unlimited. CECW-EH-Y Regulation No. 1110-2-1464 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 Engineering and Design HYDROLOGIC ANALYSIS OF WATERSHED RUNOFF Distribution Restriction

More information

5/25/2017. Overview. Flood Risk Study Components HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES. Hydraulics. Outcome or Impacts

5/25/2017. Overview. Flood Risk Study Components HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES. Hydraulics. Outcome or Impacts HYDROLOGIC MODEL (HEC-HMS) CALIBRATION FOR FLOOD RISK STUDIES C. Landon Erickson, P.E.,CFM Water Resources Engineer USACE, Fort Worth District April 27 th, 2017 US Army Corps of Engineers Overview Flood

More information

The Impacts of Pelosika and Ameroro Dams in the Flood Control Performance of Konaweha River

The Impacts of Pelosika and Ameroro Dams in the Flood Control Performance of Konaweha River Journal of the Civil Engineering Forum Vol. 2 No. 3 (September 2016) The Impacts of Pelosika and Ameroro Dams in the Flood Control Performance of Konaweha River Arif Sidik River Basin Unit of Sulawesi

More information

Pilot Study for Storage Requirements for Low Flow Augmentation

Pilot Study for Storage Requirements for Low Flow Augmentation US Army Corps of Engineers Hydrologic Engineering Center Pilot Study for Storage Requirements for Low Flow Augmentation April 1968 Approved for Public Release. Distribution Unlimited. TP-7 REPORT DOCUMENTATION

More information

CE 2031 WATER RESOURCES ENGINEERING L T P C

CE 2031 WATER RESOURCES ENGINEERING L T P C CE 2031 WATER RESOURCES ENGINEERING L T P C 3 0 0 3 QUESTION BANK PART - A UNIT I GENERAL 1. Write short notes on Water Resources Survey. 2. How do you calculate Average Annual Runoff depth? 3. Write short

More information

San Luis Obispo Creek Watershed Hydrologic Model Inputs

San Luis Obispo Creek Watershed Hydrologic Model Inputs Jeff Werst San Luis Obispo County Department of Public Works 1050 Monterey Street San Luis Obispo CA 93408 December 14, 2007 Subject: San Luis Obispo Creek Watershed Hydrology and Hydraulic Model Dear

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil.

University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil. Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro, Brazil P.L. da Fonseca 1 *, L. Pimentel da Silva

More information

Estimation of Infiltration Parameter for Tehri Garhwal Catchment

Estimation of Infiltration Parameter for Tehri Garhwal Catchment Estimation of Infiltration Parameter for Tehri Garhwal Catchment Ashish Bhatt 1 H L Yadav 2 Dilip Kumar 3 1 UG Student, Department of civil engineering, G B Pant Engineering College, Pauri, UK-246194 2,3

More information

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model

Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Urban Flood Evaluation in Maceió, Brazil: Definition of the Critical Flood Event Supported by a Mathematical Cell Model Vidal, D.H.F 1*, Barbosa, F.R 1, and Miguez, M.G 1 1 Federal University of Rio de

More information

Risk. Management Center

Risk. Management Center Risk Hydro-Metrologic Modeling Tools for Water Management and Analysis Management Center US Army Corps of Engineers William Charley Hydrologic Engineering Center Institute for Water Resources June 2016

More information

GISHYDRO: Developing Discharges and Watershed Parameters

GISHYDRO: Developing Discharges and Watershed Parameters GISHYDRO: Developing Discharges and Watershed Parameters A Case Study with Baltimore City Watersheds by Mathini Sreetharan, Ph.D., P.E., CFM, Dewberry, VA Kim Dunn, P.E., CFM, Dewberry, PA Baltimore City

More information

Estimation of Hydrological Outputs using HEC-HMS and GIS

Estimation of Hydrological Outputs using HEC-HMS and GIS Nigerian Journal of Environmental Sciences and Technology (NIJEST) www.nijest.com ISSN (Print): 2616-051X ISSN (electronic): 2616-0501 Vol 1, No. 2 July 2017, pp 390-402 Estimation of Hydrological Outputs

More information

Engineering Hydrology Class 3

Engineering Hydrology Class 3 Engineering Hydrology Class 3 Topics and Goals: I.Develop s (estimate precipitation) II.Develop simple constant intensity design storm III.Develop SCS design storm Ocean s Why do we want to derive the?

More information

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS Darshan Mehta 1, Raju Karkar 2, Lalji Ahir 3 Assistant Professor, CED, S.S.A.S.I.T, Surat, Gujarat, India

More information

Integrated Urban Flood Management

Integrated Urban Flood Management Technical Deep Dive on Integrated Urban Water Management (IUWM) Tokyo Sep 25 to 29, 2017 Integrated Urban Flood Management Dr. Carlos E. M. Tucci World Bank Consultant tucci@rhama.com.br and www.rhama.com.br

More information

A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media

A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media US Army Corps of Engineers Hydrologic Engineering Center A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media April 1970 Approved for Public Release. Distribution Unlimited.

More information

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE by James C.Y. Guo. Professor, Civil Engineering, U. Of Colorado at Denver, James.Guo@cudenver.edu.. And Eric Hsu, Project Engineer, Parson

More information

Address for Correspondence

Address for Correspondence Research Paper DYNAMIC FLOOD ROUTING AND UNSTEADY FLOW MODELLING: A CASE STUDY OF UPPER KRISHNA RIVER 1 Doiphode Sanjay L* 2 Oak Ravindra A. Address for Correspondence 1 M tech Student, Bharati Vidyapeeth

More information

River Processes River action (fluvial)

River Processes River action (fluvial) River action (fluvial) is probably the single most important geomorphic agent and their influence in geomorphology can hardly be overestimated. 1 To understand the complexity associated with river flow

More information

Technical Memorandum No River Geometry

Technical Memorandum No River Geometry Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.5 River Geometry Task: Collection and Analysis of River Geometry Data To: PRWFPA Staff Working Group Prepared by: J. Schaaf

More information

Stepping towards sustainable urban drainage practices at Acari River Basin in Rio de Janeiro

Stepping towards sustainable urban drainage practices at Acari River Basin in Rio de Janeiro Ecosystems and Sustainable Development VII 305 Stepping towards sustainable urban drainage practices at Acari River Basin in Rio de Janeiro M. G. Miguez 1, L. P. C. de Magalhães 2 & F. F. dearaújo 1 1

More information

A&M WATERSHED MODEL USERS MANUAL WATER RESOURCES ENGINEERING

A&M WATERSHED MODEL USERS MANUAL WATER RESOURCES ENGINEERING TWRI Special Report 90-1 A&M WATERSHED MODEL USERS MANUAL by: Wesley P. James Phillip W. Winsor, John F. Bell Melvin G. Spinks, Alfred J. Garcia Dan Pridal, John Warinner Kelly Kaatz, Veronica Morgan Mike

More information

Modeling Infiltration BMPs

Modeling Infiltration BMPs Modeling Infiltration BMPs CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696-4150 www.thcahill.com Design Goals for Calculations 1. Mitigate Peak Rates 2-Year to 100-Year 2. No Volume

More information

DATA AND ACTIVITIES NECESSARY FOR THE PREPARATION OF FLOOD HAZARD MAPS

DATA AND ACTIVITIES NECESSARY FOR THE PREPARATION OF FLOOD HAZARD MAPS Abstract code: CP7 Development and implementation of a methodology of flood hazard mapping in Bulgaria, as required by Directive 2007/60 / EC S. Balabanova 1, V. Yordanova 1, V. Stoyanova 1 1 National

More information

Review of Hydrological Potential in Combined Gin and Nilwala River Basins of Sri Lanka

Review of Hydrological Potential in Combined Gin and Nilwala River Basins of Sri Lanka Review of Hydrological Potential in Combined Gin and Nilwala River Basins of Sri Lanka A.V.D.Fernando 1, L.S.Sooriyabandara 2 and G.H.A.C.Silva 1 1 Department of Civil and Environmental Engineering, Faculty

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

SECTION III: WATERSHED TECHNICAL ANALYSIS

SECTION III: WATERSHED TECHNICAL ANALYSIS Trout Creek Watershed Stormwater Management Plan SECTION III: WATERSHED TECHNICAL ANALYSIS A. Watershed Modeling An initial step this study of the Trout Creek watershed was the selection of a stormwater

More information

Introduction to Hydrology, Part 2. Notes, Handouts

Introduction to Hydrology, Part 2. Notes, Handouts Introduction to Hydrology, Part 2 Notes, Handouts Precipitation Much of hydrology deals with precipitation How much? How frequently/infrequently? What form? How quickly? Seasonal variation? Drought frequency?

More information

Appendix VI: Illustrative example

Appendix VI: Illustrative example Central Valley Hydrology Study (CVHS) Appendix VI: Illustrative example November 5, 2009 US Army Corps of Engineers, Sacramento District Prepared by: David Ford Consulting Engineers, Inc. Table of contents

More information

Flood Modelling For Peri Urban Areas in Adyar River

Flood Modelling For Peri Urban Areas in Adyar River Flood Modelling For Peri Urban Areas in Adyar River Saranya VP 1 Assistant Professor, Department of Civil Engineering, Bannari Amman Institute of Technology, Erode, India 1 ABSTRACT: Water is essential

More information

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description Hydrologic Engineering Center Training Course on Hydrologic Modeling with HEC-HMS Davis, CA Course Description The course provides an introduction to HEC-HMS for new users, focusing both on using the program

More information

Project Summary: - Hydrologic Models. - LiDAR Based - 10 Synthetic Events - No Historic Events - 100yr Runoff is Largest - Assumes Even Rainfall

Project Summary: - Hydrologic Models. - LiDAR Based - 10 Synthetic Events - No Historic Events - 100yr Runoff is Largest - Assumes Even Rainfall Project Summary: - Hydrologic Models Phase 2 Underway Nearly Completed (Park/Pembina EOY) - LiDAR Based - 10 Synthetic Events - No Historic Events - 100yr Runoff is Largest - Assumes Even Rainfall Phase

More information

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS April 2018 Davis, CA. Course Description

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS April 2018 Davis, CA. Course Description Hydrologic Engineering Center Training Course on Hydrologic Modeling with HEC-HMS 23-27 April 2018 Davis, CA Course Description The course provides an introduction to HEC-HMS for new users, focusing both

More information

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY)

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) Hydromodification design criteria for the North Orange County permit area are based on the 2- yr, 24-hr

More information

A framework for comprehensive stormwater management practices in eastern and southern Australia

A framework for comprehensive stormwater management practices in eastern and southern Australia A framework for comprehensive stormwater management practices in eastern and southern Australia John R Argue*, David Pezzaniti** and Guna Hewa *** *Adjunct Professor of Water Engineering ** Senior Research

More information

DEVELOPMENT OF A HYDRO-GEOMORPHIC MODEL FOR THE LAGUNA CREEK WATERSHED

DEVELOPMENT OF A HYDRO-GEOMORPHIC MODEL FOR THE LAGUNA CREEK WATERSHED DEVELOPMENT OF A HYDRO-GEOMORPHIC MODEL FOR THE LAGUNA CREEK WATERSHED Agenda Background Hydro-Geomorphic Modeling Methodology HEC-HMS Modeling How is the Model Used Background Proposition 50 Grant Funding

More information

Drainage Analysis. Appendix E

Drainage Analysis. Appendix E Drainage Analysis Appendix E The existing and proposed storm drainage systems have been modeled with Bentley CivilStorm V8 computer modeling software. The peak stormwater discharge was determined for

More information

SEWRPC Staff Memorandum

SEWRPC Staff Memorandum SEWRPC Staff Memorandum EVALUATION OF PROPOSED STORMWATER QUANTITY MANAGEMENT FOR THE DES PLAINES RIVER WATERSHED PORTION OF THE PROPOSED FOXCONN DEVELOPMENT IN THE VILLAGE OF MOUNT PLEASANT June, 2018

More information

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

Upstream structural management measures for an urban area flooding in Turkey

Upstream structural management measures for an urban area flooding in Turkey doi:10.5194/piahs-370-45-2015 Author(s) 2015. CC Attribution 3.0 License. Upstream structural management measures for an urban area flooding in Turkey Z. Akyurek 1, B. Bozoğlu 1, S. Sürer 2, and H. Mumcu

More information

The study consists of two parts. The same workflow is used in both:

The study consists of two parts. The same workflow is used in both: Results following the workflow The study consists of two parts. The same workflow is used in both: Climate impact indicators of hydrology in a future climate Data collection and hydraulic modelling Identify

More information

IMPROVED MODELING OF THE GREAT PEE DEE RIVER: DOCUMENTATION IN SUPPORT OF FEMA APPEAL. Horry County, South Carolina

IMPROVED MODELING OF THE GREAT PEE DEE RIVER: DOCUMENTATION IN SUPPORT OF FEMA APPEAL. Horry County, South Carolina IMPROVED MODELING OF THE GREAT PEE DEE RIVER: DOCUMENTATION IN SUPPORT OF FEMA APPEAL Horry County, South Carolina July 15, 2016 CONTENTS 1 Introduction... 2 2 Hydrology... 3 3 HEC-RAS Model... 7 3.1 Cross

More information

Comparison and Assessment of Success of Models in Watershed Simulation and Management

Comparison and Assessment of Success of Models in Watershed Simulation and Management Journal of Water Resource and Protection, 2014, 6, 599-608 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jwarp http://dx.doi.org/10.4236/jwarp.2014.66058 Comparison and Assessment

More information

Pre-Event Activities. Blue River. Pre Field Trip Suggestions

Pre-Event Activities. Blue River. Pre Field Trip Suggestions Blue River Have you heard we all live in a watershed? Well, it is true! This total body activity will allow students to demonstrate how water flows in a watershed while exploring how seasonal variations

More information

Integrated Flood Management for Urbanized River Basins in Japan

Integrated Flood Management for Urbanized River Basins in Japan Integrated Flood Management for Urbanized River Basins in Japan Akira TERAKAWA Acting Director of ICHARM Public Works Research Institute (PWRI) Tsukuba, Japan I am going to talk about Scheme for River

More information

Protecting and Enhancing Ecosystem Services the Role of Wetlands and Watershed Management in Flood Attenuation Dr. Mark Gloutney Director Regional

Protecting and Enhancing Ecosystem Services the Role of Wetlands and Watershed Management in Flood Attenuation Dr. Mark Gloutney Director Regional Protecting and Enhancing Ecosystem Services the Role of Wetlands and Watershed Management in Flood Attenuation Dr. Mark Gloutney Director Regional Operations Eastern Canada April 14 2016 Changes in Storm

More information

Flood Control Planning Below Alluvial Fans

Flood Control Planning Below Alluvial Fans Flood Control Planning Below Alluvial Fans Presenter: Contributors: Aric Torreyson P.E., Program Manager, Tetra Tech Inc. Nathan Schreiner, P.E., Project Manager, Tetra Tech Inc. Tesfaye Demissie, P.E.,

More information

A Hydrologic Study of the. Ryerson Creek Watershed

A Hydrologic Study of the. Ryerson Creek Watershed A Hydrologic Study of the Ryerson Creek Watershed Dave Fongers Hydrologic Studies Unit Land and Water Management Division Michigan Department of Environmental Quality May 8, 2002 Table of Contents Summary...2

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

JOURNAL OF APPLIED SCIENCES RESEARCH

JOURNAL OF APPLIED SCIENCES RESEARCH Copyright 2015, American-Eurasian Network for Scientific Information publisher JOURNAL OF APPLIED SCIENCES RESEARCH ISSN: 1819-544X EISSN: 1816-157X JOURNAL home page: http://www.aensiweb.com/jasr Published

More information

Appendix C. Demonstration Model

Appendix C. Demonstration Model Appendix C Demonstration Model Connecticut River Partnership Demonstration hydrologic/dam operations models Overview The Nature Conservancy, together with partners, has identified an altered flow regime

More information

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40

More information

ASSESSMENT OF DRAINAGE CAPACITY OF CHAKTAI AND RAJAKHALI KHAL IN CHITTAGONG CITY AND INUNDATION ADJACENT OF URBAN AREAS

ASSESSMENT OF DRAINAGE CAPACITY OF CHAKTAI AND RAJAKHALI KHAL IN CHITTAGONG CITY AND INUNDATION ADJACENT OF URBAN AREAS Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) ASSESSMENT OF DRAINAGE

More information

Amina Reservoir Project Report

Amina Reservoir Project Report Amina Reservoir Project Report Prepared for Instituto Nacional de Recursos Hidráulicos, Dominican Republic Rob Sowby, Sam García, and Erik McCarthy Civil and Environmental Engineering Brigham Young University

More information

Urban Study. Rocky Branch Watershed Columbia, South Carolina. June 1, Project No

Urban Study. Rocky Branch Watershed Columbia, South Carolina. June 1, Project No Urban Study Rocky Branch Watershed Columbia, South Carolina Prepared for: City of Columbia 1136 Washington Street Columbia, SC 29217 Prepared by: AMEC Environment & Infrastructure, Inc. 720 Gracern Road

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or any

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Applications Guide December 2002 Approved for Public Release Distribution Unlimited CPD-74C REPORT DOCUMENTATION PAGE Form Approved OMB

More information

MRG Bernalillo to Belen GRR

MRG Bernalillo to Belen GRR MRG Bernalillo to Belen GRR Appendix H Hydrology and Hydraulics July 2017 Albuquerque District South Pacific Division Rio Grande Floodway Bernalillo to Belen, Mt. View - Isleta to Belen Unit Bernalillo

More information

Hydrologic engineering Hydraulic engineering Environmental engineering Ecosystems engineering Water resources engineering

Hydrologic engineering Hydraulic engineering Environmental engineering Ecosystems engineering Water resources engineering Water Engineering Water Systems: Drainage, flood control, storage (dams), water supply, hydropower, diversion, river training, etc. Planning, design, operation and management of water systems; policy making;

More information

A Tale of Two Dams and a dry river. November 1, 2011 Planning, Resources and Technology Committee Mojave Water Agency

A Tale of Two Dams and a dry river. November 1, 2011 Planning, Resources and Technology Committee Mojave Water Agency A Tale of Two Dams and a dry river November 1, 2011 Planning, Resources and Technology Committee Mojave Water Agency The Mojave River Headwaters San Bernardino Mountains Terminus (mouth) Soda Lake (Baker,

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part 257.82 PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R. Part

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Autumn semester of Prof. Kim, Joong Hoon

Autumn semester of Prof. Kim, Joong Hoon 1 Autumn semester of 2010 Prof. Kim, Joong Hoon Water Resources Hydrosystems System Engineering Laboratory Laboratory 2 A. HEC (Hydrologic Engineering Center) 1 Established in the U.S. Army Corps of Engineers(USACE)

More information

Flood Analysis of Wainganga River by using HEC-RAS model

Flood Analysis of Wainganga River by using HEC-RAS model Flood Analysis of Wainganga River by using HEC-RAS model Heena Ingale, R. V. Shetkar Government College of Engineering Aurangabad (M.S.) India Corresponding Email : heenaingale.gcoea@gmail.com Abstract:

More information

Title Advanced Hydraulic Modeling to Support Emergency Action Plans

Title Advanced Hydraulic Modeling to Support Emergency Action Plans Title Advanced Hydraulic Modeling to Support Emergency Action Plans Abstract Freese and Nichols, Inc. (FNI) developed an Emergency Action Plan (EAP) for a Levee Improvement District (LID) located in a

More information

Drainage Simulation of Detention Pond with Tidal Effect at the Outfall during a Storm Period

Drainage Simulation of Detention Pond with Tidal Effect at the Outfall during a Storm Period Drainage Simulation of Detention Pond with Tidal Effect at the Outfall during a Storm Period TIENFUAN KERH, JASON J. D. YEI and YU-MIN WANG Department of Civil Engineering National Pingtung University

More information