Design Considerations for Wire Bonding Power Hybrids Gary Silverberg & Mike McKeown Orthodyne Electronics Irvine, CA

Size: px
Start display at page:

Download "Design Considerations for Wire Bonding Power Hybrids Gary Silverberg & Mike McKeown Orthodyne Electronics Irvine, CA"

Transcription

1 1 IMAPS Long Island Symposium May 6, 1997 Design Considerations for Wire Bonding Power Hybrids Gary Silverberg & Mike McKeown Orthodyne Electronics Irvine, CA Abstract This paper will discuss the package design issues that Engineers should consider when developing a large aluminum wire wedge bonding process for use in power hybrid packages. With electronic power packages getting denser and thermal management more critical, the interconnection aspects must be fully proven and have higher reliability characteristics than ever before. Wire bonding is one of the main forms of interconnection in power hybrid packages for interconnection of power die to substrate and substrate to housing. Packaging considerations for automotive and industrial power applications will be focused on. This paper will offer guidelines in terms of the various materials that may be used, dimensional considerations, and related processes that may affect wire bonding. The materials must be compatible with all the processes a power hybrid package may encounter in the assembly process as well as compatible with the available processing equipment. Therefore, working closely with equipment and material vendors from the initial design concept stage can decrease time to market and increase production yields. INTRODUCTION The key materials involved with a typical power hybrid module can be broken down into the following sections : substrate, die, housing and bonding wire. The substrate section is comprised of the material used for the substrate as well as the type of thick film and other bonding surfaces, such as aluminum clad copper bond pads. The IC die pad section reviews bond pad materials and dopants. The housing section covers lead frame surfaces in addition to the design criteria of the lead frame. The bonding wire Photo courtesy of SMP Electronics section outlines the various types of aluminum- based bonding wires that may be utilized. Other materials involved in various operations before and after wire bonding are discussed. Finally, considerations for dimensional constraints of wire bond equipment are listed. 1.0 SUBSTRATE MATERIALS The various types of base substrates used in power hybrids are alumina, BeO, AlN, and PCB. The key issue with power hybrids is to efficiently remove the heat away from the electronic package via the substrate. Beryllium oxide (BeO) and aluminum nitride (AlN) are both excellent substrate choices for heat sinking due to their high thermal conductivity [1]. Alumina, beryllium oxide, and aluminum nitride can all be used with thick film, thin film, and direct bond copper (DBC) metallizations. The rigid nature of these substrates makes them good choices for wire bonding power hybrids. Printed circuit board (PCB) substrates, such as FR4, have a significant cost advantage over the ceramic-based substrates. With this

2 2 IMAPS Long Island Symposium May 6, 1997 cost savings comes some difficulties for wire bonding. The organic nature of this material has a sponginess that absorbs the bond interface energy, especially for larger diameter wires. The effect is less pronounced with smaller wire diameters, but still present nevertheless. Mounting a soft substrate to a solid backing with a rigid epoxy improves the bonding. Typically the circuit traces on the PCB are copper foil with a bondable plating. This works well for small wire sizes but the foil is very thin in relationship to large wires. A 2 oz copper foil with large bond areas to prevent delamination during bonding is recommended for heavy wire bonding. An excellent alternative is to solder aluminum clad copper bond pads to the traces of these softer substrates. These boards normally see several processes prior to wire bonding, such as plating, soldering (wave or reflow) and cleaning. Like all wire bonding applications, the bonding surface must be free of contaminants. Care must be taken to remove all residue from the wire bond areas. 1.1 Thick Films Thick film inks used in hybrid devices are comprised of conductor, dielectric, and resistor pastes. The inks are screen printed onto ceramic-based substrates and then fired in a furnace. This process may be several layers thick and the resulting pattern forms the electronic circuit. Some thick films are intentionally designed for wire bonding and others are not. The most common thick films used for wire bonding are : palladium silver (PdAg), platinum silver (PtAg), and platinum palladium silver (PtPdAg). These thick films work best with a more ductile wire (higher elongation). One item to consider when using softer aluminum wire is that aluminum build up on the tool occurs more quickly than standard aluminum wire. Wire bondable thick films vary from supplier to supplier. Work closely with the thick film vendor to ensure that electrical and mechanical characteristics are fully reviewed and evaluated. One misleading thick film candidate is silver (Ag). Silver thick film bonds very well but it s affinity for oxidation and corrosion may result in long term reliability problem for aluminum wire bonding. 1.2 DBC Direct Bonded Copper (DBC) is a technology which directly bonds 5 to 20 mil thick copper foil to a ceramic substrate. A cupric oxide layer (CuO) is formed on the copper foil sheet. The foil is then placed on an oxide ceramic such as BeO and sent through a high temperature furnace. The eutectic temperature of the CuO is reached and the CuO flows to form a permanent bond between the copper and the substrate. The circuit pattern is then etched into the copper foil. DBC is normally used for high power applications for it s superior electrical and high thermal management properties. For wire bonding, a nickel or nickel/gold plating is usually added but the copper can be bonded to directly if it is free from oxidation. [2] 1.3 Al Clad Cu Bond Pads Aluminum clad copper bond pads are among the most widely used bonding surfaces. The aluminum surface is used to ensure an optimal bonding surface (mono-metallic system) [3]. The copper is used primarily as a proper soldering medium to the substrate. Process Engineers should consider the following issues when using aluminum clad copper bond pads: aluminum thickness, surface roughness, burrs, shape, oxidation, and the other metallization choices that are available. When working with larger diameter wire, it is suggested that you specify that the aluminum thickness of the cladding be a minimum of 2 mils. This thickness is necessary due to the risk of copper diffusing into the aluminum, delaminating the aluminum from the copper during bonding

3 3 IMAPS Long Island Symposium May 6, 1997 or peeling away the aluminum during destructive pull or shear testing,. When evaluating bond pads, one commonly over-looked item is the surface roughness. The rougher the surface, the less ideal the bonding due to a reduced contact area between the wire and the bond pad. Also, the rougher the surface, the more likely the possibility of trapping detrimental contaminants in the crevices that may inhibit wire bonding (such as flux residue, stamping oils, epoxies, etc.). [4] A surface finish of 36 or finer should be specified. Another critical item with bond pads is the presence of burrs caused from the stamping operation. Depending on how the bond pads were stamped, burrs will be present. Work with your supplier to ensure that the burrs are minimal and are facing the copper side (stamped down). If the burrs point up, towards the aluminum side, they may nick and damage the wire. Since aluminum oxidizes, it is best to keep the bond pads in a clean environment that is average humidity and temperature. Storage in a nitrogen box with a dessicant is optimal. Also, having the bond pads placed on tape and reel will offer the bond pads an individual pocket protected by a cover tape. If you keep this package away from direct sunlight and use it in a reasonable length of time, you should not encounter any problems. In the past few years, much talk of circular bond pads has arisen to prevent the bond pad from circular rotation that is common with square bond pads. Again, work with your supplier and see which size bond pad is needed for your power package. Lessening the amount of solder and increasing the ramp time during solder reflow will help diminish the circular rotation of bond pads. Another benefit of bonding to a bond pad over bonding directly to thick film is that the bond pad will handle current surges more efficiently due to the larger surface area. Other metallization bond pads are available and gaining popularity. Some of these include Kovar with a nickel plating and Kovar with a palladium flash over nickel plating. 2.0 I.C. BOND PADS The aluminum top metal on an IC bond pad is used to accept the aluminum wire. This mono-metallic system ensures optimum bonding. Pure aluminum bonds very well but it is subject to hillocking during temperature cycling. The aluminum will buckle from electromigration and aggregate in ridges causing fatigue failures. Copper is added to prevent electromigration. Problems may arise, however, if the copper content rises above 1.5%. The bondability degrades and in severe cases, the copper may corrode from moisture and the presence of halogens, such as chlorines, gives the bond pad a brownish appearance. 1% silicon (Si) is often added to Al bond pads to prevent back-diffusion of the silicon wafer. This back diffusion could impair the electrical characteristics of the component. The Si in the bond pad metallization can form micrometer sized Si nodules which can act as a stress riser and crack the underlying glass during bonding. This micro-fracturing will show up as electrical leakage during testing. In severe cases cratering occurs. The IC surface is exposed to many sources of contamination through wafer processing, storage, die attach, and final assembly. Small amounts of contamination could drastically effect wire bond yield. Many hybrid manufacturers plasma clean prior to bonding. Since the physical size of a die can determine it s cost, IC designers are locating bonding pads over active circuitry. The circuitry under the bond pads is fragile and may be susceptible to micro-fracturing during the bonding process. It is also true

4 4 IMAPS Long Island Symposium May 6, 1997 that the wafer process time directly effects cost. Applying a thicker layer of bond pad metallization increases processing time and therefore the cost. Studies have been done on bond pad thickness versus yield and the results clearly show the effect. A minimum thickness of 4 microns should be specified for large wire bonding. The combination of active area bonding and thin bond pad metallization can result in a bonding process with a very small operating window. 3.0 HOUSINGS Insert molded packages are very common for automotive, industrial, and power package applications. The type of resins used for injection molded packages is extremely important. PBT and PPS are two common resins used for this application. In a typical molded package a leadframe is normally molded within the plastic. The leadframe electrically connects the inner package with the outside world. The leadframe is typically wire bonded from the substrate to the leads inside the package and the outer leads are normally configured into a connector. It is important, as always, to keep the lead area that will be bonded free from contamination. Plastics and resins will out-gas when heated. Also a mold release compound is applied to the mold to aid in the removal of the finished cooled part from the mold. Both out-gassing and mold release contamination, if left on the bond areas, will degrade wire bonding. The resins must also have a coefficient of thermal expansion (CTE) that is similar to the other materials in the package. If incorrectly selected the resins will expand and contract excessively and the wire bonds in the package will be stressed to the breaking point during thermocycling. Another phenomenon know as pullback results when the resins shrink during the cooling process. If this occurs around the leadframe, the bonding areas will not be held down tightly which will result in the lead oscillating during the application of ultrasonics. The result is inconsistent bonding. When designing the leadframe for a package many factors should be taken into account including : material, geometry, support, and routing. 3.1 Plating Plating of unbondable base metals with wire bondable metals is very common in the electronics industry. The most common plating for aluminum wire bonding is nickel/ phosphorus (NiP). This is an electroless process in which approximately micro inches of NiP is plated. Electroless plating is an autocatalytic reduction of metal from solution and is purely a chemical process. Electrolytic plating uses electric current densities through the material to attract metal ions to the surface. The plating thickness can vary due to differences in the current density throughout the material due to it s physical shape. It has been our experience that electroless plating is preferable for wire bonding. The addition of phosphorus acts as a catalyst in the electroless process [5]. The higher the phosphorus content, the harder the plating and the less wire bondable the plating becomes. A small percentage (5-10%) of phosphorus is a good compromise and will decrease the formation of nickel oxide which is very hard and impossible to bond through. In some cases, a 2 to 10 micro-inch flash of 24 carat gold is applied to eliminate the possibility of oxidation. The gold should be pure and soft without brighteners such as Thallium. The bonding process is actually breaking through the gold and the Al wire is bonding to the Ni underneath. The gold plating should not be too thick (< 40 microinches) in order to reduce the risk of Kirkendall voiding. The surface roughness should be 100 +/- 50 nanometers peak to peak. Palladium (Pd) plating as an alternative has an advantage that it can be

5 5 IMAPS Long Island Symposium May 6, 1997 used for both gold and aluminum wire bonding [6]. Large Al wires bonded from lead frame to substrate 3.2 Al Clad Leadframe Aluminum bonded to aluminum is the easiest and most reliable metal system for wire bonding. For large wire bonding, an aluminum clad leadframe material is recommended. The cost can be higher than plated leadframes, but the results are more consistent. Aluminum cladded materials starts with a sheet of base metal, normally copper or brass, which is skived out where the bonding regions will be. An aluminum foil is pressed into the skived-out area with tremendous force which bonds the aluminum to the base material. When the leadframe design is punched from the sheet material, the aluminum will be only at the bond areas. The copper or brass portion will be molded into the package and used for the connector. This is a benefit since aluminum wire bonds well, copper molds well and copper can be tin or solder coated at the connector. Like Al clad bond pads, the cladding thickness is important due to the risk of Al/Cu intermetallic formation. The intermetallics can form brittle areas that may eventually crack. It has been determined by cross-sectioning cladded leads that the intermetallic formation will not exceed 2 mils. Therefore, the minimum thickness for the cladding should be 2 mils. 3.3 Horizontal Leads Inside a package, horizontal leads may be supported by an underlying plastic shelf or they may be unsupported. Supporting the leads can be useful especially for large Al wires such as 15 mils or larger [7]. When using a supported lead design it is very important that pullback of the plastic either under or around the lead does not occur. A gap under the lead will act as a sounding board. Vertical oscillation may occur and the lead will hit the shelf below and bound back in a harmonic pattern. This will result in inconsistent bonding and over-deformed bonds. Mold locks or over molding of the leads can help hold the leads rigid. Overmolding is a technique where the lead is embedded in the package support and the mold covers the top edges of the lead holding the lead in place. Unsupported or cantilevered leads are also common. For structural rigidity, the leads should be at least.032 thick, <.150 long, and >.100 wide. Since these leads have no support underneath, they are not subject to the sounding board effect of supported leads. They are, however, more susceptible to resonance. If the lead resonates during bonding, energy may be lost or absorbed by the lead s movements. The resonance of a material is determined by its mass and structure. It is not easy to calculate the resonance of a structure without actually building the part and testing it. It has been shown experimentally that usually the best bonding occurs when the bond position is near the end of the lead, not toward the package wall. This seems contradictory to the idea that the lead should be as rigid as possible.

6 6 IMAPS Long Island Symposium May 6, 1997 BAD BAD Inside Package Wall.150 Package Wall Angled first bond GOOD Mold Lock GOOD The routing of the leads as they enter the package wall can sometimes be a hidden problem. It is recommended that the leads extend at least.150 into the mold before angling. If the lead is not held rigidly in the plastic due to pullback of the plastic, the lead may flex at the joint and cause vibrations during bonding. There is not much plastic holding the lead in the direction parallel to the bond. In the example shown above, the lead is held tight within the plastic and with the addition of mold locks, the results are even better. Normally it is best to angle the first bond parallel to the lead since this should be the stiffest axis. However, in cases where the design is marginal, bonding first bond at an angle may yield better results. 3.4 Vertical Leads Vertical pins must be rigid for consistent bonding. The attachment point of the pin must be tight and the length of the pin should not exceed it s diameter. The top of the pin must be flat without burrs. When inserting metal pins into plastic housings or connector bodies, it is important to put features such as knurls on the pins very close to the surface of the plastic to assure a tight grip near the bond area. 4.0 WIRE CHOICES There are many choices available to the end user in terms of aluminum based wires. The most common wire type used in industry is the 99.99% aluminum wire (also known as four-nines ). It is used for wire bonding to die, lead frames, aluminum inlay, bond pads, etc. A second type of wire, though not as popular, is the five-nines, % pure aluminum. Some end users prefer this wire since it is able to bond easier to thick films and hard-to-bond-to surfaces. This very soft wire may help the bonding process in the early stage but consider the long-term effects that may be detrimental. Without the small quantities of impurities found in 99.99% Al wire that pin the Al grain boundaries in the wire, the grains in % Al wire will grow during temperature cycling. If the grains grow to a size approaching the diameter of the wire, the wire will weaken and possibly break along the enlarged boundary. Thorough thermocyle testing of the product is strongly recommended. For wire bonding to hard surfaces, such as those with a thin layer of nickel oxide, or if a harder type wire is preferred, there is the 0.5% magnesium aluminum wire. Magnesium aluminum wire diameters above 8 mil could crater thin metallization devices, such as power die. A wire composition that is gaining acceptance is corrosion resistant aluminum wire. One of the key dopants used in this wire is nickel. However, there are many other proprietary dopants that are added to give this wire special strength to withstand high temperature and high pressure for long periods of time. It is used in automotive under-the-hood applications as well as some industrial units. 5.0 MATERIALS & PROCESS RELATED ISSUES 5.1 Silicone Gel Silicone gels are often used for corrosion protection of electronic circuits [8]. It is interesting to note that silicone gel is not a moisture seal. Its mechanism of corrosion protection is the attachment of the ends of the long silicone molecules to the surface of the circuit. If dense silicone molecules are attached everywhere on the circuit surface, no water can collect, and no large size corrosive ions of chlorine, sodium, or other corrosives can penetrate.

7 7 IMAPS Long Island Symposium May 6, 1997 The viscosity and thickness of the silicone gel application is important to wire bonds. The gel should be of low viscosity during dispensing and remain soft after curing. If the gel is thick after curing, the gel could damage wire bonds during drop tests or from its expansion and contraction during thermocycling. Thin soft gel applied properly will protect circuits from corrosion and be safe for wire bonds. 5.2 Epoxy & Adhesives Many electronic substrates are attached to backplates by an epoxy or adhesive. The area directly below the wire bonds should be as close to void-free as possible. This will ensure optimum transfer of ultrasonics. When curing either the epoxy or adhesive, it is critical to have proper exhaust of the volatiles from the heating chamber so that they will not be deposited on the wire bonding locations. Compliant adhesives may absorb ultrasonic energy and create inconsistent bonding conditions. 5.3 Cleaning Over the last few years, the cleaning industry has been through (and still continuing) major changes with equipment and cleaning solvents. The end user will have to find which cleaning system is right for their application. However, remember that any residue left on the wire bondable surface after cleaning will inhibit wire bonding. Many of the residues are unable to be detected unless very high magnification microscopes and surface analysis equipment is used. 5.4 Storage of Parts With today s latest manufacturing techniques, the lot sizes are getting smaller and smaller and many companies now use a lot size of one. This just-in-time type of manufacturing is beneficial since it dictates that there is very little chance of items waiting to be processed. In batch mode manufacturing, significant quantities of parts may wait long periods of time to be processed. Dust, foreign particles, and other items that drift in the air may settle on electronic substrates and may interfere with wire bonding (as well as other manufacturing steps). It is best to either quickly process batch quantities, or store them in a secure environment until processing time. 6.0 DIMENSIONAL REQUIREMENTS When designing a hybrid package, it is important to consider the requirements of the processing equipment. In the case of wire bonders, there are clearance requirements for the bond tool to reach inside a package. There are also requirements on how the wiring diagram is laid out. Designing with these restraints will increase the manufacturability of your product. Deep access capability of the Orthodyne M-360C Clearances in front of and behind the bond tool should be considered as well as the step back for cutting and breaking the wire after second bond. After the second bond is made, the bond head must move back to cut, break, and form the wire under the tool to be ready for the next first bond. Structures behind the last bond or the bond pad itself should be positioned accordingly to avoid any interference. Bond to bond spacing is determined by the wire size. Contact your

8 8 IMAPS Long Island Symposium May 6, 1997 wire bonder manufacturer for specific clearance guidelines. 7.0 CONCLUSIONS There are many design issues that should be considered when developing a wire bonding process for use in power hybrid packages. It is important to take each issue and address it individually and see how it affects your application. The earlier that the design issues are handled, the less trouble one will have on the production floor. BIBLIOGRAPHY 1. Al Krum, Designing Power Hybrid Packages, Hybrid Circuit Technology, March, Dr. R.F. David, Manufacturing Power Hybrid Circuits, Electronic Packaging & Production, p. 52, March George G. Harman, Wire Bonding in Microelectronics, International Society for Hybrid Microelectronics, p. 75, Simon Thomas and Howard M. Berg, Micro-Corrosion of Al-Cu Bonding Pads, IEEE Transactions, Vol. CHMT-10, No. 2, pps , June Gerald A. Laitinen, Troubleshooting Electroless Nickel, Allied-Kelite Products Division of the Richardson Company, Des Plaines, IL. 8.John W. Balde, The Effectiveness of Silicone Gels for Corrosion Prevention of Silicon Circuits, IEEE Transactions, Vol. 14, No. 2, pps , June, BIOGRAPHY Gary Silverberg is the National Sales Manager for Orthodyne Electronics. Prior to his current position he spent 5 years developing Hybrid processes at Hewlett Packard and 8 years at Hughes Aircraft as Bonder Applications Manager, Bonder Sales Manager, and Welding Product Manager. Gary may be reached at Orthodyne Electronics in Irvine, CA at (714) or via at sales.orthodyne.com. Mike McKeown is a Sales Engineer with Orthodyne Electronics. Mike spent 10 years working for Standard Motor Products involved in the design and manufacture of automotive electronic modules, with an emphasis in wire bonding. He then worked for Semiconductor Packaging Materials, a wire manufacturer, as an Applications Engineer. Mike may be reached at the Orthodyne Electronics Eastern Regional Office at (516) or at mike.mckeown@orthodyne.com. ACKNOWLEDGMENTS The authors of this paper would like to thank Mike Smith of Orthodyne Electronics and Jim Hundley for their major contributions to this paper. 6. Donald C. Abbott, Richard M. Brook, Neil McLelland, John S. Wiley, Palladium as a Lead Finish for Surface Mount Integrated Circuit Packages, IEEE Transactions, Vol. 14, No. 3, pps , September, M.E. Webster, J.A. Hearn, R.W. Bibby, Developing Interconnect and Connector Technologies for a Hybrid Engine Control Module, ISHM Proceedings,pps , 1994.

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Hugh Roberts Atotech USA Inc., Rock Hill, SC, USA Sven Lamprecht, Gustavo Ramos and Christian Sebald Atotech Deutschland

More information

Component Palladium Lead Finish - Specification Approved by Executive Board 1997-xx-xx August 22 Version

Component Palladium Lead Finish - Specification Approved by Executive Board 1997-xx-xx August 22 Version Component Palladium Lead Finish - Specification Approved by Executive Board 1997-xx-xx August 22 Version Appendices 1. User Commitment Form 2. Supplier Compliance Form Table of contents 1. Background 2.

More information

Wire Bonding in Microelectronics

Wire Bonding in Microelectronics Wire Bonding in Microelectronics Materials, Processes, Reliability, and Yield George G. Harman Second Edition McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogota Caracas Lisbon London Madrid

More information

AlSiC for Optoelectronic Thermal Management and Packaging Designs

AlSiC for Optoelectronic Thermal Management and Packaging Designs for Optoelectronic Thermal Management and Packaging Designs Mark A. Occhionero, Richard W. Adams, Dave Saums Ceramics Process Systems Chartley, MA 02712-0338 Abstract Aluminum silicon carbide () metal

More information

Beam Leads. Spider bonding, a precursor of TAB with all-metal tape

Beam Leads. Spider bonding, a precursor of TAB with all-metal tape Beam Leads The vast majority of chips are intended for connection with thermosonic bonds: all other methods require some modification to the wafer. As early as 1972, Jordan described three gang-bonding

More information

10 Manor Parkway, Suite C Salem, New Hampshire

10 Manor Parkway, Suite C Salem, New Hampshire Micro-Precision Technologies (MPT) is an independent manufacturer of hybrid integrated circuits, multichip modules, and high-precision thick film substrates for the military, medical, avionics, optoelectronics,

More information

Contamination on. Semiconductor Assembly: A Failure Analysis Perspective BY JONATHAN HARRIS, CMC LABORATORIES, INC.

Contamination on. Semiconductor Assembly: A Failure Analysis Perspective BY JONATHAN HARRIS, CMC LABORATORIES, INC. The Impact of Plated Layer Contamination on Semiconductor Assembly: A Failure Analysis Perspective BY JONATHAN HARRIS, CMC LABORATORIES, INC. In the world of both package and board level assembly, the

More information

Building HDI Structures using Thin Films and Low Temperature Sintering Paste

Building HDI Structures using Thin Films and Low Temperature Sintering Paste Building HDI Structures using Thin Films and Low Temperature Sintering Paste Catherine Shearer, James Haley and Chris Hunrath Ormet Circuits Inc. - Integral Technology California, USA chunrath@integral-hdi.com

More information

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate JAXA 25 rd Microelectronics Workshop Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate November 2, 2012 Yoshinori Ejiri

More information

Bending Impacts Layers

Bending Impacts Layers Designing for Flexibility and Reliability Understanding factors that contribute to the reliability of a flex circuit that is formed or repeatedly flexed The name "flexible circuit" sums up the function

More information

Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies

Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies When specifying gold plating for an application, the question of hard gold plating

More information

Inlay-Clad Gold Alloys

Inlay-Clad Gold Alloys Inlay-Clad Gold Alloys THE WIDE RANGE OF PROPERTIES AVAILABLE Robert J. Russell Technical Materials Inc., Lincoln, Rhode Island, U.S.A. As an economic and reliable alternative to electrodeposited gold,

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Beam Lead Attachment Methods. Application Note 992

Beam Lead Attachment Methods. Application Note 992 Beam Lead Attachment Methods Application Note 992 Introduction This application note gives the first time user a general description of various attachment methods for beam lead devices. The attached table

More information

ATS Document Cover Page

ATS Document Cover Page 221-008 Item Rev Status: RELEASED printed 9/20/2017 2:27:42 PM by Les Deenin ATS: OPERATIN PROCEDURE ATS Document Cover Page Responsible Department: Supply Chain This copy is uncontrolled unless otherwise

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 15 Lead in solders to complete a viable electrical connection between semiconductor

More information

Three-Dimensional Molded Interconnect Devices (3D-MID)

Three-Dimensional Molded Interconnect Devices (3D-MID) Jörg Frank Three-Dimensional Molded Interconnect Devices (3D-MID) Materials, Manufacturing, Assembly and Applica ons for Injec on Molded Circuit Carriers Sample Pages ISBN 978-1-56990-551-7 HANSER Hanser

More information

Influence of Firing Temperature and Atmospheric Conditions on the Processing of Directly Bonded Copper (DBC)

Influence of Firing Temperature and Atmospheric Conditions on the Processing of Directly Bonded Copper (DBC) Influence of Firing Temperature and Atmospheric Conditions on the Processing of Directly Bonded Copper (DBC) Abstract Direct bonded copper (DBC), also called the gas-metal eutectic bonding method, is an

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 7 a a) Lead in high melting temperature type solders (i.e. lead-based alloys containing

More information

ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang

ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang Definition of ICD ICDs are any defect that occurs adjacent to the innerlayer

More information

Failure Modes in Wire bonded and Flip Chip Packages

Failure Modes in Wire bonded and Flip Chip Packages Failure Modes in Wire bonded and Flip Chip Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract The growth of portable and wireless products is driving the miniaturization

More information

ALTIUMLIVE 2018: NAVIGATING THE COMPLEXITIES OF PCB MATERIAL SELECTION

ALTIUMLIVE 2018: NAVIGATING THE COMPLEXITIES OF PCB MATERIAL SELECTION ALTIUMLIVE 2018: NAVIGATING THE COMPLEXITIES OF PCB MATERIAL SELECTION Chris Hunrath Insulectro, VP of Technology San Diego October 4 Outline 1 PCB Material Overview 2 What is the Dielectric Constant of

More information

Technology Drivers for Plasma Prior to Wire Bonding

Technology Drivers for Plasma Prior to Wire Bonding Technology Drivers for Plasma Prior to Wire Bonding James D. Getty Nordson MARCH Concord, CA, USA info@nordsonmarch.com Technology Drivers for Plasma Prior to Wire Bonding Page 1 ABSTRACT Advanced packaging

More information

Flexible Printed Circuits Design Guide

Flexible Printed Circuits Design Guide www.tech-etch.com/flex Flexible Printed Circuits Design Guide Multilayer SMT Assembly Selective Plating of Gold & Tin-Lead Fine Line Microvias Cantilevered & Windowed Leads 1 MATERIALS CONDUCTOR Copper

More information

Metallization of MID Dec 2 010

Metallization of MID Dec 2 010 Metallization of MID Dec 2010 Agenda Introduction to Dow Electronic Materials MID Applications & Advantages Dow MID Metallization Processes Plating Equipment Summary Dow Business Structure Where Dow Electronic

More information

Device Attachment Methods and Wirebonding Notes for RT/duroid and RO4000 Series High Frequency Laminates

Device Attachment Methods and Wirebonding Notes for RT/duroid and RO4000 Series High Frequency Laminates Device Attachment Methods and Wirebonding Notes for RT/duroid and RO4000 Series High Frequency Laminates Volume production of microwave circuit assemblies requires fast, reliable and efficient methods

More information

Rockwell R RF to IF Down Converter

Rockwell R RF to IF Down Converter Construction Analysis Rockwell R6732-13 RF to IF Down Converter Report Number: SCA 9709-552 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

Fundamentals of Sealing and Encapsulation

Fundamentals of Sealing and Encapsulation Fundamentals of Sealing and Encapsulation Sealing and Encapsulation Encapsulation and sealing are two of the major protecting functions of IC packaging. They are used to protect IC devices from adverse

More information

IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability

IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability Per-Erik Tegehall, Swerea IVF 4 th Electronic Materials and Assembly Processes for

More information

CX Thin Fil s. Resistors Attenuators Thin-Film Products Thin-Film Services. ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant

CX Thin Fil s. Resistors Attenuators Thin-Film Products Thin-Film Services.   ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant CX Thin Fil s Resistors Attenuators Thin-Film Products Thin-Film Services www.cxthinfilms.com ISO 9001:2008 RoHS/REACH Compliant ITAR Compliant www.cxthinfilms.com sales@cxthinfilms.com +1 (401) 461-5500

More information

Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication

Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication Abstract Optimizing the Insulated Metal Substrate Application with Proper Material Selection and Circuit Fabrication Dave Sommervold, Chris Parker, Steve Taylor, Garry Wexler. The Bergquist Company Prescott,

More information

Qualification and Performance Specification for High Frequency (Microwave) Printed Boards

Qualification and Performance Specification for High Frequency (Microwave) Printed Boards Qualification and Performance Specification for High Frequency (Microwave) Printed Boards Developed by the High Speed/High Frequency Board Performance Subcommittee (D-22) of the High Speed/High Frequency

More information

Description. Spectro Tabs, higher purity conductive carbon tabs,12mm O.D.

Description. Spectro Tabs, higher purity conductive carbon tabs,12mm O.D. Description SPEC The simplicity of application and smooth, clean surfaces of PELCO Tabs Carbon Conductive Tabs are a significant improvement compared to many of the other common adhesives that have been

More information

23 rd ASEMEP National Technical Symposium

23 rd ASEMEP National Technical Symposium THE EFFECT OF GLUE BOND LINE THICKNESS (BLT) AND FILLET HEIGHT ON INTERFACE DELAMINATION Raymund Y. Agustin Janet M. Jucar Jefferson S. Talledo Corporate Packaging & Automation/ Q&R STMicroelectronics,

More information

CONSTRUCTIONAL ANALYSIS FOR QFN STACKED DIE FAILURE IDENTIFICATION. Universiti Kebangsaan Malaysia UKM Bangi,Selangor, Malaysia

CONSTRUCTIONAL ANALYSIS FOR QFN STACKED DIE FAILURE IDENTIFICATION. Universiti Kebangsaan Malaysia UKM Bangi,Selangor, Malaysia CONSTRUCTIONAL ANALYSIS FOR QFN STACKED DIE FAILURE IDENTIFICATION W. Shualdi 1, W. M. S. W. Suliman 1, A. Isnin 2 and N. A. Mohamad 2 1 Advanced Semiconductor Packaging (ASPAC) Research Laboratory Universiti

More information

PEC (Printed Electronic Circuit) process for LED interconnection

PEC (Printed Electronic Circuit) process for LED interconnection PEC (Printed Electronic Circuit) process for LED interconnection Higher wattage LED s/ power components or their placement in higher densities, requires a larger dissipation of heat in a more effective

More information

Application Information Chemical Exposure of Devices Introduction Reducing the Potential of Corrosion Non-Hermetic Epoxy Packages

Application Information Chemical Exposure of Devices Introduction Reducing the Potential of Corrosion Non-Hermetic Epoxy Packages Application Information Chemical Exposure of Devices By Bradley Smith Quality Assurance Reliability Introduction Allegro MicroSystems, LLC (Allegro) manufactures semiconductor devices with standard internal

More information

UNIVERSITI MALAYSIA PERLIS. Test 1 Session 2008/2009 Semester I. 6 th August EMT 453 Semiconductor Packaging [ Pembungkusan Semikonduktor ]

UNIVERSITI MALAYSIA PERLIS. Test 1 Session 2008/2009 Semester I. 6 th August EMT 453 Semiconductor Packaging [ Pembungkusan Semikonduktor ] UNIVERSITI MALAYSIA PERLIS Test 1 Session 2008/2009 Semester I 6 th August 2007 EMT 453 Semiconductor Packaging [ Pembungkusan Semikonduktor ] Masa : 1 jam Please make sure that this question paper has

More information

Innovative MID Plating Solutions

Innovative MID Plating Solutions Innovative MID Plating Solutions High Reliability Wire Bond Technique for MIDs Jordan Kologe MacDermid Electronics Solutions jkologe@macdermid.com 1 MacDermid: Specialty Chemical Solutions Over 2000 Worldwide

More information

Reflow Profiling: Time a bove Liquidus

Reflow Profiling: Time a bove Liquidus Reflow Profiling: Time a bove Liquidus AIM/David Suraski Despite much research and discussion on the subject of reflow profiling, many questions and a good deal of confusion still exist. What is clear

More information

Application Note AN 992

Application Note AN 992 Beam Lead Attachment Methods Application Note AN 992 Description This application note gives the first time user a general description of various attachment methods for beam lead devices. The attached

More information

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Scott D. Szymanski March Plasma Systems Concord, California, U.S.A. sszymanski@marchplasma.com

More information

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Revision 0 2006 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the

More information

CuSn0,15 (STOL 81) C14415 Industrial Rolled

CuSn0,15 (STOL 81) C14415 Industrial Rolled Alloy Designation EN DIN CEN/TS 13388 CuSn,15 CW 117 C High Performance CuSn,15 UNS * * Slight difference in chem. composition We have developed a wide range of high performance alloys with excellent properties

More information

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Zaheed S. Karim 1 and Jim Martin 2 1 Advanced Interconnect Technology Ltd. 1901 Sunley Centre, 9 Wing Yin Street, Tsuen Wan, Hong

More information

High Performance Alloys. Characteristics

High Performance Alloys. Characteristics Alloy Designation EN DIN CEN/TS 13388 UNS High Performance Alloys Chemical Composition percentage We have developed a wide range of high performance alloys with excellent properties regarding conductivity,

More information

Motorola MC68360EM25VC Communication Controller

Motorola MC68360EM25VC Communication Controller Construction Analysis EM25VC Communication Controller Report Number: SCA 9711-562 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780 Fax:

More information

Lead Free, Zero Shrink, Substrate Bonded LTCC System

Lead Free, Zero Shrink, Substrate Bonded LTCC System Lead Free, Zero Shrink, Substrate Bonded LTCC System R.L. Wahlers, A.H. Feingold and M. Heinz Electro-Science Laboratories, 416 E. Church Rd., King of Prussia, PA, 19406 Abstract Previous papers have reported

More information

IPC Qualification and Performance Specification for Organic Multichip Module (MCM-L) Mounting and Interconnecting Structures IPC-6015

IPC Qualification and Performance Specification for Organic Multichip Module (MCM-L) Mounting and Interconnecting Structures IPC-6015 ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Qualification and Performance Specification for Organic Multichip Module (MCM-L) Mounting and Interconnecting Structures February 1998 A standard developed

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

3M Electrically Conductive Adhesive Transfer Tape 9707

3M Electrically Conductive Adhesive Transfer Tape 9707 Technical Data May 2014 3M Electrically Conductive Adhesive Transfer Tape 9707 Product Description 3M Electrically Conductive Adhesive Transfer Tape (ECATT) 9707 is a pressure sensitive adhesive (PSA)

More information

Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages

Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages Mark Occhionero, Richard Adams, Kevin Fennessy, and Robert A. Hay Ceramics Process Systems, Corp. Chartley, MA 02712 Abstract Aluminum

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

Global Supplier. of Soldering. and Brazing. Preforms

Global Supplier. of Soldering. and Brazing. Preforms Global Supplier of Soldering and Brazing Preforms www.ametekmetals.c Responding quickly, precisely and efficiently to our customers needs Yes, we do. Our primary business at Coining is the fabrication

More information

LEAD-FREE MULTILAYER DIELECTRIC SYSTEM FOR TELECOMMUNICATIONS

LEAD-FREE MULTILAYER DIELECTRIC SYSTEM FOR TELECOMMUNICATIONS A1J-08-2001 LEAD-FREE MULTILAYER DIELECTRIC SYSTEM FOR TELECOMMUNICATIONS R. L. Wahlers, S. J. Stein, C. Y. D. Huang, M. R. Heinz and A. H. Feingold ElectroScience Laboratories, 416 E. Church Rd., King

More information

Assembly Adhesives by Patrick J. Courtney, Engineering Project Manager, and Mike Shannahan, OEM Market Manager, Henkel Loctite Corporation

Assembly Adhesives by Patrick J. Courtney, Engineering Project Manager, and Mike Shannahan, OEM Market Manager, Henkel Loctite Corporation Assembly Adhesives by Patrick J. Courtney, Engineering Project Manager, and Mike Shannahan, OEM Market Manager, Henkel Loctite Corporation To compete in today s global marketplace, manufacturers are under

More information

Welcome to Streamline Circuits Lunch & Learn. Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology

Welcome to Streamline Circuits Lunch & Learn. Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology Welcome to Streamline Circuits Lunch & Learn Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology Accurate PCB data is critical to the tooling process. Here are some key items

More information

MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS

MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS 109 Chapter 5 MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS 5.1 INTRODUCTION The microstructural studies of friction welding helps in understanding microstructural changes occurred during friction

More information

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect. Metallization and Interconnects

FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect. Metallization and Interconnects FYS4260/FYS9260: Microsystems and Electronics Packaging and Interconnect Metallization and Interconnects Learning objectives Metal heros Significance of selecting right metallization systems and examples

More information

PARYLENE ENGINEERING. For Longer Lasting Products

PARYLENE ENGINEERING. For Longer Lasting Products PARYLENE ENGINEERING For Longer Lasting Products PARYLENE ENGINEERING This presentation serves as a quick overview of the conformal coating material and processes currently used in the industry. The field

More information

Flip Chip - Integrated In A Standard SMT Process

Flip Chip - Integrated In A Standard SMT Process Flip Chip - Integrated In A Standard SMT Process By Wilhelm Prinz von Hessen, Universal Instruments Corporation, Binghamton, NY This paper reviews the implementation of a flip chip product in a typical

More information

BGA Package Underfilm for Autoplacement. Jan Danvir Tom Klosowiak

BGA Package Underfilm for Autoplacement. Jan Danvir Tom Klosowiak BGA Package Underfilm for Autoplacement Jan Danvir Tom Klosowiak NIST-ATP Acknowledgment Project Brief Microelectronics Manufacturing Infrastructure (October 1998) Wafer-Scale Applied Reworkable Fluxing

More information

Economical aluminum substrates make light work of visible LED circuits

Economical aluminum substrates make light work of visible LED circuits Economical aluminum substrates make light work of visible LED circuits Advances in solid state light emitting diodes (LEDs) over the last several years have opened new applications for these devices. Traditionally

More information

Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System

Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System Chris G. Macris, Thomas R. Sanderson, Robert G. Ebel, Christopher B. Leyerle Enerdyne Solutions,

More information

Fixed Resistors INSULATED ALUMINUM SUBSTRATES. Thermal Solutions for Hi Brightness LED Applications - Application Note

Fixed Resistors INSULATED ALUMINUM SUBSTRATES. Thermal Solutions for Hi Brightness LED Applications - Application Note INSULATED ALUMINUM SUBSTRATES TT electronics is a leading designer and manufacturer of electronic components. As a result of our experience with power components, Anotherm substrates were developed as

More information

Maximum MAX662 12V DC-DC Converter

Maximum MAX662 12V DC-DC Converter Construction Analysis Maximum MAX662 12V DC-DC Converter Report Number: SCA 9512-445 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

JOINT INDUSTRY STANDARD

JOINT INDUSTRY STANDARD JOINT INDUSTRY STANDARD AUGUST 1999 Semiconductor Design Standard for Flip Chip Applications ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Semiconductor Design Standard for Flip Chip Applications About

More information

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C

Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C EPRC 12 Project Proposal Power Electronics Packaging Solutions for Device Junction Temperature over 220 o C 15 th August 2012 Page 1 Motivation Increased requirements of high power semiconductor device

More information

Images of Failures in Microelectronics Packaging and Assembly

Images of Failures in Microelectronics Packaging and Assembly Images of Failures in Microelectronics Packaging and Assembly Ed Hare, Ph.D./SEM Lab, Inc. IMAPS NW - Feb. 11th 2004 Redmond, WA http://www.semlab.com 1 What is this? http://www.semlab.com 2 Inner Layer

More information

PAD CRATERING. Chris Hunrath VP of Technology Integral Technology Lake Forest, California THE INVISIBLE THREAT TO THE ELECTRONICS INDUSTRY

PAD CRATERING. Chris Hunrath VP of Technology Integral Technology Lake Forest, California THE INVISIBLE THREAT TO THE ELECTRONICS INDUSTRY PAD CRATERING THE INVISIBLE THREAT TO THE ELECTRONICS INDUSTRY Presented by Chris Hunrath VP of Technology Integral Technology Lake Forest, California IPC-9708 What is Pad Cratering? 1.2.4 Pad Cratering

More information

The Optimal Passive Thermal Management Soldering and Electrically-Isolating Power Semiconductors to Within 33-micron (1.3 mil) of The Heat Sink

The Optimal Passive Thermal Management Soldering and Electrically-Isolating Power Semiconductors to Within 33-micron (1.3 mil) of The Heat Sink The Optimal Passive Thermal Management ing and Electrically-Isolating Power Semiconductors to Within 33-micron (1.3 mil) of The Heat Sink Jim Fraivillig Fraivillig Technologies 3315 Toro Canyon Road Austin,

More information

Agilent Beam Lead Attachment Methods. Application Note. Introduction. Attachment Methods

Agilent Beam Lead Attachment Methods. Application Note. Introduction. Attachment Methods Agilent Beam Lead Attachment Methods Application Note Figure 1. General setup for attaching beam lead devices Introduction This application note gives the first time user a general description of various

More information

Stamping Basics. Die Components Class of Tools Cost Drivers

Stamping Basics. Die Components Class of Tools Cost Drivers Stamping Basics Die Components Class of Tools Cost Drivers Basic Types Of Tools Compound Progressive Draw Secondary Tools Compound Die Lower Volume Flatter Parts No Forms Burrs All One Direction Progressive

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM

Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM Construction Analysis Mosel Vitelic MS62256CLL-70PC 256Kbit SRAM Report Number: SCA 9703-499 Global Semiconductor Industry the Serving Since 1964 17350 N. Hartford Drive Scottsdale, AZ 85255 Phone: 602-515-9780

More information

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Vern Solberg STC-Madison Madison, Wisconsin USA Abstract The motivation for developing higher density IC packaging continues to be

More information

Conductive Filament Formation Failure in a Printed Circuit Board

Conductive Filament Formation Failure in a Printed Circuit Board Create: 5/17/99 Circuit World, Vol. 25 (3), pp. 6-8, 1999. Conductive Filament Formation Failure in a Printed Circuit Board Abstract Keith Rogers, Craig Hillman, and Michael Pecht CALCE Electronic Products

More information

Abstract. Key words. I. Introduction

Abstract. Key words. I. Introduction Increased High-Temperature Reliability and Package Hardening of Commercial Integrated Circuits (Through Die Extraction, Electroless Nickel/Gold Pad Reconditioning, and Ceramic Re-Assembly) Erick M. Spory

More information

Qualification and Performance Specification for Flexible Printed Boards

Qualification and Performance Specification for Flexible Printed Boards Qualification and Performance Specification for Flexible Printed Boards Developed by the Flexible Circuits Performance Specifications Subcommittee (D-12) of the Flexible Circuits Committee (D-10) of IPC

More information

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering WF637 A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering Low viscosity and high tacking power stabilize ball holding force and ensures excellent solder wettability Easy

More information

IPC-AJ-820A Assembly and Joining Handbook. The How and Why of All Things PCB & PCA

IPC-AJ-820A Assembly and Joining Handbook. The How and Why of All Things PCB & PCA IPC-AJ-820A Assembly and Joining Handbook The How and Why of All Things PCB & PCA 1 Scope To provide guidelines and supporting info for the mfg of electronic equipment To explain the HOW TO and WHY Discussions

More information

METHODS OF COATING FABRICATION

METHODS OF COATING FABRICATION METHODS OF COATING FABRICATION Zbigniew Grzesik http://home.agh.edu.pl/~grzesik Department of Physical Chemistry and Modelling DEFINITION The coating is the thin outer layer of the object, which physiochemical

More information

This procedure shall apply to all microcircuit elements and semiconductors as follows:

This procedure shall apply to all microcircuit elements and semiconductors as follows: 1019-1618 V 2 OF 7 NTS A 1.0 PURPOSE: The purpose of this document is to define the supplier requirements of all procured microcircuit elements (Integrated Circuits) and semiconductor elements (diodes,

More information

Novel Technique for Flip Chip Packaging of High power Si, SiC and GaN Devices. Nahum Rapoport, Remtec, Inc.

Novel Technique for Flip Chip Packaging of High power Si, SiC and GaN Devices. Nahum Rapoport, Remtec, Inc. Novel Technique for Flip Chip Packaging of High power Si, SiC and GaN Devices Nahum Rapoport, Remtec, Inc. 1 Background Electronic Products Designers: under pressure to decrease cost and size Semiconductor

More information

Design and Characterization of Thermal Conductive Wafer Coating in Thin Small Outline Package for Automotive Product Application

Design and Characterization of Thermal Conductive Wafer Coating in Thin Small Outline Package for Automotive Product Application Design and Characterization of Thermal Conductive Wafer Coating in Thin Small Outline Package for Automotive Product Application Azhar Abdul Hamid, Dhanapalan Periathamby, *Suhaimi Azizan, Chee Eng Tan,

More information

Palladium as diffusion barrier - a way to a multifunctional printed circuit board finish

Palladium as diffusion barrier - a way to a multifunctional printed circuit board finish Palladium as diffusion barrier - a way to a multifunctional printed circuit board finish Dr. Norbert Sitte, Schwaebisch Gmuend, Umicore Galvanotechnik GmbH 1. Introduction Due to the continuing miniaturization

More information

Study Of Copper Applications And Effects Of Copper Oxidation. In Microelectronic Package

Study Of Copper Applications And Effects Of Copper Oxidation. In Microelectronic Package Study Of Copper Applications And Effects Of Copper Oxidation In Microelectronic Package By Ying Zheng May 10, 2003 In Partial Fulfillment of MatE 234 Table Of Contents Abstract...3 1. Introduction...4

More information

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding Chapter 4 Fabrication Process of Silicon Carrier and Gold-Gold Thermocompression Bonding 4.1 Introduction As mentioned in chapter 2, the MEMs carrier is designed to integrate the micro-machined inductor

More information

Gasket Material Type - Galvanic compatablity and Voltage differential

Gasket Material Type - Galvanic compatablity and Voltage differential Galvanic relationship of Metals Gasket Material Type - Galvanic compatablity and Voltage differential Group Metallurgical Category EMF (Volt) Graphite Silver Glass Silver Aluminium Nickel Monel Stainless

More information

3M Anisotropic Conductive Film 5363

3M Anisotropic Conductive Film 5363 Technical Data November 2013 Product Description 3M Anisotropic Conductive Film (ACF) 5363 is a heat-bondable, electrically conductive adhesive film. The unbonded film is non-tacky at room temperature

More information

Pressure-Assisted Low-Temperature Sintering of Silver Paste as an Alternative Die-Attach Solution to Solder Reflow

Pressure-Assisted Low-Temperature Sintering of Silver Paste as an Alternative Die-Attach Solution to Solder Reflow Pressure-Assisted Low-Temperature Sintering of Silver Paste as an Alternative Die-Attach Solution to Solder Reflow Zhiye (Zach) Zhang and Guo-Quan Lu Center for Power Electronics Systems The Bradley Department

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Electroless Nickel / Electroless Palladium / Immersion Gold Process For Multi-Purpose Assembly Technology

Electroless Nickel / Electroless Palladium / Immersion Gold Process For Multi-Purpose Assembly Technology ckel / Palladium / Gold Process For Multi-Purpose Assembly Technology Kuldip Johal and Hugh Roberts, Atotech USA Inc. Sven Lamprecht, Atotech Deutschland GmbH ABSTRACT As the second part to a paper presented

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Plasma for Underfill Process in Flip Chip Packaging

Plasma for Underfill Process in Flip Chip Packaging Plasma for Underfill Process in Flip Chip Packaging Jack Zhao and James D. Getty Nordson MARCH 2470-A Bates Avenue Concord, California 94520-1294 USA Published by Nordson MARCH www.nordsonmarch.com 2015

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

Abstract. Key words: Silicone, rework, adhesive, TIM, silicone emulsifier, low modulus

Abstract. Key words: Silicone, rework, adhesive, TIM, silicone emulsifier, low modulus Evaluation of Removal Rate of Cured Silicone Adhesive from Various Electronic Packaging Substrates by Solvent and Silicone Digesters for Rework Applications Michelle Velderrain and Marie Valencia NuSil

More information

High Performance Alloys. Characteristics. Stamped parts connectors Relay springs Semiconductor components. Density 8.8 g/cm³

High Performance Alloys. Characteristics. Stamped parts connectors Relay springs Semiconductor components. Density 8.8 g/cm³ Alloy Designation High Performance Alloys EN CuNi3Si DIN CEN/TS 13388 UNS Chemical Composition percentage Cu Rest % Ni 3 % Si.65 % Mg.15 % This alloy is in accordance with RoHS 22/96/CE for electric &

More information