DETERMINATION OF DENSITY

Size: px
Start display at page:

Download "DETERMINATION OF DENSITY"

Transcription

1 DETERMINATION OF DENSITY Dr. Barbara B. Bunn. Adapted from Experiments in General Chemistry ; Wiley 1996J.G. Wardeska, T.T-S. Huang, R.W. Kopp; used by permission. Tested by Ms. Janice Orr s Chemistry classes, Chilhowie High School, Chilhowie, VA and Brandon Inge and Barry Williams in Mrs. Mary Lou Hearn s Chemistry class, Nottoway High School, Nottoway, VA, Spring, 2002 Introduction Chemists use many kinds of measurements in their study of chemical phenomena. In this experiment we will illustrate a few of the more common measurements that are made in chemical laboratories. We will also use these measurements to determine a physical property of a substance: its density (d)., as all physical properties is characteristic of a substance under a given set of conditions. is defined as the mass to volume ratio and its units are mass/volume. In the metric system these units are typically g/cm 3 or g/ml. In table 1 you will find densities of some common substances at 25 o C. A simple density measurement can be performed as follows: 1. Weigh a solid object. 2. Measure the volume of water in a graduated cylinder. 3. Add the object to the cylinder. 4. Note the new level of water. The new level of water minus the old level equals volume of water displaced, which equals the volume of the object. 5. The density of the object = mass /volume. Table 1. Densities at 25 o C of some common substances. SUBSTANCE at 25 o C (g/ml) Water Copper metal 8.92 Benzene, C 6 H Ethanol Sodium Chloride 2.16 Iron metal 7.9 Nickel metal 8.90 Magnesium metal 1.74 Zinc metal 7.14 Aluminum metal Lead metal 11.3 Mercury metal Sodium metal 0.97 Gold metal Osmium metal 22.5 Titanium metal 4.51 Antimony metal 6.70 Vanadium metal 6.11 Silver metal 10.5 One of the most common measurements a chemist performs is determination of the mass (in grams) of a substance. We refer to this operation as weighing and it is very easily done using a balance. Your instructor will demonstrate the proper use of the balance. Page 1 of 5

2 Volume in liters (L) or milliliters (ml) can be determined by several techniques depending upon the desired precision of the measurement. One of the most precise methods for determining the volume of a container such as a flask is by weighing the water, which exactly fills the flask at a given temperature. Since the mass and volume are related by density, (d = m/v) the volume may be obtained if the density is known. The density of water is known quite precisely for a wide range of temperatures (Table 2). The device used for measuring density is called a pycnometer. A simple pycnometer can be made with a 25 ml erlenmeyer flask and a one-hole stopper. By allowing excess liquid to escape through the hole when the stopper is fitted snugly on the liquid-filled flask, we are assured of having the same amount of liquid for each measurement. Commercial pycnometers have a ground glass stopper with a hole rather than a one-hole rubber stopper. With an etched marker on stopper and flask, the stopper always fits in exactly the same way and to the same depth maintaining the constant volume. In your rubber stopper pycnometer, you will have to be careful to put the stopper in to exactly the same depth in each of the measurements where you fill the flask with a liquid! Otherwise you will make an error. Table 2. of water at selected temperatures. T, o C, g/ml T, o C, g/ml Goals: To make a pycnometer, a device used for measuring density, using a 25 ml flask and a one-hole stopper. To determine the volume of a flask by weighing the water that is required to fill the flask completely at a particular temperature, and using the known density of water at that temperature, calculate the volume of the water. To determine the density of an unknown solid by accurately weighing the solid, and then measuring the volume of the solid by water displacement. To determine the density of an unknown liquid. Prelab Questions: 1. A dry flask weighing g is completely filled with water and reweighed. The filled flask was found to weigh g; the temperature of the water was measured at 24.0 o C. a. What is the weight of the water in the flask? b. What is the volume of the water (hence the volume of the flask)? Page 2 of 5

3 2. The density of copper is 8.92 g/ml. What is the mass of a sample of copper occupying a volume of 2.52 ml? 3. The mass of ml of a certain liquid was found to be 7.89 g at 25 0 C. What is the density of the liquid? From table 1, what is the identity of the liquid? Safety: Eye protection should be worn. Procedure and Observations: I. Determination of the Volume of a Pycnometer: 1. Weigh a clean, DRY 25 ml flask tightly fitted with a one-hole stopper (called a pycnometer) and record the value in the data table below. This will determine the mass of the flask and stopper. 2. Completely fill the flask with water and place the stopper snugly so that excess water squirts out of the hole in the stopper. 3. Dry the outside of the flask and weigh the filled flask and stopper, recording the weight in the data table. Subtract the mass of the flask from the mass of the flask plus the water (# 2 #1). This gives you the mass of the water (#3) 4. Measure and record the temperature of the water in the flask. 5. Determine the volume of the flask (hence the volume of water it can contain), using the density of water at the observed temperature. Recall: Mass = Volume II. Determination of the density of an unknown metal 1. Obtain a dry unknown metal. Fill the thoroughly dry, weighed pycnometer about ½ full of metal and replace the stopper. Weigh the pycnometer and solid together. Record your results in the data table. 2. You can obtain the mass of the metal by subtracting #7 from #8. Part II #7 is the same as Part I #1. 3. Fill the pycnometer still containing the metal with water and replace the stopper snugly, allowing excess water to escape through the hole. Be sure that there are no bubbles in the flask. 4. Weigh the flask, metal and water and record it. 5. Subtract (#10 - #8) to obtain the mass of water in the pycnometer. 6. Determine the volume of water using the density. 7. By subtracting (#6 - # 11) you obtain the volume of metal. 8. From these data, calculate the density, and using table 1 determine the identity of the unknown solid. Page 3 of 5

4 DATA TABLE Part I. 1. Mass of dry pycnometer g 2. Mass of pycnometer plus water g 3. Mass of water g 4. Temperature of water o C 5. of water at recorded temperature g/ml 6. Volume of pycnometer (and water). ml Part II. 7. Mass of pycnometer (from #1) g 8. Mass of pycnometer and metal g 9. Mass of metal g 10. Mass of pycnometer, metal and water g 11. Mass of water (#10 - #8) g 12. Volume of water in pycnometer ml 13. Volume of metal (#6 - #12) ml 14. of metal g/ml 15. Identity of metal Page 4 of 5

5 Part III. Determination of the of an Unknown Liquid 1. Weigh a dry pycnometer. 2. Using a pipette and pipette pump, place EXACTLY ml of the liquid in the flask and stopper it. 3. Weigh the pycnometer with the liquid. 4. Subtract the pycnometer from pycnometer + liquid to obtain the mass of the liquid. 5. Determine the density by d = mass/volume DATA TABLE Method 1 1. Weight of pycnometer g 2. Weight of pycnometer and liquid g 3. Weight of liquid g 4. Volume of liquid ml 5. of liquid g/ml Postlab questions 1. How would you determine the density of a solid that is water-soluble (such as sodium chloride)? 2. The balance on which the weights were determined was inaccurately calibrated and read 0.05 g low on all readings. Would this affect the density determination? How? 3. Determine the percent error in your result. Example: if the true density = 2.78g/mL and your result is 2.94 g/ml then: X100 = 5.76% 2.78 error Page 5 of 5

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley)

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) One of the fundamental properties of any sample of matter is its density, which is its mass per unit of volume. The density of

More information

SIGNIFICANT FIGURES WORKSHEET

SIGNIFICANT FIGURES WORKSHEET SIGNIFICANT FIGURES WORKSHEET PART 1 - Determine the number of significant figures in the following numbers. 1.) 0.02 2.) 0.020 3.) 501 4.) 501.0 5.) 5,000 6.) 5,000. 7.) 6,051.00 8.) 0.0005 9.) 0.1020

More information

2.3 Density and Density Calculations

2.3 Density and Density Calculations 2.3 Density and Density Calculations When people say that lead is heavier than wood, they do not mean that a pea sized piece of lead weighs more than a truckload of pine logs. What they mean is that a

More information

Density Answers to the End of module questions

Density Answers to the End of module questions IDS 101 Density Answers to the End of module questions 1. You are experimenting with the mysterious substance X. You carefully measure the mass of a uniform 2 ml sample of pure substance X. You slice it

More information

A TEACHER-DIRECTED, GUIDED DISCOVERY ACTIVITY FOR ADVANCED PHYSICAL SCIENCE STUDENTS

A TEACHER-DIRECTED, GUIDED DISCOVERY ACTIVITY FOR ADVANCED PHYSICAL SCIENCE STUDENTS A TEACHER-DIRECTED, GUIDED DISCOVERY ACTIVITY FOR ADVANCED PHYSICAL SCIENCE STUDENTS 1 2 FEATURES OF THIS ACTIVITY Problem solving Cooperative learning Requires student reasoning Requires student initiative

More information

EXPERIMENT 3: Identification of a Substance by Physical Properties

EXPERIMENT 3: Identification of a Substance by Physical Properties EXPERIMENT 3: Identification of a Substance by Physical Properties Materials: Hot plate Digital balance Capillary tubes (3) Thermometer Beakers (250 ml) Watch glass Graduated Cylinder (10 ml) Mel-Temp

More information

IDENTIFYING UNKNOWN SUBSTANCES

IDENTIFYING UNKNOWN SUBSTANCES IDENTIFYING UNKNOWN SUBSTANCES LAB 15 EXPERIMENT STUDENT BOOK Chapter 1, page 25 TOOLBOX Page 4 and 36 Goal Identify unknown substances with the help of different tests. 1. What is the independent variable

More information

SILLIKER, Inc. Southern California Laboratory 6360 Gateway Drive, Cypress, CA Tel. 209/ Fax. 714/

SILLIKER, Inc. Southern California Laboratory 6360 Gateway Drive, Cypress, CA Tel. 209/ Fax. 714/ 6360 Gateway Drive, 90630 95073 Page 1 of 8 CI-516 Cistanche 361439388 ICP MS Full Mineral Screen EPA 3050/6020 USP730 BRN Aluminum 2.2 ppm (w/w) Antimony Arsenic 0.06 ppm (w/w) Barium 0.09 ppm (w/w) Beryllium

More information

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION EXPERIMENT 10 (2 Weeks) Chemistry 100 Laboratory TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION It is useful to classify reactions into different types, because products of reactions can be predicted.

More information

Analysis of Calcium Carbonate Tablets

Analysis of Calcium Carbonate Tablets Experiment 9 Analysis of Calcium Carbonate Tablets Prepared by Ross S. Nord, Eastern Michigan University PURPOSE To perform a gravimetric exercise to determine weight percent of active ingredient in a

More information

Salinity in Seawater

Salinity in Seawater Salinity in Seawater Objective To familiarize students with the different methods used for measuring salinity of water. Introduction: Salinity exerts profound impacts on the marine environment. It controls

More information

SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example,

SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical conductivity, solubility,

More information

The table below shows some of the properties of the elements cobalt and nickel.

The table below shows some of the properties of the elements cobalt and nickel. BELL RINGER The table below shows some of the properties of the elements cobalt and nickel. A scientist has a sample of metal that could be either cobalt or nickel. Which of the following properties could

More information

GEL Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Grade: /25

GEL Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Grade: /25 GEL 4250 - Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Name: Section: Grade: /25 COMPLETE & TURN IN ONLY PAGES THAT HAVE A FIELD FOR YOUR NAME. ALL OTHER PAGES

More information

EXPERIMENT 6. Determination of the Ideal Gas Law Constant - R. Magnesium metal reacts with hydrochloric acid according to the following reaction,

EXPERIMENT 6. Determination of the Ideal Gas Law Constant - R. Magnesium metal reacts with hydrochloric acid according to the following reaction, EXPERIMENT 6 Determination of the Ideal Gas Law Constant - R Magnesium metal reacts with hydrochloric acid according to the following reaction, Mg + 2 HCl MgCl 2 + H 2 (g) In this experiment you will use

More information

1 Elements. TAKE A LOOK 2. Identify Look at the illustration and identify one source of iron that comes to Earth from somewhere else.

1 Elements. TAKE A LOOK 2. Identify Look at the illustration and identify one source of iron that comes to Earth from somewhere else. CHAPTER 4 1 Elements SECTION Elements, Compounds, and Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: What is an element? How do elements differ from

More information

Part 1. Preparation and Color of Solutions. Experiment 1 (2 session lab) Electrons and Solution Color. Pre-lab Report, page 29

Part 1. Preparation and Color of Solutions. Experiment 1 (2 session lab) Electrons and Solution Color. Pre-lab Report, page 29 Experiment 1 (2 session lab) Electrons and Solution Color Pre-lab Report, page 29 Session 1 One hour discussion (E2) Two hour lab (E1) Aim to complete Parts 1, 2, and 3 of E1. Part 1. Preparation and Color

More information

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment ADVANCED AP PLACEMENT CHEMISTRY Introduction Activity Series An activity series of metals is a table of metals arranged in the order of their decreasing chemical activity or the ease at which the metal

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at the

More information

3. Add 0.4 ml of. 7. Use a TenSette

3. Add 0.4 ml of. 7. Use a TenSette Method 10129 ORGANIC CARBON, TOTAL, Low Range (0.0 20.0 mg/l C) Direct Method * For water, drinking water, and wastewater HRS MIN SEC 1. Turn on the DRB 200 reactor. Heat to 103-105 C. Note: See DRB 200

More information

CHAPTER 1. Conversions. General Plan for Converting Measurements. State the relationship between the unit given and the unit sought as an equality.

CHAPTER 1. Conversions. General Plan for Converting Measurements. State the relationship between the unit given and the unit sought as an equality. CHAPTER 1 Conversions One of the aims of chemistry is to describe changes to tell what changed, how it changed, and what it changed into. Another aim of chemistry is to look at matter and its changes and

More information

METHOD 3 - GAS ANALYSIS FOR THE DETERMINATION OF DRY MOLECULAR WEIGHT. NOTE: This method does not include all of the

METHOD 3 - GAS ANALYSIS FOR THE DETERMINATION OF DRY MOLECULAR WEIGHT. NOTE: This method does not include all of the 312 METHOD 3 - GAS ANALYSIS FOR THE DETERMINATION OF DRY MOLECULAR WEIGHT NOTE: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling) essential

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 205-10 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the quantitative determination of the distribution of particle sizes in soils. The distribution

More information

PALLAMERSE SMT 2000 For PWB Metallization Applications

PALLAMERSE SMT 2000 For PWB Metallization Applications PALLAMERSE SMT 2000 For PWB Metallization Applications Regional Product Availability N.America Japan/Korea Asia Europe DESCRIPTION The Pallamerse SMT 2000 is an autocatalytic palladium process designed

More information

Name # Date Period! FINDING&VOLUME&AND&DENSITY& !!! !!!!!!!

Name # Date Period! FINDING&VOLUME&AND&DENSITY& !!! !!!!!!! Name # Date Period FINDING&VOLUME&AND&DENSITY& TherectangularshapedboxinFigure1isfilledwithdrysand.Findthe volumeanddensityofthesand. 1.Firstfindthevolumeofthebox.Thisisalsothevolumeofthesand. Usethediagramtofindthedimensionsofthebox.

More information

Method (0.1 to 8.0 mg/l Cu) TNTplus 860

Method (0.1 to 8.0 mg/l Cu) TNTplus 860 Chlorine, Total, Bulk Powder, 8167 DOC316.53.01255 Bathocuproine Method 1 Method 10238 (0.1 to 8.0 mg/l Cu) TNTplus 860 Scope and Application: For water, wastewater and process water. Digestion may be

More information

January 6, Mr. Richard Gillespie Executive Director TIGHAR 2366 Hickory Hill Road Oxford, PA Report of Findings.

January 6, Mr. Richard Gillespie Executive Director TIGHAR 2366 Hickory Hill Road Oxford, PA Report of Findings. January 6, 2015 Mr. Richard Gillespie Executive Director TIGHAR 2366 Hickory Hill Road Oxford, PA 19363 For: LTL Job #: Report of Findings R-48-20 Overview A comparison of the aluminum alloy chemistry

More information

Chemistry Attitudes, Skills, & Knowledge Survey (CASKS) Form 3

Chemistry Attitudes, Skills, & Knowledge Survey (CASKS) Form 3 Chemistry Attitudes, Skills, & Knowledge Survey (CASKS) Form 3 Directions to Students: Do not open this booklet until you are told to do so. Please respond to the following items by marking the best answer

More information

1. The diagram below represents a solid object with a density of 3 grams per cubic centimeter.

1. The diagram below represents a solid object with a density of 3 grams per cubic centimeter. 1. The diagram below represents a solid object with a density of 3 grams per cubic centimeter. What is the mass of this object? A) 0.5 g B) 2 g C) 18 g D) 36 g Base your answers to questions 2 through

More information

Copper Odyssey. Chemical Reactions of Copper

Copper Odyssey. Chemical Reactions of Copper Name Lab Partner(s) Copper Odyssey Chemical Reactions of Copper Date Period Elemental copper metal will be converted into copper (II) ion and then brought through a series of compound conversions until

More information

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS INTRODUCTION The objective of this experiment is to develop an abbreviated activity series of metals using: 1. Displacement reactions 2.

More information

Metal Finishing Products and Service META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS"

Metal Finishing Products and Service META-MATE ZINCATE 40 A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS Metal Chem,inc. Metal Finishing Products and Service 29 Freedom Court Greer, SC 29650 864.877.6175 Fax 864.877.6176 DATA SHEET META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT

More information

Calculating Ballast By Troy Averill

Calculating Ballast By Troy Averill Calculating Ballast By Troy Averill Lesson Overview: Students use the dimensions of the cargo hold of a ship s hull to calculate the volume of material that can be contained. Students will then use the

More information

TINGLO CULMO Bright Acid Tin Electroplating (with Starter/Brightener 2.5X) For Electronic Finishing Applications

TINGLO CULMO Bright Acid Tin Electroplating (with Starter/Brightener 2.5X) For Electronic Finishing Applications Technical Data Sheet TINGLO CULMO Bright Acid Tin Electroplating (with Starter/Brightener 2.5X) For Electronic Finishing Applications Regional Product Availability North America Description Advantages

More information

The Release of Base Metals During Acidic Leaching of Fly Ash

The Release of Base Metals During Acidic Leaching of Fly Ash The Release of Base Metals During Acidic Leaching of Fly Ash George Kazonich and Ann G. Kim U.S. Department of Energy Federal Energy Technology Center P.O. Box 19 Pittsburgh, PA 153 ABSTRACT Since 199,

More information

USEPA 1,2 Bicinchoninate Method 3 Method 8506 (CuVer 1) and Method 8026 (CuVer 2) 0.04 to 5.00 mg/l Cu Powder Pillows or AccuVac Ampuls

USEPA 1,2 Bicinchoninate Method 3 Method 8506 (CuVer 1) and Method 8026 (CuVer 2) 0.04 to 5.00 mg/l Cu Powder Pillows or AccuVac Ampuls Copper DOC316.53.01039 USEPA 1,2 Bicinchoninate Method 3 Method 8506 (CuVer 1) and Method 8026 (CuVer 2) 0.04 to 5.00 mg/l Cu Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater

More information

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions Partner: Cathy 22 March 2012 Separation and Qualitative Determination of Cations and Anions Purpose: The purpose of this lab is to identify the cations and anions components in the unknown solution. This

More information

R = kc Eqn 5.1. R = k C Eqn 5.2. R = kc + B Eqn 5.3

R = kc Eqn 5.1. R = k C Eqn 5.2. R = kc + B Eqn 5.3 5 Standard addition 5.1 Introduction An interference is anything that causes an analysis to be incorrect, which means in practice, that the measured concentration for the presented sample is wrong. There

More information

Density What is density? How do you measure density?

Density What is density? How do you measure density? Density What is density? How do you measure density? What is density? Density describes how much mass is in a given volume of a material. Mass: the amount of matter in an object. Volume: the amount of

More information

Technical Process Bulletin

Technical Process Bulletin ALODINE 1600 Technical Process Bulletin Technical Process Bulletin No. This Revision: 02/12/2007 1. Introduction: ALODINE 1600 is a concentrated two-package liquid chemical used to produce a hexavalent

More information

Corrosion Studies on GeoBrom HG520

Corrosion Studies on GeoBrom HG520 Corrosion Studies on GeoBrom HG520 Vapor Space Study a Chemtura business Great Lakes Solutions: brominated derivative products for mercury control Contents Background Information 1 Objectives 1 Executive

More information

Accomplishments. 1 Nevada Renewable Energy Consortium Quarterly Progress Report

Accomplishments. 1 Nevada Renewable Energy Consortium Quarterly Progress Report Subtask.4.: Chemically promoted mechanical dewatering of wastewater sludge FINAL REPORT for work completed January, 200 December 3, 200. (PI: Charles Cornella, UNR) More than 6,000 wastewater treatment

More information

Name Lab Section Date. Sediment Lab

Name Lab Section Date. Sediment Lab Name Lab Section Date. Investigating Stokes Law Sediment Lab ds = density of solid, g/cm dw = density of water, g/cm g = gravity, 980 cm/second 2 D = particle diameter in centimeters μ = molecular viscosity,

More information

Corrosion Studies on GeoBrom HG520

Corrosion Studies on GeoBrom HG520 Corrosion Studies on GeoBrom HG520 Total Immersion Study a Chemtura business Great Lakes Solutions: brominated derivative products for mercury control Contents Background Information 1 Objectives 1 Executive

More information

H N 2. Decolorizing carbon O. O Acetanilide

H N 2. Decolorizing carbon O. O Acetanilide Experiment 1: Recrystallization of Acetanilide Reading Assignment Mohrig 2 4 (Glassware, Reagents, & Heating) & 14 15 (Melting Point & Recrystallization) The purification of organic compounds is a tedious,

More information

Technical Data Sheet. Physical Specifications

Technical Data Sheet. Physical Specifications Cu/ETCH ME-40A A General Purpose Copper Micro-Etch Product Description Cu/ETCH ME-40 (ME-40) is a two component liquid, designed to provide optimum micro-roughening and cleaning of copper surfaces prior

More information

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION AIM The main objective of this experiment is to determine the concentration of sulfate ion in an unknown solution by using gravimetry. INTRODUCTION

More information

Experiment 30A ENERGY CONTENT OF FUELS

Experiment 30A ENERGY CONTENT OF FUELS Experiment 30A ENERGY CONTENT OF FUELS FV 12/10/2012 MATERIALS: 12-oz. aluminum beverage can with top cut out and holes on side, thermometer, 100 ml graduated cylinder, 800 ml beaker, long-stem lighter,

More information

Soil Particle Density Protocol

Soil Particle Density Protocol Soil Particle Density Protocol Purpose To measure the soil particle density of each horizon in a soil profile Overview Students weigh a sample of dry, sieved soil from a horizon, mix it with distilled

More information

Determination of the Empirical Formula of an Unknown Lead Oxide

Determination of the Empirical Formula of an Unknown Lead Oxide Determination of the Empirical Formula of an Unknown Lead Oxide by: Student Name Abstract Using a process known as smelting, 1 the empirical formula of an unknown lead oxide was determined 2 to be PbO

More information

To identify and classify various types of chemical reactions.

To identify and classify various types of chemical reactions. Cycle of Copper Reactions Minneapolis Community and Technical College v.11.17 Objectives: To observe and document copper s chemical changes in five different reactions and verify that copper is conserved

More information

Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell

Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell Hardness, Total DOC316.53.01045 Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method 8374 4 to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell Scope and application: For boiler and ultrapure

More information

Covered with a thin layer of oxide at ordinary temperatures.

Covered with a thin layer of oxide at ordinary temperatures. 1 More about Metals Physical properties of metals In general metals have luster, are malleable and ductile, good conductors of heat and electricity and have high boiling and melting points and nonmetals

More information

SUB-Programs - Calibration range Fe Base for "PMI-MASTER Pro" Spark - mode Fe 000

SUB-Programs - Calibration range Fe Base for PMI-MASTER Pro Spark - mode Fe 000 SUB-Programs - Calibration range Fe Base for "PMI-MASTER Pro" Spark - mode Fe 100 Fe 200 *** Fe 250 *** Fe 300 Fe 400 Fe 500 Fe 000 Fe low alloy steel cast iron Cr hard / Ni resist stainless steel tool

More information

Corrosion Studies on GeoBrom HG520

Corrosion Studies on GeoBrom HG520 Corrosion Studies on GeoBrom HG520 Partial Immersion Study a Chemtura business Great Lakes Solutions: brominated derivative products for mercury control Contents Background Information 1 Objectives 1 Executive

More information

CARBOWAX SENTRY Polyethylene Glycol (PEG) and Methoxypolyethylene Glycol (MPEG) Products

CARBOWAX SENTRY Polyethylene Glycol (PEG) and Methoxypolyethylene Glycol (MPEG) Products Effective: June 9, 2016 Supercedes: None CARBOWAX SENTRY Polyethylene Glycol (PEG) and Methoxypolyethylene Glycol (MPEG) Products Elemental Impurities / Metal Impurities USP general chapter Elemental

More information

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES 1 CONSERVATION OF MATTER AND CHEMICAL PROPERTIES I. OBJECTIVES AND BACKGROUND The object of this experiment is to demonstrate the conservation of matter- or more particularly, the conservation of "atoms"

More information

Equation Writing and Predicting Products Chemistry I Acc

Equation Writing and Predicting Products Chemistry I Acc Introduction: Equation Writing and Predicting Products Chemistry I Acc If you examine your bicycle after it has been left out in the rain a number of times you will find that it has begun to rust. Rust

More information

Method 5.1 Syrup and remelt: Brix, pol and purity

Method 5.1 Syrup and remelt: Brix, pol and purity Section 5: Syrup and remelt p 1/5 Method 5.1 Syrup and remelt: Brix, pol and purity 1. Rationale This method is applicable to factory syrups and remelt and may be used to obtain data for factory control

More information

The reduction of copper oxide

The reduction of copper oxide The reduction of copper oxide Topic Formula determination, extraction of metals. Timing About 10 min. Level Pre-16. Description Copper(II) oxide can be reduced by hydrogen and its formula determined. Natural

More information

Method to 500 µg/l CH 2 O Powder Pillows

Method to 500 µg/l CH 2 O Powder Pillows , 8110 DOC316.53.01042 MBTH Method 1 Method 8110 3 to 500 µg/l CH 2 O Powder Pillows Scope and Application: For water. 1 Adapted from Matthews, T.G. and Howell, T.C., Journal of the Air Pollution Control

More information

HI Multiparameter Photometers with up to 44 Measurement Methods. ISO 9001:2000 Certified

HI Multiparameter Photometers with up to 44 Measurement Methods.  ISO 9001:2000 Certified HI 83200 2 0 0 8 S E R I E S Multiparameter Photometers with up to 44 Measurement Methods ISO 9001:2000 Certified www.hannainst.com/usa HI 83200 2 0 0 8 S E R I E S Multiparameter Photometers with up to

More information

Physical Behavior of Metals

Physical Behavior of Metals Activity 4 Physical Behavior of Metals GOALS In this activity you will: Discover what an alloy is. Make a brass-coated penny. Determine how the properties of a metal are affected by making it into an alloy.

More information

SurTec 717 Alkaline Zinc/Nickel Electroplating Process (Electrolyte based on Sodium)

SurTec 717 Alkaline Zinc/Nickel Electroplating Process (Electrolyte based on Sodium) SurTec 717 Alkaline Zinc/Nickel Electroplating Process (Electrolyte based on Sodium) Properties tolerates higher temperatures superior metal distribution produces Zn/Ni alloy deposits containing 12-15

More information

5-4 Chemical changes Trilogy

5-4 Chemical changes Trilogy 5-4 Chemical changes Trilogy.0 A student investigated the reaction of sodium carbonate with dilute hydrochloric acid. The student used the apparatus shown in Figure. Figure Sodium carbonate This is the

More information

High Throw Bright Acid Copper for Rack and Barrel Plating

High Throw Bright Acid Copper for Rack and Barrel Plating E-Brite 203 High Throw Bright Acid Copper for Rack and Barrel Plating E-Brite 203 produces ductile and low-stress deposits over the entire recommended brightener range. The bath exhibits excellent brightness

More information

2. Crystallization. A. Background

2. Crystallization. A. Background 2. Crystallization A. Background Crystallization is one of several available techniques available to purify organic compounds. Unlike other techniques, however, crystallization is specific to the purification

More information

DETERMINATION of the EMPIRICAL FORMULA

DETERMINATION of the EMPIRICAL FORMULA DETERMINATION of the EMPIRICAL FORMULA One of the fundamental statements of the atomic theory is that elements combine in simple whole number ratios. This observation gives support to the theory of atoms,

More information

CERTIFICATE OF ANALYSIS REVISED REPORT

CERTIFICATE OF ANALYSIS REVISED REPORT Your C.O.C. #: A122303 Attention: STEPHEN LEGAREE EDMONTON 9331 9331-48 Street EDMONTON, AB CANADA T6B 2R4 Report #: R1787645 Version: 2R CERTIFICATE OF ANALYSIS REVISED REPORT MAXXAM JOB #: B4B4991 Received:

More information

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ LAB ADV COMP 8 From Advanced Chemistry with Vernier, Vernier Software & Technology, 2004 INTRODUCTION A titration, as you recall, is a

More information

HAVALLOY Z-C ACID CHLORIDE ZINC / COBALT PROCESS

HAVALLOY Z-C ACID CHLORIDE ZINC / COBALT PROCESS ACID CHLORIDE ZINC / COBALT PROCESS provides a bright, ductile electro-deposited zinc-cobalt alloy containing from 0.1% to 0.5% cobalt that is evenly distributed at low, mid and high current densities.

More information

Method 6.1 Boiling house products: Brix, pol and purity

Method 6.1 Boiling house products: Brix, pol and purity Section 6: Boiling house products p 1/6 Method 6.1 Boiling house products: Brix, pol and purity 1. Rationale This method is applicable to A-, B- and C- (or final) molasses, A-, B- and C-nutsch, A-, B-

More information

1. Elemental mercury is a shiny, silver-colored, dense liquid that flows easily. Are these characteristics of mercury physical or chemical properties?

1. Elemental mercury is a shiny, silver-colored, dense liquid that flows easily. Are these characteristics of mercury physical or chemical properties? Chemistry Dr. Saulmon 2014-15 School Year Unit 2: Basics of Chemistry Problem Set 3 Wednesday, September 3, 2014 1. Elemental mercury is a shiny, silver-colored, dense liquid that flows easily. Are these

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

ENVIRO/Etch Replenisher

ENVIRO/Etch Replenisher ENVIRO/Etch Replenisher Copper Etchant Product Description ENVIRO/Etch (ENVIRO/Etch) is a stabilized formulation designed to provide optimum micro-roughening and cleaning of copper surfaces prior to dry

More information

DURNI-COAT DNC

DURNI-COAT DNC RIAG Oberflächentechnik AG Postfach 169 CH-9545 Wängi TG 25.04.2014 DURNI-COAT DNC 520-12-50 Electroless plating nickel bath for high wear and corrosion resistant applications DNC 520-12-50 is a process

More information

Strong Acid Leachable Metals (SALM) in Soil - Prescriptive

Strong Acid Leachable Metals (SALM) in Soil - Prescriptive Strong Acid Leachable Metals () in Soil - Prescriptive Metals Revision Date: Sept 15, 2017 Parameter Analytical Method Introduction Method Summary MDL(s) and EMS Analyte Code(s)* Metals in Soil and Sediment.

More information

SIDE DISPLAY: Liesegang Reactions (revised)

SIDE DISPLAY: Liesegang Reactions (revised) Discussion The operating guide for Liesegang Rings is organized slightly differently than other operating guides. This is because there are recipes here for 5 different reactions. It is recommended that

More information

Nickel Electroplating

Nickel Electroplating Nickel Electroplating In a galvanic or voltaic electrochemical cell, the spontaneous reaction occurs and electrons flow from the anode (oxidation) to the cathode (reduction). In an electrolytic cell, a

More information

INSTRUCTIONS: CHLORIDE AND WATER HARDNESS (VERSENATE) METHOD PART No

INSTRUCTIONS: CHLORIDE AND WATER HARDNESS (VERSENATE) METHOD PART No OFI Testing Equipment Chloride & Water Hardness Method Instructions Page 1 of 3 INSTRUCTIONS: CHLORIDE AND WATER HARDNESS (VERSENATE) METHOD PART No. 144-70 EQUIPMENT: QUANTITY DESCRIPTION PART NO. 1 Titration

More information

Student Exploration: Mineral Identification

Student Exploration: Mineral Identification Name: Date: Student Exploration: Identification Vocabulary: crystal, density, hardness, homogeneous, luster, mass, mineral, streak, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1.

More information

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856 , TNTplus856, 10220 DOC316.53.01065 Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Scope and Application: For Water and Wastewater Test preparation Before starting the test: DR 2800:

More information

(3) The compound boron nitride (BN) has a high melting point (2967 ºC), high density, and is very hard. What is the best classification of this solid?

(3) The compound boron nitride (BN) has a high melting point (2967 ºC), high density, and is very hard. What is the best classification of this solid? Solids and Liquids Name: Period: (1) Identify the type of solid formed by each compound. (a) Ag (b) CO 2 (c) SiO 2 (d) wax (e) MgCl 2 (f) Fe (g) graphite (h) SO 2 (i) CaCO 3 (j) I 2 (k) rubber (l) SiC

More information

Laboratory Exercise: Illustration of the Law of Multiple Proportions

Laboratory Exercise: Illustration of the Law of Multiple Proportions CHEM 109 Introduction to Chemistry Revision 1.0 Laboratory Exercise: Illustration of the Law of Multiple Proportions In this exercise we will illustrate the Law of Multiple Proportions by examining the

More information

to the presentation Teaching Thermodynamics: Chemical Potential from the Beginning Regina Rüffler, Georg Job

to the presentation Teaching Thermodynamics: Chemical Potential from the Beginning  Regina Rüffler, Georg Job to the presentation Teaching Thermodynamics: Chemical Potential from the Beginning Regina Rüffler, Georg Job Thermo International 2006 Boulder, August 3, 2006 FOUNDATION Further informations on the homepage:

More information

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes.

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes. Edexcel GCSE Chemistry Topic 4: Extracting metals and equilibria Obtaining and using metals Notes 4.1 Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions

More information

CEE-BEE CLEANER A-7X7 by Cee-Bee

CEE-BEE CLEANER A-7X7 by Cee-Bee by Cee-Bee d a t a s h e e t CEE-BEE CLEANER A-7X7 is a concentrated liquid emulsion cleaner that effectively removes greases and oils in immersion, ultrasonic and spray-on cleaning applications. Cee-Bee

More information

Recrystallization with a Single Solvent

Recrystallization with a Single Solvent Experiment: Recrystallization Part II: Purification of Solids In Part I of the recrystallization experiment, you learned about the factors which make a good recrystallization solvent, and you learned how

More information

Unit 2 6 th Grade PHYSICAL PROPERTIES OF MATTER

Unit 2 6 th Grade PHYSICAL PROPERTIES OF MATTER Unit 2 6 th Grade PHYSICAL PROPERTIES OF MATTER Elements can be classified as: Metals Good conductors of heat. Good conductors of electricity. Good reflectors of light when polished (shiny luster) Malleable

More information

EDICT ± OF GOVERNMENT

EDICT ± OF GOVERNMENT EDICT ± OF GOVERNMENT Inordertopromotepubliceducationandpublicsafety,equal justiceforal,abeterinformedcitizenry,theruleoflaw,world tradeandworldpeace,thislegaldocumentisherebymade availableonanoncommercialbasis,asitistherightofal

More information

Chem 2115 Experiment #9. Consumer Chemistry: Determining the Iron Content in Supplements

Chem 2115 Experiment #9. Consumer Chemistry: Determining the Iron Content in Supplements Chem 2115 Experiment #9 Consumer Chemistry: Determining the Iron Content in Supplements OBJECTIVE: The goal of this experiment is to use the quantitative technique of spectrophotometry to determine the

More information

Recrystallization II 23

Recrystallization II 23 Recrystallization II 23 Chem 355 Jasperse RECRYSTALLIZATIN-Week 2 1. Mixed Recrystallization of Acetanilide 2. Mixed Recrystallization of Dibenzylacetone 3. Recrystallization of an Unknown Background Review:

More information

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By the Authority Vested By Part 5 of the United States Code 552(a) and Part 1 of the Code of Regulations 51 the attached document has

More information

Close Reading and Text Dependent Questions in Science Thermal Equilibrium (Physics HS)

Close Reading and Text Dependent Questions in Science Thermal Equilibrium (Physics HS) Close Reading and Text Dependent Questions in Science Thermal Equilibrium (Physics HS) The text selection, Thermal Equilibrium, can be found at the following link: http://www.buzzle.com/articles/thermal-

More information

Experiment 2: The Chromatography of Organic Compounds

Experiment 2: The Chromatography of Organic Compounds Experiment 2: The Chromatography of Organic Compounds INTRODUCTION When performing an organic reaction, it is very common to observe the formation of other compounds in addition to your desired product;

More information

TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER

TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER TEACHER NOTES This experiment is designed for students working singly or in groups of two. One run through the series

More information

NICKEL GLEAM BR 220 BRIGHT NICKEL PROCESS

NICKEL GLEAM BR 220 BRIGHT NICKEL PROCESS NICKEL GLEAM BR 220 BRIGHT NICKEL PROCESS For Industrial Finishing Applications Regional Product Availability N.America Japan/Korea Asia Europe DESCRIPTION Nickel Gleam BR 220 is a bright nickel plating

More information

Formula & Equation Writing

Formula & Equation Writing Formula & Equation Writing Book 2 H H Al Al H Al(H) 3 H Ionic Equations Ionic Formulae Balanced Equations Formula Equations Word Equations Transition Metals Using Brackets Awkward Customers More than 2

More information

Preparation of Cyclohexene From Cyclohexanol

Preparation of Cyclohexene From Cyclohexanol EXPERIMENT 9 Alkene Synthesis From Alcohol Preparation of Cyclohexene From Cyclohexanol Purpose: a) Preparation of an alkene by dehydration (elimination of water) of an alcohol in the presence of an acid

More information

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper,

More information